Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.283
Filtrar
1.
J Mass Spectrom ; 59(6): e5036, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38726689

RESUMO

Turmeric and ginger are extensively employed as functional ingredients due to their high content of curcuminoids and gingerols, considered the key bioactive compounds found in these roots. In this study, we present an innovative and fast method for the assay of curcuminoids and gingerols in different foods containing the two spices, with the aim of monitoring the quality of products from a nutraceutical perspective. The proposed approach is based on paper spray tandem mass spectrometry coupled with the use of a labeled internal standard, which has permitted to achieve the best results in terms of specificity and accuracy. All the calculated analytical parameters were satisfactory; accuracy values are around 100% for all spiked samples and the precision data result lower than 15%. The protocol was applied to several real samples, and to demonstrate its robustness and reliability, the results were compared to those arising from the common liquid chromatographic method.


Assuntos
Curcuma , Álcoois Graxos , Espectrometria de Massas em Tandem , Zingiber officinale , Zingiber officinale/química , Curcuma/química , Espectrometria de Massas em Tandem/métodos , Álcoois Graxos/análise , Reprodutibilidade dos Testes , Limite de Detecção , Catecóis/análise , Análise de Alimentos/métodos , Curcumina/análise , Curcumina/análogos & derivados , Papel
2.
J Neuroimmune Pharmacol ; 19(1): 20, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758335

RESUMO

Neuroinflammation has emerged as a crucial factor in the development of depression. Despite the well-known anti-inflammatory properties of 6-gingerol, its potential impact on depression remains poorly understood. This study aimed to investigate the antidepressant effects of 6-gingerol by suppressing microglial activation. In vivo experiments were conducted to evaluate the effect of 6-gingerol on lipopolysaccharide (LPS)-induced behavioral changes and neuroinflammation in rat models. In vitro studies were performed to examine the neuroprotective properties of 6-gingerol against LPS-induced microglial activation. Furthermore, a co-culture system of microglia and neurons was established to assess the influence of 6-gingerol on the expression of synaptic-related proteins, namely synaptophysin (SYP) and postsynaptic density protein 95 (PSD95), which are influenced by microglial activation. In the in vivo experiments, administration of 6-gingerol effectively alleviated LPS-induced depressive behavior in rats. Moreover, it markedly suppressed the activation of rat prefrontal cortex (PFC) microglia induced by LPS and the activation of the NF-κB/NLRP3 inflammatory pathway, while also reducing the levels of inflammatory cytokines IL-1ß and IL-18. In the in vitro experiments, 6-gingerol mitigated nuclear translocation of NF-κB p65, NLRP3 activation, and maturation of IL-1ß and IL-18, all of which were induced by LPS. Furthermore, in the co-culture system of microglia and neurons, 6-gingerol effectively restored the decreased expression of SYP and PSD95. The findings of this study demonstrate the neuroprotective effects of 6-gingerol in the context of LPS-induced depression-like behavior. These effects are attributed to the inhibition of microglial hyperactivation through the suppression of the NF-κB/NLRP3 inflammatory pathway.


Assuntos
Catecóis , Depressão , Álcoois Graxos , Lipopolissacarídeos , Microglia , Plasticidade Neuronal , Ratos Sprague-Dawley , Animais , Álcoois Graxos/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Ratos , Lipopolissacarídeos/toxicidade , Masculino , Catecóis/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Depressão/tratamento farmacológico , Depressão/induzido quimicamente , Depressão/metabolismo , Técnicas de Cocultura , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Células Cultivadas , Antidepressivos/farmacologia
3.
Sci Rep ; 14(1): 7747, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565569

RESUMO

6-Gingerol, the main bioactive compound of ginger, has antioxidant, anti-inflammatory, anti-cancer and neuroprotective effects. However, it is unclear whether 6-Gingerol has protective effects against hepatic ischemia/reperfusion (I/R) injury. In this study, the mouse liver I/R injury model and the mouse AML12 cell hypoxia/reoxygenation (H/R) model were established by pretreatment with 6-Gingerol at different concentrations to explore the potential effects of 6-Gingerol. Serum transaminase levels, liver necrotic area, cell viability, inflammatory response, and cell apoptosis were used to assess the effect of 6-Gingerol on hepatic I/R or cell H/R injury. Quantitative polymerase chain reaction (qPCR) and Western blotting were used to detect the mRNA and protein expression. The results show that 6-Gingerol decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels, liver necrosis, inflammatory cytokines IL-1ß, IL-6, MCP-1, TNF-α expression, Ly6g+ inflammatory cell infiltration, protein phosphorylation of NF-κB signaling pathway, Terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) positive cells, cell apoptosis rate, the protein expression of pro-apoptotic protein BAX and C-Caspase3, increased cell viability, and expression of anti-apoptotic protein BCL-2. Moreover, 6-Gingerol could increase the mRNA and protein expression of mitogen activated protein kinase phosphatase 5 (MKP5) and inhibit the activation of P38/JNK signaling pathway. In MKP5 knockout (KO) mice, the protective effect of 6-gingerol and the inhibition of P38/JNK pathway were significantly weakened. Therefore, our results suggest that 6-Gingerol exerts anti-inflammatory and anti-apoptotic effects to attenuate hepatic I/R injury by regulating the MKP5-mediated P38/JNK signaling pathway.


Assuntos
Catecóis , Álcoois Graxos , Sistema de Sinalização das MAP Quinases , Traumatismo por Reperfusão , Camundongos , Animais , Traumatismo por Reperfusão/tratamento farmacológico , Fígado , Isquemia , Anti-Inflamatórios/farmacologia , Proteínas Reguladoras de Apoptose/farmacologia , Apoptose , RNA Mensageiro/farmacologia
4.
Int J Biol Macromol ; 268(Pt 1): 131503, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38663697

RESUMO

Herbivorous insects utilize intricate olfactory mechanisms to locate food plants. The chemical communication of insect-plant in primitive lineage offers insights into evolutionary milestones of divergent olfactory modalities. Here, we focus on a system endemic to the Qinghai-Tibetan Plateau to unravel the chemical and molecular basis of food preference in ancestral Lepidoptera. We conducted volatile profiling, neural electrophysiology, and chemotaxis assays with a panel of host plant organs to identify attractants for Himalaya ghost moth Thitarodes xiaojinensis larvae, the primitive host of medicinal Ophiocordyceps sinensis fungus. Using a DREAM approach based on odorant induced transcriptomes and subsequent deorphanization tests, we elucidated the odorant receptors responsible for coding bioactive volatiles. Contrary to allocation signals in most plant-feeding insects, T. xiaojinensis larvae utilize tricosane from the bulbil as the main attractant for locating native host plant. We deorphanized a TxiaOR17b, an indispensable odorant receptor resulting from tandem duplication of OR17, for transducing olfactory signals in response to tricosane. The discovery of this ligand-receptor pair suggests a survival strategy based on food location via olfaction in ancestral Lepidoptera, which synchronizes both plant asexual reproduction and peak hatch periods of insect larvae.


Assuntos
Larva , Mariposas , Receptores Odorantes , Animais , Mariposas/fisiologia , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Olfato/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/química , Filogenia , Quimiotaxia , Álcoois Graxos/farmacologia , Álcoois Graxos/química
5.
Biomacromolecules ; 25(5): 2914-2924, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38676646

RESUMO

With the increasing number of diabetic patients in the world, there is an urgent requirement to reduce the incidence of diabetes. It is considered that a viable prophylactic treatment for type 2 diabetes mellitus is to reduce starch digestibility and oxidative stress. In this study, a novel type of slowly digested starch [pea starch (PS)-gingerol complex] was fabricated to evaluate its in vitro enzymatic digestibility and antioxidant activities. Theoretical and experimental analyses showed that PS can encapsulate gingerols with long alkyl chains to form starch-gingerol complexes, which are further stacked into a mixture of V6- and V7-crystallites. These complexes, in particular the PS-10-gingerol complex, showed high resistance to amylolysis and good antioxidant activities. This study demonstrates that these novel starch-gingerol complexes have the potential to deliver antioxidants encapsulated in starch with slow-digesting properties and reduce oxidative stress. Moreover, this new type of slowly digested starch with antioxidant properties showed great potential in the prevention of type 2 diabetes.


Assuntos
Antioxidantes , Catecóis , Diabetes Mellitus Tipo 2 , Álcoois Graxos , Amido , Amido/química , Antioxidantes/química , Álcoois Graxos/química , Catecóis/química , Diabetes Mellitus Tipo 2/prevenção & controle , Estresse Oxidativo/efeitos dos fármacos , Humanos
6.
Biochem Biophys Res Commun ; 708: 149786, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38493545

RESUMO

Ectopic lipid deposition (ELD) and mitochondrial dysfunction are common causes of metabolic disorders in humans. Consuming too much fructose can result in mitochondrial dysfunction and metabolic disorders. 6-Gingerol, the main component of ginger (Zingiber officinale Roscoe), has been proven to alleviate metabolic disorders. This study seeks to examine the effects of 6-gingerol on metabolic disorders caused by fructose and uncover the underlying molecular mechanisms. In this study, the results showed that 6-Gingerol ameliorated high-fructose-induced metabolic disorders. Moreover, it inhibited CD36 membrane translocation, increased CD36 expression in the mitochondria, and decreased the O-GlcNAc modification of CD36 and OGT expression in vitro and vivo. In addition, 6-Gingerol enhanced the performance of mitochondria in the skeletal muscle and boosted the respiratory capability of L6 myotubes. This study provides a theoretical basis and new insights for the development of lipid-lowering drugs in clinical practice.


Assuntos
Doenças Metabólicas , Doenças Mitocondriais , Humanos , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Álcoois Graxos/farmacologia , Álcoois Graxos/metabolismo , Catecóis/farmacologia , Frutose/metabolismo , Doenças Metabólicas/metabolismo , Doenças Mitocondriais/metabolismo
7.
Int J Pharm ; 655: 124035, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38527564

RESUMO

Lacidipine (LCD) is a potent antihypertensive agent. Fatty-based nanovesicles (FNVs) were designed to improve LCD low solubility and bioavailability. LCD-FNVs were formulated according to different proportions of cetyl alcohol, cremophor®RH40, and oleic acid adopting Box-Behnken Design. The optimized LCD-FNVs, composed of cetyl alcohol 48.4 mg, cremophor®RH40 120 mg, and oleic acid 40 mg, showed minimum vesicle size (124.8 nm), maximum entrapment efficiency % (91.04 %) and zeta potential (-36.3 mV). The optimized FNVs were then used to formulate the lyophilized orally fast-disintegrating sponge (LY-OFDS). The LY-OFDS had a very short disintegration time (58 sec), remarkably high % drug release (100 % after 15 mins), and increased the drug transbuccal permeation by over 9.5-fold compared to the drug suspension. In-vivo evaluation of antihypertensive activity in rats showed that the LY-OFDS reduced blood pressure immediately after 5 min and reached normal blood pressure 4.5-fold faster than the marketed oral tablets. In the In-vivo pharmacokinetic study in rabbits, the LY-OFDS showed 4.7-fold higher bioavailability compared with the marketed oral tablet. In conclusion, the LY-OFDS loaded with LCD-FNVs is a safe, and non-invasive approach that can deliver LCD effectively to the blood circulation via the buccal mucosa giving superior immediate capabilities of lowering high blood pressure and increasing the drug bioavailability.


Assuntos
Di-Hidropiridinas , Álcoois Graxos , Ácido Oleico , Polietilenoglicóis , Ratos , Coelhos , Animais , Anti-Hipertensivos , Solubilidade , Disponibilidade Biológica , Sistemas de Liberação de Medicamentos , Administração Oral , Tamanho da Partícula
8.
Int J Pharm ; 654: 123992, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479485

RESUMO

Linagliptin is a dipeptidyl peptidase-4 inhibitor used for the management of type-2 diabetes. US FDA-approved products are available exclusively as oral tablets. The inherent drawbacks of the oral administration route necessitate exploring delivery strategies via other routes. In this study, we investigated the feasibility of transdermal administration of linagliptin through various approaches. We compared chemical penetration enhancers (oleic acid, oleyl alcohol, and isopropyl myristate) and physical enhancement techniques (iontophoresis, sonophoresis, microneedles, laser, and microdermabrasion) to understand their potential to improve transdermal delivery of linagliptin. To our knowledge, this is the first reported comparison of chemical and physical enhancement techniques for the transdermal delivery of a moderately lipophilic molecule. All physical enhancement techniques caused a significant reduction in the transepithelial electrical resistance of the skin samples. Disruption of the skin's structure post-treatment with physical enhancement techniques was further confirmed using characterization techniques such as dye binding, histology, and confocal microscopy. In vitro permeation testing (IVPT) demonstrated that the passive delivery of linagliptin across the skin was < 5 µg/sq.cm. Two penetration enhancers - oleic acid (93.39 ± 8.34 µg/sq.cm.) and oleyl alcohol (424.73 ± 42.86 µg/sq.cm.), and three physical techniques - iontophoresis (53.05 ± 0.79 µg/sq.cm.), sonophoresis (141.13 ± 34.22 µg/sq.cm.), and laser (555.11 ± 78.97 µg/sq.cm.) exceeded the desired target delivery for therapeutic effect. This study established that linagliptin is an excellent candidate for transdermal delivery and thoroughly compared chemical penetration and physical transdermal delivery strategies.


Assuntos
Álcoois Graxos , Linagliptina , Absorção Cutânea , Administração Cutânea , Linagliptina/metabolismo , Ácido Oleico/metabolismo , Pele/metabolismo , Iontoforese/métodos , Sistemas de Liberação de Medicamentos/métodos
9.
Am J Physiol Gastrointest Liver Physiol ; 326(5): G591-G606, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469632

RESUMO

Ulcerative colitis (UC) is an idiopathic inflammatory disease of the large intestine, which impacts millions worldwide. Current interventions aimed at treating UC symptoms can have off-target effects, invoking the need for alternatives that may provide similar benefits with less unintended consequences. This study builds on our initial data, which showed that panaxynol-a novel, potent, bioavailable compound found in American ginseng-can suppress disease severity in murine colitis. Here we explore the underlying mechanisms by which panaxynol improves both chronic and acute murine colitis. Fourteen-week-old C57BL/6 female mice were either given three rounds of dextran sulfate sodium (DSS) in drinking water to induce chronic colitis or one round to induce acute colitis. Vehicle or panaxynol (2.5 mg/kg) was administered via oral gavage three times per week for the study duration. Consistent with our previous findings, panaxynol significantly (P < 0.05) improved the disease activity index and endoscopic scores in both models. Using the acute model to examine potential mechanisms, we show that panaxynol significantly (P < 0.05) reduced DSS-induced crypt distortion, goblet cell loss, and mucus loss in the colon. 16S Sequencing revealed panaxynol altered microbial composition to suppress colitis-enriched genera (i.e., Enterococcus, Eubacterium, and Ruminococcus). In addition, panaxynol significantly (P < 0.05) suppressed macrophages and induced regulatory T-cells in the colonic lamina propria. The beneficial effects of panaxynol on mucosal and crypt architecture, combined with its microbial and immune-mediated effects, provide insight into the mechanisms by which panaxynol suppresses murine colitis. Overall, this data is promising for the use of panaxynol to improve colitis in the clinic.NEW & NOTEWORTHY In the current study, we report that panaxynol ameliorates chemically induced murine colitis by improving colonic crypt and mucosal architecture, suppressing colitis-enriched microbes, reducing macrophages, and promoting the differentiation of regulatory T-cells in the colonic lamina propria. This study suggests that this novel natural compound may serve as a safe and effective treatment option for colitis patients.


Assuntos
Colite , Sulfato de Dextrana , Microbioma Gastrointestinal , Mucosa Intestinal , Camundongos Endogâmicos C57BL , Animais , Feminino , Camundongos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Microbioma Gastrointestinal/efeitos dos fármacos , Colite/tratamento farmacológico , Colite/induzido quimicamente , Colite/patologia , Colite/imunologia , Colite/microbiologia , Álcoois Graxos/farmacologia , Di-Inos/farmacologia , Modelos Animais de Doenças , Colo/efeitos dos fármacos , Colo/patologia , Colo/imunologia , Colo/microbiologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/imunologia , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , Colite Ulcerativa/microbiologia
10.
Phytomedicine ; 128: 155347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38493717

RESUMO

BACKGROUND: Bile acid (BA) enterohepatic circulation disorders are a main feature of chronic cholestatic diseases. Promoting BA metabolism is thus a potential method of improving enterohepatic circulation disorders, and treat enterohepatic inflammation, oxidative stress and fibrosis due to cholestasis. PURPOSE: To investigate the effect of JiaGaSongTang (JGST) and its blood-absorbed ingredient 6-gingerol on α-naphthylisothiocyanate (ANIT)-induced chronic cholestasis, as well as elucidate the underlying regulatory mechanism. METHODS: Chronic cholestasis was induced in mice via subcutaneous injection of ANIT (50 mg/kg) every other day for 14 d. Treatment groups were administered JGST orally daily. Damage to the liver and intestine was observed using histopathological techniques. Biochemical techniques were employed to assess total BA (TBA) levels in the serum, liver, and ileum samples. Liquid chromatograph-mass spectrometry/mass spectrometry (LC-MS/MS) was used to analyze fecal BA components. Bioinformatic methods were adopted to screen the core targets and pathways. The blood-absorbed ingredients of JGST were scrutinized via LC-MS/MS. The effects of the major JGST ingredients on farnesoid X receptor (FXR) transactivation were validated using dual luciferase reporter genes. Lastly, the effects of the FXR inhibitor, DY268, on JGST and 6-gingerol pharmacodynamics were observed at the cellular and animal levels. RESULTS: JGST ameliorated pathological impairments in the liver and intestine, diminishing TBA levels in the serum, liver and gut. Fecal BA profiling revealed that JGST enhanced the excretion of toxic BA constituents, including deoxycholic acid. Bioinformatic analyses indicated that JGST engaged in anti-inflammatory mechanisms, attenuating collagen accumulation, and orchestrating BA metabolism via interactions with FXR and other pertinent targets. LC-MS/MS analysis identified six ingredients absorbed to the bloodstream, including 6-gingerol. Surface plasmon resonance (SPR) and dual luciferase reporter gene assays confirmed the abilities of 6-gingerol to bind to FXR and activate its transactivation. Ultimately, in both cellular and animal models, the therapeutic efficacy of JGST and 6-gingerol in chronic cholestasis was attenuated in the presence of FXR inhibitors. CONCLUSION: The findings, for the first time, demonstrated that 6-gingerol, a blood-absorbed ingredient of JGST, can activate FXR to affect BA metabolism, and thereby attenuate ANIT-induced liver and intestinal injury in chronic cholestasis mice model via inhibition of inflammation, oxidative stress, and liver fibrosis, in part in a FXR-dependent mechanism.


Assuntos
1-Naftilisotiocianato , Ácidos e Sais Biliares , Catecóis , Colestase , Álcoois Graxos , Fígado , Receptores Citoplasmáticos e Nucleares , Animais , Ácidos e Sais Biliares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Colestase/tratamento farmacológico , Colestase/metabolismo , Masculino , Camundongos , Catecóis/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Álcoois Graxos/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Camundongos Endogâmicos C57BL , Humanos , Doença Crônica , Modelos Animais de Doenças
11.
J Agric Food Chem ; 72(9): 4649-4657, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38383306

RESUMO

Oomycetes are well-known phytopathogens that seriously threaten many important crops worldwide. In this study, the endophytic actinobacterium Streptomyces sp. NEAU-S7GS2 demonstrated significant antagonistic activity against Phytophthora and Pythium and showed a potent biocontrol effect on suppression of soybean phytophthora root rot and pepper phytophthora blight. Two compounds were subsequently isolated as the main active components by bioassay-guided fractionation and identified as lydicamycins A and B. These two compounds showed high antioomycete activity against Phytophthora and Pythium with EC50 values of 0.73-2.67 µg/mL, which are equal to or lower than those of commercialized drug metalaxyl. In vivo bioassay using detached leaves demonstrated that lydicamycin A had a better control efficiency against soybean phytophthora root rot than metalaxyl. Taken together, these results suggest that the biocontrol agent Streptomyces sp. NEAU-S7GS2 and lydicamycins have the potential to be developed as promising pesticides to control diseases caused by oomycetes.


Assuntos
Phytophthora , Pythium , Streptomyces , Glycine max , Produtos Agrícolas , Doenças das Plantas/prevenção & controle , Doenças das Plantas/microbiologia , Álcoois Graxos , Pirrolidinonas
12.
J Food Sci ; 89(3): 1485-1497, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38317483

RESUMO

To recognize the key ester-related volatile compounds, 5 types of peaches including 54 late-ripening peach materials were examined by headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and E-nose. Here, a large number of esters were identified to be released by ripe peach fruits and were mainly characterized by fruity, green, and fatty notes. The variety and content of esters had greatly changed within or between cultivars, indicating that the fruit volatiles were highly differentiated depending on the specific genotypes and cultivation conditions. The ester types showed that fatty acid-derived C6 alcohols and methyl-/ethyl- short-chain alcohol were the main ester precursors, which were more likely to be utilized and well selected by alcohol acyltransferases, whereas the preference of acyl donors was not observed. The common peach type, which exhibited a unique volatile profile, displayed broader diversity and more abundant characteristics in ester-related volatiles than the other four types. A total of 19 key esters were identified as the main components and the content of most esters showed no significant difference among different peach types. Some key esters had even been enriched in nectarines. Moreover, the multiple discriminant analysis revealed a possible relationship between peach types and the domestication of the peach evolution. This study investigated ester-related volatiles released by different types of peach fruits and can be further used to evaluate the peach qualities, providing an important reference for peach breeding and processing.


Assuntos
Prunus persica , Compostos Orgânicos Voláteis , Ésteres/análise , Compostos Orgânicos Voláteis/análise , Melhoramento Vegetal , Frutas/química , Álcoois Graxos/análise , Etanol/análise
13.
Basic Clin Pharmacol Toxicol ; 134(4): 498-506, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38379124

RESUMO

Psoriasis is a chronic inflammatory skin disease. Topical medicines are the preferred treatment for mild to moderate psoriasis, but the effect of excipients used in semi-solid preparations on psoriasis-like skin inflammation is not fully understood. In the present study, we investigated the effect of stearyl alcohol, a commonly used excipient, on imiquimod (IMQ)-induced psoriasis-like skin inflammation in mice. Psoriasis-like skin inflammation was induced by topical IMQ treatment on the back of mice. Skin lesion severity was evaluated by using psoriasis area and severity index (PASI) scores. The skin sections were stained by haematoxylin-eosin and immunohistochemistry. Stearyl alcohol (20% in vaseline) treatment significantly reduced the IMQ-induced increase of PASI scores and epidermal thickness in mice. IMQ treatment increased the number of Ki67- and proliferating cell nuclear antigen (PCNA)-positive cells in the skin, and the increases were inhibited by stearyl alcohol (20% in vaseline) treatment. Stearyl alcohol treatment (1%, 5%, 10% in vaseline) dose-dependently ameliorated IMQ-induced increase of PASI scores and epidermal thickness in mice. Hexadecanol (20% in vaseline), stearic acid (20% in vaseline) and vaseline treatment had no significant effect on IMQ-induced psoriasis-like skin inflammation in mice. In conclusion, stearyl alcohol has the effect of improving IMQ-induced psoriasis-like skin inflammation in mice.


Assuntos
Dermatite , Álcoois Graxos , Psoríase , Camundongos , Animais , Imiquimode/efeitos adversos , Psoríase/induzido quimicamente , Psoríase/tratamento farmacológico , Dermatite/patologia , Pele , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/patologia , Vaselina/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
14.
Plant Sci ; 341: 111992, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38301931

RESUMO

Long and very long chain fatty alcohols are produced from their corresponding acyl-CoAs through the activity of fatty acyl reductases (FARs). Fatty alcohols are important components of the cuticle that protects aerial plant organs, and they are metabolic intermediates in the synthesis of the wax esters in the hull of sunflower (Helianthus annuus) seeds. Genes encoding 4 different FARs (named HaFAR2, HaFAR3, HaFAR4 and HaFAR5) were identified using BLAST, and studies showed that four of the genes were expressed in seed hulls. In this study, the structure and location of sunflower FAR proteins were determined. They were also expressed exogenously in Saccharomyces cerevisiae to evaluate their substrate specificity based on the fatty alcohols synthesized by the transformed yeasts. Three of the four enzymes tested showed activity in yeast. HaFAR3 produced C18, C20 and C22 saturated alcohols, whereas HaFAR4 and HaFAR5 produced C24 and C26 saturated alcohols. The involvement of these genes in the synthesis of sunflower seed wax esters was addressed by considering the results obtained.


Assuntos
Helianthus , Oxirredutases , Oxirredutases/metabolismo , Helianthus/metabolismo , Sementes/metabolismo , Álcoois Graxos/metabolismo
15.
Eur J Pharmacol ; 967: 176399, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38331338

RESUMO

Ginger has been used for thousands of years for the treatment of many illnesses, from nausea to migraines. Recently, an interest has grown in ginger compounds in the context of autoimmune and inflammatory diseases due to their significant anti-inflammatory effects. Nevertheless, the effects and mechanism of action of these phytochemicals in human immune cells, particularly in dendritic cells (DCs) are unclear. In the present study, we investigated the effects of 6-gingerol and 6-shogaol, the major compounds found in ginger rhizome, on the functionality of primary human monocyte-derived DCs (moDCs). Here we report for the first time that 6-gingerol and 6-shogaol dampen the immunogenicity of human DCs by inhibiting their activation, cytokine production and T cell stimulatory ability. In particular, the bioactive compounds of ginger dose-dependently inhibited the upregulation of activation markers, and the production of different cytokines in response to synthetic Toll-like receptor (TLR) ligands. Moreover, both compounds could significantly reduce the Escherichia coli-triggered cytokine production and T cell stimulatory capacity of moDCs. We also provide evidence that the ginger-derived compounds attenuate DC functionality via inhibiting the nuclear factor-κB (NF-kB), mitogen activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) signaling cascades. Further, 6-shogaol but not 6-gingerol activates the AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor 2 (NRF2) pathways that might contribute to its anti-inflammatory action. Altogether, our results indicate that ginger-derived phytochemicals exert their anti-inflammatory activities via multiple mechanisms and suggest that 6-shogaol is more potent in its ability to suppress DC functionality than 6-gingerol.


Assuntos
Álcoois Graxos , Zingiber officinale , Humanos , Catecóis/farmacologia , Extratos Vegetais/farmacologia , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Receptores Toll-Like , Células Dendríticas/metabolismo
17.
Curr Opin Biotechnol ; 85: 103063, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219523

RESUMO

Medium-chain fatty alcohols (mcFaOHs) are aliphatic primary alcohols containing six to twelve carbons that are widely used in materials, pharmaceuticals, and cosmetics. Microbial biosynthesis has been touted as a route to less-abundant chain-length molecules and as a sustainable alternative to current petrochemical processes. Several metabolic engineering strategies for producing mcFaOHs have been demonstrated in the literature, yet processes continue to suffer from poor selectivity and mcFaOH toxicity, leading to reduced titers, rates, and yields of the desired compounds. This opinion examines the current state of microbial mcFaOH biosynthesis, summarizing engineering efforts to tailor selectivity and improve product tolerance by implementing engineering strategies that circumvent or overcome mcFaOH toxicity.


Assuntos
Álcoois , Álcoois Graxos , Álcoois Graxos/metabolismo , Engenharia Metabólica , Ácidos Graxos/metabolismo
18.
J Antibiot (Tokyo) ; 77(3): 156-162, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38200163

RESUMO

A new antifungal compound, named N-demethyltyroscherin (1), was discovered from the static fungal cultured material of Scedosporium apiospermum FKJ-0499 isolated from a deep-sea sediment sample together with a known compound, tyroscherin (2). The structure of 1 was elucidated as a new analog of 2 by MS and NMR analyses. The absolute configuration of 1 was determined by chemical derivatization. Both compounds showed potent in vitro antifungal activity against clinically isolated Candida auris strains, with MIC values ranging from 0.0625 to 4 µg ml-1.


Assuntos
Antifúngicos , Epinefrina/análogos & derivados , Álcoois Graxos , Scedosporium , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida auris , Testes de Sensibilidade Microbiana , Fungos
19.
Int Immunopharmacol ; 128: 111459, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38181675

RESUMO

BACKGROUND: Alveolar hypercoagulation and fibrinolytic inhibition play a central role in refractory hypoxemia in acute respiratory distress syndrome (ARDS), but it lacks effective drugs for prevention and treatment of this pathophysiology. Our previous experiment confirmed that RUNX1 promoted alveolar hypercoagulation and fibrinolytic inhibition through NF-κB pathway. Other studies demonstrated that 6-gingerol regulated inflammation and metabolism by inhibiting the NF-κB signaling pathway. We assume that 6-gingerol would ameliorate alveolar hypercoagulation and fibrinolytic inhibition via RUNX1/ NF-κB pathway in LPS-induced ARDS. METHODS: Rat ARDS model was replicated through LPS inhalation. Before LPS inhalation, the rats were intraperitoneally treated with different doses of 6-gingerol or the same volume of normal saline (NS) for 12 h, and then intratracheal inhalation of LPS for 24 h. In cell experiment, alveolar epithelial cell type II (AECII) was treated with 6-gingerol for 6 h and then with LPS for another 24 h. RUNX1 gene was down-regulated both in pulmonary tissue and in cells. Tissue factor (TF), plasminogen Activator Inhibitor 1(PAI-1) and thrombin were determined by Wester-blot (WB), qPCR or by enzyme-linked immunosorbent (ELISA). Lung injury score, pulmonary edema and pulmonary collagen III in rat were assessed. NF-κB pathway were also observed in vivo and in vitro. The direct binding capability of 6-gingerol to RUNX1 was confirmed by using Drug Affinity Responsive Target Stability test (DARTS). RESULTS: 6-gingerol dose-dependently attenuated LPS-induced lung injury and pulmonary edema. LPS administration caused excessive TF and PAI-1 expression both in pulmonary tissue and in AECII cell and a large amount of TF, PAI-1 and thrombin in bronchial alveolar lavage fluid (BALF), which all were effectively decreased by 6-gingerol treatment in a dose-dependent manner. The high collagen Ⅲ level in lung tissue provoked by LPS was significantly abated by 6-gingerol. 6-gingerol was seen to dramatically inhibit the LPS-stimulated activation of NF-κB pathway, indicated by decreases of p-p65/total p65, p-IKKß/total IKKß, and also to suppress the RUNX1 expression. RUNX1 gene knock down or RUNX1 inhibitor Ro5-3335 significantly enhanced the efficacies of 6-gingerol in vivo and in vitro, but RUNX1 over expression remarkably impaired the effects of 6-gingerol on TF, PAI-1 and on NF-κB pathway. DARTS result showed that 6-gingerol directly bond to RUNX1 molecules. CONCLUSIONS: Our experimental data demonstrated that 6-gingerol ameliorates alveolar hypercoagulation and fibrinolytic inhibition via RUNX1/NF-κB pathway in LPS-induced ARDS. 6-gingerol is expected to be an effective drug in ARDS.


Assuntos
Catecóis , Álcoois Graxos , Lesão Pulmonar , Edema Pulmonar , Síndrome do Desconforto Respiratório , Ratos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Inibidor 1 de Ativador de Plasminogênio , Subunidade alfa 2 de Fator de Ligação ao Core , Quinase I-kappa B/metabolismo , Trombina/metabolismo , Trombina/farmacologia , Trombina/uso terapêutico , Transdução de Sinais , Síndrome do Desconforto Respiratório/tratamento farmacológico , Colágeno/farmacologia
20.
Phytochemistry ; 219: 113982, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38215812

RESUMO

Ten previously undescribed compounds were isolated from the fruits of Amomum tsao-ko (Zingiberaceae), including nine undescribed flavanol-fatty alcohol hybrids (1-6, 10-11, 13), and a flavanol-monoterpenoid hybrid (14), along with seven known flavanol hybrids (7-9, 12, 15-17). The structures of these compounds were determined using various analyses, such as HRESIMS, 1D/2D NMR, and ECD calculations. In terms of biological activity, compounds 1, 2, 5, and 6 exhibited inhibitions of human pancreatic lipase (HPL), with IC50 values ranging from 0.017 to 0.193 mM. Some of these values were found to be stronger than that of the positive control, orlistat (IC50, 0.067 mM). Molecular docking studies were also conducted to investigate the interactions between these compounds and HPL. The docking simulations revealed the importance of the orientation of the 3,4-dihydroxyphenyl in binding with HPL. Additionally, compound 9 demonstrated cytotoxicity against HepG2, with a CC50 value of 14.96 ± 0.62 µM as determined by the MTT assay. Flow cytometry analysis indicated that compound 9 induced apoptosis in HepG2 cells. Western blot results showed an up-regulation of apoptosis-related proteins, such as p53 protein, Bax and Caspase-3 proteins, while the expression of Bcl-2 protein was down-regulated.


Assuntos
Amomum , Humanos , Amomum/química , Álcoois Graxos/análise , Simulação de Acoplamento Molecular , Frutas/química , Lipase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA