Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.057
Filtrar
1.
BMC Med ; 22(1): 205, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769537

RESUMO

BACKGROUND: It is unclear whether brief interventions using the combined classification of alcohol-metabolizing enzymes aldehyde dehydrogenase 2 (ALDH2) and alcohol dehydrogenase 1B (ADH1B) together with behavioral changes in alcohol use can reduce excessive alcohol consumption. This study aimed to examine the effects of a brief intervention based on the screening of ALDH2 and ADH1B gene polymorphisms on alcohol consumption in Japanese young adults. METHODS: In this open-label randomized controlled trial, we enrolled adults aged 20-30 years who had excessive drinking behavior (average amount of alcohol consumed: men, ≥ 4 drinks/per day and women, ≥ 2 drinks/per day; 1 drink = 10 g of pure alcohol equivalent). Participants were randomized into intervention or control group using a simple random number table. The intervention group underwent saliva-based genotyping of alcohol-metabolizing enzymes (ALDH2 and ADH1B), which were classified into five types. A 30-min in-person or online educational counseling was conducted approximately 1 month later based on genotyping test results and their own drinking records. The control group received traditional alcohol education. Average daily alcohol consumption was calculated based on the drinking diary, which was recorded at baseline and at 3 and 6 months of follow-up. The primary endpoint was average daily alcohol consumption, and the secondary endpoints were the alcohol-use disorder identification test for consumption (AUDIT-C) score and behavioral modification stages assessed using a transtheoretical model. RESULTS: Participants were allocated to the intervention (n = 100) and control (n = 96) groups using simple randomization. Overall, 28 (29.2%) participants in the control group and 21 (21.0%) in the intervention group did not complete the follow-up. Average alcohol consumption decreased significantly from baseline to 3 and 6 months in the intervention group but not in the control group. The reduction from baseline alcohol consumption values and AUDIT-C score at 3 months were greater in the intervention group than in the control group (p < 0.001). In addition, the behavioral modification stages were significantly changed by the intervention (p < 0.001). CONCLUSIONS: Genetic testing for alcohol-metabolizing enzymes and health guidance on type-specific excessive drinking may be useful for reducing sustained average alcohol consumption associated with behavioral modification. TRIAL REGISTRATION: R000050379, UMIN000044148, Registered on June 1, 2021.


Assuntos
Álcool Desidrogenase , Consumo de Bebidas Alcoólicas , Aldeído-Desidrogenase Mitocondrial , Humanos , Masculino , Feminino , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Adulto , Aldeído-Desidrogenase Mitocondrial/genética , Consumo de Bebidas Alcoólicas/genética , Adulto Jovem , Genótipo , Etanol/metabolismo , Polimorfismo Genético , Resultado do Tratamento , Japão
2.
Cell Rep Methods ; 4(5): 100778, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38749443

RESUMO

Alcohol-associated liver disease (ALD) is a prevalent liver disease, yet research is hampered by the lack of suitable and reliable human ALD models. Herein, we generated human adipose stromal/stem cell (hASC)-derived hepatocellular organoids (hAHOs) and hASC-derived liver organoids (hALOs) in a three-dimensional system using hASC-derived hepatocyte-like cells and endodermal progenitor cells, respectively. The hAHOs were composed of major hepatocytes and cholangiocytes. The hALOs contained hepatocytes and nonparenchymal cells and possessed a more mature liver function than hAHOs. Upon ethanol treatment, both steatosis and inflammation were present in hAHOs and hALOs. The incubation of hALOs with ethanol resulted in increases in the levels of oxidative stress, the endoplasmic reticulum protein thioredoxin domain-containing protein 5 (TXNDC5), the alcohol-metabolizing enzymes ADH1B and ALDH1B1, and extracellular matrix accumulation, similar to those of liver tissues from patients with ALD. These results present a useful approach for understanding the pathogenesis of ALD in humans, thus facilitating the discovery of effective treatments.


Assuntos
Tecido Adiposo , Etanol , Hepatócitos , Hepatopatias Alcoólicas , Organoides , Humanos , Organoides/patologia , Organoides/efeitos dos fármacos , Etanol/farmacologia , Etanol/efeitos adversos , Hepatopatias Alcoólicas/patologia , Hepatopatias Alcoólicas/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Hepatócitos/metabolismo , Tecido Adiposo/patologia , Tecido Adiposo/citologia , Álcool Desidrogenase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fígado/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/patologia , Modelos Biológicos , Família Aldeído Desidrogenase 1/metabolismo , Família Aldeído Desidrogenase 1/genética , Células Estromais/patologia , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Tiorredoxinas/metabolismo
3.
Microb Cell Fact ; 23(1): 132, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711050

RESUMO

BACKGROUND: 1,5-pentanediol (1,5-PDO) is a linear diol with an odd number of methylene groups, which is an important raw material for polyurethane production. In recent years, the chemical methods have been predominantly employed for synthesizing 1,5-PDO. However, with the increasing emphasis on environmentally friendly production, it has been a growing interest in the biosynthesis of 1,5-PDO. Due to the limited availability of only three reported feasible biosynthesis pathways, we developed a new biosynthetic pathway to form a cell factory in Escherichia coli to produce 1,5-PDO. RESULTS: In this study, we reported an artificial pathway for the synthesis of 1,5-PDO from lysine with an integrated cofactor and co-substrate recycling and also evaluated its feasibility in E.coli. To get through the pathway, we first screened aminotransferases originated from different organisms to identify the enzyme that could successfully transfer two amines from cadaverine, and thus GabT from E. coli was characterized. It was then cascaded with lysine decarboxylase and alcohol dehydrogenase from E. coli to achieve the whole-cell production of 1,5-PDO from lysine. To improve the whole-cell activity for 1,5-PDO production, we employed a protein scaffold of EutM for GabT assembly and glutamate dehydrogenase was also validated for the recycling of NADPH and α-ketoglutaric acid (α-KG). After optimizing the cultivation and bioconversion conditions, the titer of 1,5-PDO reached 4.03 mM. CONCLUSION: We established a novel pathway for 1,5-PDO production through two consecutive transamination reaction from cadaverine, and also integrated cofactor and co-substrate recycling system, which provided an alternative option for the biosynthesis of 1,5-PDO.


Assuntos
Vias Biossintéticas , Escherichia coli , Escherichia coli/metabolismo , Escherichia coli/genética , Engenharia Metabólica/métodos , Glicóis/metabolismo , Lisina/metabolismo , Lisina/biossíntese , Álcool Desidrogenase/metabolismo , Transaminases/metabolismo , Transaminases/genética , Carboxiliases/metabolismo
4.
Molecules ; 29(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611803

RESUMO

Alcohol dehydrogenase (ADH) plays a pivotal role in constraining alcohol metabolism. Assessing the ADH-activating activity in vitro can provide insight into the capacity to accelerate ethanol metabolism in vivo. In this study, ADH-activating peptides were prepared from corn protein meal (CGM) using enzymatic hydrolysis, and these peptides were subsequently identified following simulated gastrointestinal digestion and their absorption through the Caco-2 cell monolayer membrane. The current investigation revealed that corn protein hydrolysate hydrolyzed using alcalase exhibited the highest ADH activation capability, maintaining an ADH activation rate of 52.93 ± 2.07% following simulated gastrointestinal digestion in vitro. After absorption through the Caco-2 cell monolayer membrane, ADH-activating peptides were identified. Among them, SSNCQPF, TGCPVLQ, and QPQQPW were validated to possess strong ADH activation activity, with EC50 values of 1.35 ± 0.22 mM, 2.26 ± 0.16 mM, and 2.73 ± 0.13 mM, respectively. Molecular Docking revealed that the activation of ADH occurred via the formation of a stable complex between the peptide and the active center of ADH by hydrogen bonds and hydrophobic interactions. The results of this study also suggest that corn protein hydrolysate could be a novel functional dietary element that helps protects the liver from damage caused by alcohol and aids in alcohol metabolism.


Assuntos
Álcool Desidrogenase , Zea mays , Humanos , Células CACO-2 , Simulação de Acoplamento Molecular , Hidrolisados de Proteína , Peptídeos/farmacologia
5.
BMC Urol ; 24(1): 84, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600527

RESUMO

BACKGROUND: Despite the rapid advances in modern medical technology, kidney renal clear cell carcinoma (KIRC) remains a challenging clinical problem in urology. Researchers urgently search for useful markers to break through the therapeutic conundrum due to its high lethality. Therefore, the study explores the value of ADH5 on overall survival (OS) and the immunology of KIRC. METHODS: The gene expression matrix and clinical information on ADH5 in the TCGA database were validated using external databases and qRT-PCR. To confirm the correlation between ADH5 and KIRC prognosis, univariate/multivariate Cox regression analysis was used. We also explored the signaling pathways associated with ADH5 in KIRC and investigated its association with immunity. RESULTS: The mRNA and protein levels showed an apparent downregulation of ADH5 in KIRC. Correlation analysis revealed that ADH5 was directly related to histological grade, clinical stage, and TMN stage (p < 0.05). Univariate and multivariate Cox regression analysis identified ADH5 as an independent factor affecting the prognosis of KIRC. Enrichment analysis looked into five ADH5-related signaling pathways. The results showed no correlation between ADH5 and TMB, TNB, and MSI. From an immunological perspective, ADH5 was found to be associated with the tumor microenvironment, immune cell infiltration, and immune checkpoints. Lower ADH5 expression was associated with greater responsiveness to immunotherapy. Single-cell sequencing revealed that ADH5 is highly expressed in immune cells. CONCLUSION: ADH5 could be a promising prognostic biomarker and a potential therapeutic target for KIRC. Besides, it was found that KIRC patients with low ADH5 expression were more sensitive to immunotherapy.


Assuntos
Álcool Desidrogenase , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/terapia , Rim , Neoplasias Renais/genética , Neoplasias Renais/terapia , Prognóstico , RNA Mensageiro , Microambiente Tumoral , Álcool Desidrogenase/análise
6.
EBioMedicine ; 103: 105086, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580523

RESUMO

BACKGROUND: Alcohol consumption is associated with numerous negative social and health outcomes. These associations may be direct consequences of drinking, or they may reflect common genetic factors that influence both alcohol consumption and other outcomes. METHODS: We performed exploratory phenome-wide association studies (PheWAS) of three of the best studied protective single nucleotide polymorphisms (SNPs) in genes encoding ethanol metabolising enzymes (ADH1B: rs1229984-T, rs2066702-A; ADH1C: rs698-T) using up to 1109 health outcomes across 28 phenotypic categories (e.g., substance-use, mental health, sleep, immune, cardiovascular, metabolic) from a diverse 23andMe cohort, including European (N ≤ 2,619,939), Latin American (N ≤ 446,646) and African American (N ≤ 146,776) populations to uncover new and perhaps unexpected associations. These SNPs have been consistently implicated by both candidate gene studies and genome-wide association studies of alcohol-related behaviours but have not been investigated in detail for other relevant phenotypes in a hypothesis-free approach in such a large cohort of multiple ancestries. To provide insight into potential causal effects of alcohol consumption on the outcomes significant in the PheWAS, we performed univariable two-sample and one-sample Mendelian randomisation (MR) analyses. FINDINGS: The minor allele rs1229984-T, which is protective against alcohol behaviours, showed the highest number of PheWAS associations across the three cohorts (N = 232, European; N = 29, Latin American; N = 7, African American). rs1229984-T influenced multiple domains of health. We replicated associations with alcohol-related behaviours, mental and sleep conditions, and cardio-metabolic health. We also found associations with understudied traits related to neurological (migraines, epilepsy), immune (allergies), musculoskeletal (fibromyalgia), and reproductive health (preeclampsia). MR analyses identified evidence of causal effects of alcohol consumption on liability for 35 of these outcomes in the European cohort. INTERPRETATION: Our work demonstrates that polymorphisms in genes encoding alcohol metabolising enzymes affect multiple domains of health beyond alcohol-related behaviours. Understanding the underlying mechanisms of these effects could have implications for treatments and preventative medicine. FUNDING: MVJ, NCK, SBB, SSR and AAP were supported by T32IR5226 and 28IR-0070. SSR was also supported by NIDA DP1DA054394. NCK and RBC were also supported by R25MH081482. ASH was supported by funds from NIAAA K01AA030083. JLMO was supported by VA 1IK2CX002095. JLMO and JJMM were also supported by NIDA R21DA050160. JJMM was also supported by the Kavli Postdoctoral Award for Academic Diversity. EGA was supported by K01MH121659 from the NIMH/NIH, the Caroline Wiess Law Fund for Research in Molecular Medicine and the ARCO Foundation Young Teacher-Investigator Fund at Baylor College of Medicine. MSA was supported by the Instituto de Salud Carlos III and co-funded by the European Union Found: Fondo Social Europeo Plus (FSE+) (P19/01224, PI22/00464 and CP22/00128).


Assuntos
Consumo de Bebidas Alcoólicas , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Fenótipo , Polimorfismo de Nucleotídeo Único , Humanos , Consumo de Bebidas Alcoólicas/genética , Feminino , Estudos de Coortes , Masculino , Fenômica , Predisposição Genética para Doença , Álcool Desidrogenase/genética , Genótipo , Alelos
7.
Chem Biol Interact ; 394: 110992, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579923

RESUMO

Histidine residues 44 and 48 in yeast alcohol dehydrogenase (ADH) bind to the coenzymes NAD(H) and contribute to catalysis. The individual H44R and H48Q substitutions alter the kinetics and pH dependencies, and now the roles of other ionizable groups in the enzyme were studied in the doubly substituted H44R/H48Q ADH. The substitutions make the enzyme more resistant to inactivation by diethyl pyrocarbonate, modestly improve affinity for coenzymes, and substantially decrease catalytic efficiencies for ethanol oxidation and acetaldehyde reduction. The pH dependencies for several kinetic parameters are shifted from pK values for wild-type ADH of 7.3-8.1 to values for H44R/H48Q ADH of 8.0-9.6, and are assigned to the water or alcohol bound to the catalytic zinc. It appears that the rate of binding of NAD+ is electrostatically favored with zinc-hydroxide whereas binding of NADH is faster with neutral zinc-water. The pH dependencies of catalytic efficiencies (V/EtKm) for ethanol oxidation and acetaldehyde reduction are similarly controlled by deprotonation and protonation, respectively. The substitutions make an enzyme that resembles the homologous horse liver H51Q ADH, which has Arg-47 and Gln-51 and exhibits similar pK values. In the wild-type ADHs, it appears that His-48 (or His-51) in the proton relay systems linked to the catalytic zinc ligands modulate catalytic efficiencies.


Assuntos
Álcool Desidrogenase , Domínio Catalítico , Histidina , Saccharomyces cerevisiae , Acetaldeído/metabolismo , Acetaldeído/química , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/química , Substituição de Aminoácidos , Dietil Pirocarbonato/química , Dietil Pirocarbonato/farmacologia , Etanol/metabolismo , Histidina/metabolismo , Histidina/química , Concentração de Íons de Hidrogênio , Cinética , NAD/metabolismo , Oxirredução , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Zinco/metabolismo , Zinco/química
8.
Angew Chem Int Ed Engl ; 63(22): e202403539, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38556813

RESUMO

The design and orderly layered co-immobilization of multiple enzymes on resin particles remain challenging. In this study, the SpyTag/SpyCatcher binding pair was fused to the N-terminus of an alcohol dehydrogenase (ADH) and an aldo-keto reductase (AKR), respectively. A non-canonical amino acid (ncAA), p-azido-L-phenylalanine (p-AzF), as the anchor for covalent bonding enzymes, was genetically inserted into preselected sites in the AKR and ADH. Employing the two bioorthogonal counterparts of SpyTag/SpyCatcher and azide-alkyne cycloaddition for the immobilization of AKR and ADH enabled sequential dual-enzyme coating on porous microspheres. The ordered dual-enzyme reactor was subsequently used to synthesize (S)-1-(2-chlorophenyl)ethanol asymmetrically from the corresponding prochiral ketone, enabling the in situ regeneration of NADPH. The reactor exhibited a high catalytic conversion of 74 % and good reproducibility, retaining 80 % of its initial activity after six cycles. The product had 99.9 % ee, which that was maintained in each cycle. Additionally, the double-layer immobilization method significantly increased the enzyme loading capacity, which was approximately 1.7 times greater than that of traditional single-layer immobilization. More importantly, it simultaneously enabled both the purification and immobilization of multiple enzymes on carriers, thus providing a convenient approach to facilitate cascade biocatalysis.


Assuntos
Álcool Desidrogenase , Biocatálise , Enzimas Imobilizadas , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/química , Álcool Desidrogenase/genética , Engenharia de Proteínas , Aldo-Ceto Redutases/metabolismo , Aldo-Ceto Redutases/química , Aldo-Ceto Redutases/genética , Fenilalanina/química , Fenilalanina/metabolismo , Fenilalanina/análogos & derivados , Azidas/química
9.
Microb Cell Fact ; 23(1): 118, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659044

RESUMO

BACKGROUND: Excessive alcohol consumption has been consistently linked to serious adverse health effects, particularly affecting the liver. One natural defense against the detrimental impacts of alcohol is provided by alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), which detoxify harmful alcohol metabolites. Recent studies have shown that certain probiotic strains, notably Lactobacillus spp., possess alcohol resistance and can produce these critical enzymes. Incorporating these probiotics into alcoholic beverages represents a pioneering approach that can potentially mitigate the negative health effects of alcohol while meeting evolving consumer preferences for functional and health-centric products. RESULTS: Five lactic acid bacteria (LAB) isolates were identified: Lactobacillus paracasei Alc1, Lacticaseibacillus rhamnosus AA, Pediococcus acidilactici Alc3, Lactobacillus paracasei Alc4, and Pediococcus acidilactici Alc5. Assessment of their alcohol tolerance, safety, adhesion ability, and immunomodulatory effects identified L. rhamnosus AA as the most promising alcohol-tolerant probiotic strain. This strain also showed high production of ADH and ALDH. Whole genome sequencing analysis revealed that the L. rhamnosus AA genome contained both the adh (encoding for ADH) and the adhE (encoding for ALDH) genes. CONCLUSIONS: L. rhamnosus AA, a novel probiotic candidate, showed notable alcohol resistance and the capability to produce enzymes essential for alcohol metabolism. This strain is a highly promising candidate for integration into commercial alcoholic beverages upon completion of comprehensive safety and functionality evaluations.


Assuntos
Álcool Desidrogenase , Etanol , Probióticos , Humanos , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/genética , Etanol/metabolismo , Lactobacillus/metabolismo , Lactobacillus/genética , Lactobacillales/genética , Lactobacillales/metabolismo , Lacticaseibacillus rhamnosus/genética , Lacticaseibacillus rhamnosus/metabolismo , Aldeído Oxirredutases/metabolismo , Aldeído Oxirredutases/genética , Pediococcus acidilactici/metabolismo
10.
Colloids Surf B Biointerfaces ; 238: 113917, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38615391

RESUMO

In this study, the encapsulation and structural characteristics of the self-assembled liposome formed by epigallocatechin gallate (EGCG) and alcohol dehydrogenase (ADH) were studied. According to the results, EGCG significantly increased the catalytic activity of ADH with a 33.33 % activation rate and the liposomes were able to entrap EGCG-ADH with an effectiveness of 88.94 %. The self-assembled monolayers had nanometer-sized particles, and the excellent self-assembled system was demonstrated by the low PDI value and high surface absolute potential. The scanning electron microscope showed that the self-assembled liposome was honeycomb, groove-shaped, and rough. The spectroscopic results showed that EGCG-ADH complex was formed through hydrogen bond, which changed the secondary structure of the liposome, and verified EGCG-ADH liposome system was successfully prepared. In vitro digestion experiments showed that the gastrointestinal tolerance and antioxidant activity of EGCG-ADH liposomes were significantly higher than those of free EGCG-ADH.


Assuntos
Álcool Desidrogenase , Catequina , Lipossomos , Lipossomos/química , Catequina/química , Catequina/análogos & derivados , Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Tamanho da Partícula , Ligação de Hidrogênio
11.
Sheng Wu Gong Cheng Xue Bao ; 40(3): 877-894, 2024 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-38545984

RESUMO

Daqu is the saccharifying, fermenting, and aroma-producing agent used in Baijiu brewing, and its maturation is crucial for obtaining high-quality Daqu. Previous studies have explored the microbial community composition and diversity before and after maturation. However, little is known about the changes in the functions of microbial community. In this study, based on the analyses of enzyme activities and volatile compounds of medium-temperature Daqu before and after maturation, metagenomics was used to analyze the differences in the composition of microbial community and the potential functions, with the aim to explore the microorganisms involved in changes in enzyme activities and important volatiles. The results showed that the moisture (P≤0.05), starch content, liquefying activity, saccharifying activity (P≤0.05), and fermentative activity decreased, while the acidity and esterifying activity (P≤0.05) increased after Daqu maturation. In the meantime, the composition of volatile compounds changed significantly (P=0.001), with significant decreases in the contents of aromatic alcohols and esters as well as significant increases in the contents of pyrazines, ketones, and higher fatty alcohols. The relative abundances of Mucorales (34.8%-23.0%) and Eurotiales (34.3%-20.1%) decreased in matured Daqu, and functional predictions showed these changes decreased the gene abundances of α-amylase, α-glucosidase, alcohol dehydrogenase, and alcohol dehydrogenase (NADP+) (P > 0.05), resulting in lower levels of liquefying activity (P > 0.05), saccharifying activity (P≤0.05), fermentative activity (P > 0.05), as well as aromatic alcohols such as phenylethyl alcohol (P≤0.05). In addition, higher relative abundances of Saccharomycetales (2.9%-16.6%), Lactobacillales (14.9%-23.6%), and Bacillales (0.8%-3.8%) were observed after maturation, and they were conducive to improving the gene abundances of alcohol O-acetyltransferase, carboxylesterase, acetolactate decarboxylase, (R)-acetoin dehydrogenase, and (S)-acetoin dehydrogenase (P≤0.05), resulting in significantly higher levels of esterifying activity and pyrazines (P≤0.05). The microorganisms involved in the changes in enzyme activities and important volatiles before and after Daqu maturation were studied at the gene level in this work, which may facilitate further rational regulation for Daqu production.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Temperatura , Acetoína Desidrogenase , Álcool Desidrogenase , Microbiota/fisiologia , Fermentação , Pirazinas
12.
J Chem Inf Model ; 64(8): 3400-3410, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38537611

RESUMO

Lactobacillus kefir alcohol dehydrogenase (LkADH) and ketoreductase from Chryseobacterium sp. CA49 (ChKRED12) exhibit different chemoselectivity and stereoselectivity toward a substrate with both keto and aldehyde carbonyl groups. LkADH selectively reduces the keto carbonyl group while retaining the aldehyde carbonyl group, producing optically pure R-alcohols. In contrast, ChKRED12 selectively reduces the aldehyde group and exhibits low reactivity toward ketone carbonyls. This study investigated the structural basis for these differences and the role of specific residues in the active site. Molecular dynamics (MD) simulations and quantum chemical calculations were used to investigate the interactions between the substrate and the enzymes and the essential cause of this phenomenon. The present study has revealed that LkADH and ChKRED12 exhibit significant differences in the structure of their respective active pockets, which is a crucial determinant of their distinct chemoselectivity toward the same substrate. Moreover, residues N89, N113, and E144 within LkADH as well as Q151 and D190 within ChKRED12 have been identified as key contributors to substrate stabilization within the active pocket through electrostatic interactions and van der Waals forces, followed by hydride transfer utilizing the coenzyme NADPH. Furthermore, the enantioselectivity mechanism of LkADH has been elucidated using quantum chemical methods. Overall, these findings not only provide fundamental insights into the underlying reasons for the observed differences in selectivity but also offer a detailed mechanistic understanding of the catalytic reaction.


Assuntos
Aldeídos , Cetonas , Simulação de Dinâmica Molecular , Cetonas/química , Cetonas/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Especificidade por Substrato , Teoria Quântica , Lactobacillus/enzimologia , Lactobacillus/metabolismo , Domínio Catalítico , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/química
13.
J Org Chem ; 89(7): 4818-4825, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38536102

RESUMO

The enantioselective synthesis of chiral diarylmethanols is highly desirable in synthetic chemistry and the pharmaceutical industry, but it remains challenging, especially in terms of green and sustainable production. Herein, a resin-immobilized palladium acetate catalyst was fabricated with high activity, stability, and reusability in Suzuki cross-coupling reaction of acyl halides with boronic acids, and the coimmobilization of alcohol dehydrogenase and glucose dehydrogenase on resin supports was also conducted for asymmetric bioreduction of diaryl ketones. Experimental results revealed that the physicochemical properties of the resins and the immobilization modes played important roles in affecting their catalytic performances. These two catalysts enabled the construction of a chemoenzymatic cascade for the enantioselective synthesis of a series of chiral diarylmethanols in high yields (83-90%) and enantioselectivities (87-98% ee). In addition, the asymmetric synthesis of the antihistaminic and anticholinergic drugs (S)-neobenodine and (S)-carbinoxamine was also achieved from the chiral diarylmethanol precursors, demonstrating the synthetic utility of the chemoenzymatic cascade.


Assuntos
Álcool Desidrogenase , Paládio , Paládio/química , Estereoisomerismo , Estrutura Molecular , Catálise
14.
Redox Biol ; 71: 103121, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493749

RESUMO

Elevated fasting ethanol levels in peripheral blood frequently found in metabolic dysfunction-associated steatohepatitis (MASLD) patients even in the absence of alcohol consumption are discussed to contribute to disease development. To test the hypothesis that besides an enhanced gastrointestinal synthesis a diminished alcohol elimination through alcohol dehydrogenase (ADH) may also be critical herein, we determined fasting ethanol levels and ADH activity in livers and blood of MASLD patients and in wild-type ± anti-TNFα antibody (infliximab) treated and TNFα-/- mice fed a MASLD-inducing diet. Blood ethanol levels were significantly higher in patients and wild-type mice with MASLD while relative ADH activity in blood and liver tissue was significantly lower compared to controls. Both alterations were significantly attenuated in MASLD diet-fed TNFα-/- mice and wild-type mice treated with infliximab. Moreover, alcohol elimination was significantly impaired in mice with MASLD. In in vitro models, TNFα but not IL-1ß or IL-6 significantly decreased ADH activity. Our data suggest that elevated ethanol levels in MASLD patients are related to TNFα-dependent impairments of ADH activity.


Assuntos
Álcool Desidrogenase , Fígado Gorduroso , Camundongos , Humanos , Animais , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Fator de Necrose Tumoral alfa/genética , Infliximab/farmacologia , Etanol/efeitos adversos , Consumo de Bebidas Alcoólicas
15.
Int J Biol Macromol ; 264(Pt 2): 130580, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432266

RESUMO

Although Alzheimer's disease (AD) characterized with senile plaques and neurofibrillary tangles has been found for over 100 years, its molecular mechanisms are ambiguous. More worsely, the developed medicines targeting amyloid-beta (Aß) and/or tau hyperphosphorylation did not approach the clinical expectations in patients with moderate or severe AD until now. This review unveils the role of a vicious cycle between Aß-derived formaldehyde (FA) and FA-induced Aß aggregation in the onset course of AD. Document evidence has shown that Aß can bind with alcohol dehydrogenase (ADH) to form the complex of Aß/ADH (ABAD) and result in the generation of reactive oxygen species (ROS) and aldehydes including malondialdehyde, hydroxynonenal and FA; in turn, ROS-derived H2O2 and FA promotes Aß self-aggregation; subsequently, this vicious cycle accelerates neuron death and AD occurrence. Especially, FA can directly induce neuron death by stimulating ROS generation and tau hyper hyperphosphorylation, and impair memory by inhibiting NMDA-receptor. Recently, some new therapeutical methods including inhibition of ABAD activity by small molecules/synthetic polypeptides, degradation of FA by phototherapy or FA scavengers, have been developed and achieved positive effects in AD transgenic models. Thus, breaking the vicious loop may be promising interventions for halting AD progression.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Álcool Desidrogenase , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio , Peptídeos beta-Amiloides/metabolismo , Formaldeído
16.
Antonie Van Leeuwenhoek ; 117(1): 47, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427176

RESUMO

Desulfofundulus kuznetsovii is a thermophilic, spore-forming sulphate-reducing bacterium in the family Peptococcaceae. In this study, we describe a newly isolated strain of D. kuznetsovii, strain TPOSR, and compare its metabolism to the type strain D. kuznetsovii 17T. Both strains grow on a large variety of alcohols, such as methanol, ethanol and propane-diols, coupled to the reduction of sulphate. Strain 17T metabolizes methanol via two routes, one involving a cobalt-dependent methyl transferase and the other using a cobalt-independent alcohol dehydrogenase. However, strain TPOSR, which shares 97% average nucleotide identity with D. kuznetsovii strain 17T, lacks several genes from the methyl transferase operon found in strain 17T. The gene encoding the catalytically active methyl transferase subunit B is missing, indicating that strain TPOSR utilizes the alcohol dehydrogenase pathway exclusively. Both strains grew with methanol during cobalt starvation, but growth was impaired. Strain 17T was more sensitive to cobalt deficiency, due to the repression of its methyl transferase system. Our findings shed light on the metabolic diversity of D. kuznetsovii and their metabolic differences of encoding one or two routes for the conversion of methanol.


Assuntos
Álcool Desidrogenase , Metanol , Peptococcaceae , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Metanol/metabolismo , Oxirredução , Transferases/metabolismo , Sulfatos/metabolismo , Cobalto , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo
17.
Protein Sci ; 33(4): e4933, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38501647

RESUMO

Alcohol dehydrogenases (ADHs) are synthetically important biocatalysts for the asymmetric synthesis of chiral alcohols. The catalytic performance of ADHs in the presence of organic solvents is often important since most prochiral ketones are highly hydrophobic. Here, the organic solvent tolerance of KpADH from Kluyveromyces polyspora was semi-rationally evolved. Using tolerant variants obtained, meticulous experiments and computational studies were conducted to explore properties including stability, activity and kinetics in the presence of various organic solvents. Compared with WT, variant V231D exhibited 1.9-fold improvement in ethanol tolerance, while S237G showed a 6-fold increase in catalytic efficiency, a higher T 50 15 $$ {\mathrm{T}}_{50}^{15} $$ , as well as 15% higher tolerance in 7.5% (v/v) ethanol. Based on 3 × 100 ns MD simulations, the increased tolerance of V231D and S237G against ethanol may be ascribed to their enhanced ability in retaining water molecules and repelling ethanol molecules. Moreover, 6.3-fold decreased KM value of V231D toward hydrophilic ketone substrate confirmed its capability of retaining hydration shell. Our results suggest that retaining hydration shell surrounding KpADH is critical for its tolerance to organic solvents, as well as catalytic performance. This study provides useful guidance for engineering organic solvent tolerance of KpADH and other ADHs.


Assuntos
Álcool Desidrogenase , Etanol , Álcool Desidrogenase/genética , Álcool Desidrogenase/química , Solventes/química , Água , Catálise , Cetonas
18.
J Agric Food Chem ; 72(11): 5746-5756, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38450489

RESUMO

Alcohol dehydrogenase (ADH) is a crucial rate-limiting enzyme in alcohol metabolism. Our previous research found that ethanol-induced intracellular extracts of Lactococcus lactis (L. lactis) could enhance alcohol metabolism in mice, but the responsible compounds remain unidentified. The study aimed to screen potential ADH-activating peptides from ethanol-induced L. lactis using virtual screening and molecular docking calculation. Among them, the pentapeptide FAPEG might bind to ADH through hydrophobic interaction and hydrogen bonds, then enhancing ADH activity. Spectroscopy analysis further investigated the peptide-enzyme interaction between FAPEG and ADH, including changes in the amino acid residue microenvironment and secondary structural alterations. Furthermore, FAPEG could protect against alcoholic liver injury (ALI) in mice by reducing blood alcohol concentration, enhancing the activity of antioxidant and alcohol metabolism enzymes, and attenuating alcohol-induced hepatotoxicity, which was related to the activation of the Nrf2/keap1/HO-1 signaling pathway. The study provided preliminary evidence that the generation of ADH-activating peptides in ethanol-induced L. lactis has the potential in preventing ALI in mice using in silico prediction and in vivo validation approaches.


Assuntos
Etanol , Lactococcus lactis , Camundongos , Animais , Etanol/metabolismo , Lactococcus lactis/metabolismo , Concentração Alcoólica no Sangue , Álcool Desidrogenase/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Simulação de Acoplamento Molecular , Fator 2 Relacionado a NF-E2/metabolismo , Fígado/metabolismo
19.
Drug Alcohol Depend ; 257: 111120, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38402754

RESUMO

BACKGROUND: National survey data suggest Asian Americans (AA) are less likely to consume alcohol and develop AUD than Americans in other groups. However, it is common for AA to be born outside of the US and carry gene variants that alter alcohol metabolism, both of which can lead to lower levels of alcohol involvement. The current study examined differences in alcohol use and AUD between AA and other groups before and after controlling for birth location and gene variants. DESIGN: Past year alcohol measures were examined from adults 18+ (N=22,848) in the 2012-2013 National Epidemiologic Survey on Alcohol and Related Conditions III before and after controlling for birth location (inside or outside of the US) and gene variants (ALDH2*2 and ADH1B*2/ADH1B*3). Gender gaps in alcohol measures also were assessed. RESULTS: Before adjustments, AA were less likely than White Americans to drink in the previous year (OR=0.50, 95% CI 0.41-0.62), binge (OR=0.68, 95% CI 0.52-0.88), engage in frequent heavy drinking (OR=0.55, 95% CI 0.42-0.73), and reach criteria for AUD (OR=0.71, 95% CI 0.53-0.94). After controlling for birth location and gene variants, AA remained less likely to drink in the past year (OR=0.54, 95% CI 0.41-0.70) but all other differences disappeared. Gender gaps were only observed for AA born outside of the US, highlighting the importance of experience rather than racial category per se. CONCLUSIONS: Findings indicate that heterogeneity among AA leads to spurious generalizations regarding alcohol use and AUD and challenge the model minority myth.


Assuntos
Alcoolismo , Adulto , Humanos , Alcoolismo/epidemiologia , Alcoolismo/genética , Asiático , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/genética , Etanol , Álcool Desidrogenase , Aldeído-Desidrogenase Mitocondrial , Brancos
20.
Plant J ; 118(4): 1054-1070, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308388

RESUMO

Alcohol dehydrogenases (ADHs) are a group of zinc-binding enzymes belonging to the medium-length dehydrogenase/reductase (MDR) protein superfamily. In plants, these enzymes fulfill important functions involving the reduction of toxic aldehydes to the corresponding alcohols (as well as catalyzing the reverse reaction, i.e., alcohol oxidation; ADH1) and the reduction of nitrosoglutathione (GSNO; ADH2/GSNOR). We investigated and compared the structural and biochemical properties of ADH1 and GSNOR from Arabidopsis thaliana. We expressed and purified ADH1 and GSNOR and determined two new structures, NADH-ADH1 and apo-GSNOR, thus completing the structural landscape of Arabidopsis ADHs in both apo- and holo-forms. A structural comparison of these Arabidopsis ADHs revealed a high sequence conservation (59% identity) and a similar fold. In contrast, a striking dissimilarity was observed in the catalytic cavity supporting substrate specificity and accommodation. Consistently, ADH1 and GSNOR showed strict specificity for their substrates (ethanol and GSNO, respectively), although both enzymes had the ability to oxidize long-chain alcohols, with ADH1 performing better than GSNOR. Both enzymes contain a high number of cysteines (12 and 15 out of 379 residues for ADH1 and GSNOR, respectively) and showed a significant and similar responsivity to thiol-oxidizing agents, indicating that redox modifications may constitute a mechanism for controlling enzyme activity under both optimal growth and stress conditions.


Assuntos
Álcool Desidrogenase , Proteínas de Arabidopsis , Arabidopsis , Oxirredução , Arabidopsis/enzimologia , Arabidopsis/genética , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/genética , Álcool Desidrogenase/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/química , Especificidade por Substrato , S-Nitrosoglutationa/metabolismo , Sequência de Aminoácidos , Etanol/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA