Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.671
Filtrar
1.
Bioorg Chem ; 147: 107421, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38714118

RESUMO

Targeting the homeostasis of anions and iron has emerged as a promising therapeutic approach for the treatment of cancers. However, single-targeted agents often fall short of achieving optimal treatment efficacy. Herein we designed and synthesized a series of novel dual-functional squaramide-hydroxamic acid conjugates that are capable of synergistically modulating the homeostasis of anions and iron. Among them, compound 16 exhibited the most potent antiproliferative activity against a panel of selected cancer cell lines, and strong in vivo anti-tumor efficacy. This compound effectively elevated lysosomal pH through anion transport, and reduced the levels of intracellular iron. Compound 16 could disturb autophagy in A549 cells and trigger robust apoptosis. This compound caused cell cycle arrest at the G1/S phase, altered the mitochondrial function and elevated ROS levels. The present findings clearly demonstrated that synergistic modulation of anion and iron homeostasis has high potentials in the development of promising chemotherapeutic agents with dual action against cancers.


Assuntos
Antineoplásicos , Apoptose , Proliferação de Células , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Homeostase , Ácidos Hidroxâmicos , Ferro , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Ferro/metabolismo , Ferro/química , Proliferação de Células/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Relação Estrutura-Atividade , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/síntese química , Estrutura Molecular , Apoptose/efeitos dos fármacos , Ânions/química , Ânions/farmacologia , Relação Dose-Resposta a Droga , Animais , Linhagem Celular Tumoral , Camundongos , Quinina/análogos & derivados
2.
Dalton Trans ; 53(20): 8633-8641, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38695060

RESUMO

Poor cellular permeability greatly hampers the utilization of anionic Ir(III) complexes, though efficiently emissive and remarkably stable, in cell-based diagnosis. To overcome this barrier, we present the development of an alkaline phosphatase (ALP)-responsive, anionic, and aggregation-induced emission (AIE)-active Ir(III) complex (Ir1) for specific recognition of osteosarcoma cells. Containing phosphate moieties, Ir1 exhibits a net -1 charge, enabling charge repulsion from the cell membrane and resulting in low cellular uptake and good biocompatibility in normal osteoblast cells. Upon ALP-mediated hydrolysis of phosphate groups, the resulting dephosphorylated product, Ir2, demonstrates a positive charge and increased lipophilicity, promoting cellular uptake and activating its AIE properties for specific recognition of osteosarcoma cells that express elevated levels of ALP. This study elucidates the role of ALP as an ideal trigger for enhancing the cellular permeability of phosphate ester-containing Ir(III) complexes, thus expanding the potential of anionic Ir(III) complexes for biomedical applications.


Assuntos
Fosfatase Alcalina , Ânions , Complexos de Coordenação , Irídio , Osteossarcoma , Irídio/química , Humanos , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Fosfatase Alcalina/metabolismo , Complexos de Coordenação/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/farmacologia , Ânions/química , Linhagem Celular Tumoral
3.
Chemosphere ; 358: 142215, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701865

RESUMO

The existence of microplastics (MPs) in water is a significant global concern since they have the potential to pose a threat to human health. Therefore, there is a need to develop a sustainable treatment technology for MPs removal, as the conventional methods are inadequate to address this problem. Coagulation is a typical process in treatment plants that can capture MPs before releasing them into the environment. In this work, the removal behaviors of polyamide (PA), polystyrene (PS), and polyethylene (PE) MPs were systematically investigated through coagulation processes using aluminum sulfate (Al2(SO4)3) and Moringa oleifera (MO) seeds extract. Subsequently, the coagulation performance of Al2(SO4)3 was improved by the separate addition of anionic polyacrylamide (APAM) and naturally derived MO. Results showed that Al2(SO4)3 in combination with APAM had better performance than Al2(SO4)3 or MO alone. In the Al2(SO4)3+APAM system, the removal efficiencies were 93.47%, 81.25%, and 29.48% for PA, PS, and PE MPs, respectively. Furthermore, the effectiveness of the Al2(SO4)3 and MO blended system was approximately similar to the Al2(SO4)3+APAM system. However, the required amount of Al2(SO4)3 was decreased to 50% in the Al2(SO4)3+MO system compared to the optimal dosage in the Al2(SO4)3 system alone. The combination of 40 mg/L of Al2(SO4)3 and 60 mg/L of MO resulted in removal efficiencies of 92.99%, 80.48%, and 28.94% for PA, PS, and PE MPs, respectively. The high efficacy of these enhanced methods was due to the synergic effects of charge neutralization and agglomeration adsorption, which were validated through zeta potential assessments and visual analysis using scanning electron microscopy (SEM) images. In the case of experimental conditions, initial pH had little impact on removal efficiency, while NaCl salinity and stirring speed directly affected MPs removal. Consequently, this research took a step toward finding a green strategy to remove MPs from water systems.


Assuntos
Resinas Acrílicas , Microplásticos , Poluentes Químicos da Água , Purificação da Água , Poluentes Químicos da Água/química , Resinas Acrílicas/química , Purificação da Água/métodos , Moringa oleifera/química , Ânions/química , Adsorção , Poliestirenos/química
4.
Environ Sci Technol ; 58(19): 8597-8606, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687950

RESUMO

NiFe layered double hydroxides (NiFe-LDH) exhibited an outstanding performance and promising application potential for removing ozone. However, the effect of interlayer anions on ozone removal remains ambiguous. Here, a series of NiFe-LDH with different interlayer anions (F-, Cl-, Br-, NO3-, CO32-, and SO42-) were prepared to investigate the effect of the interlayer anion on ozone removal for the first time. It was found that the interlayer anions are a key factor affecting the water resistance of the NiFe-LDH catalyst under moist conditions. NiFe-LDH-CO32- exhibited the best water resistance, which was much better than that of NiFe-LDH containing other interlayer anions. The in situ DIRFTS demonstrates that the carbonates in the interlayer of NiFe-LDH-CO32- will undergo coordination changes through the interaction with water molecules under moist conditions, exposing new metal sites. As a result, the newly exposed metal sites could activate water molecules into hydroxyl groups that act as active sites for catalyzing ozone decomposition. This work provides a new insight into the interlayer anions of LDH, which is important for the design and development of LDH catalysts with excellent ozone removal properties.


Assuntos
Ânions , Hidróxidos , Ozônio , Ozônio/química , Hidróxidos/química , Catálise , Ânions/química
5.
Biophys Chem ; 310: 107248, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38653174

RESUMO

Understanding oligomerization and aggregation of the amyloid-ß protein is important to elucidate the pathological mechanisms of Alzheimer's disease, and lipid membranes play critical roles in this process. In addition to studies reported by other groups, our group has also reported that the negatively-charged lipid bilayers with a high positive curvature induced α-helix-to-ß-sheet conformational transitions of amyloid-ß-(1-40) upon increase in protein density on the membrane surface and promoted amyloid fibril formation of the protein. Herein, we investigated detailed mechanisms of the conformational transition and oligomer formation of the amyloid-ß protein on the membrane surface. Changes in the fractions of the three protein conformers (free monomer, membrane-bound α-helix-rich conformation, and ß-sheet-rich conformation) were determined from the fluorescent spectral changes of the tryptophan probe in the protein. The helix-to-sheet structural transition on the surface was described by a thermodynamic model of octamer formation driven by entropic forces including hydrophobic interactions. These findings provide useful information for understanding the self-assembly of amyloidogenic proteins on lipid membrane surfaces.


Assuntos
Peptídeos beta-Amiloides , Fosfolipídeos , Termodinâmica , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Fosfolipídeos/química , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Ânions/química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Conformação Proteica em Folha beta , Estrutura Secundária de Proteína , Humanos , Multimerização Proteica
6.
J Org Chem ; 89(10): 6877-6891, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38662908

RESUMO

Anions have a profound effect on the properties of soluble proteins. Such Hofmeister effects have implications in biologics stability, protein aggregation, amyloidogenesis, and crystallization. However, the interplay between the important noncovalent interactions (NCIs) responsible for Hofmeister effects is poorly understood. To contribute to improving this state of affairs, we report on the NCIs between anions and ammonium and guanidinium hosts 1 and 2, and the consequences of these. Specifically, we investigate the properties of cavitands designed to mimic two prime residues for anion-protein NCIs─lysines and arginines─and the solubility consequences of complex formation. Thus, we report NMR and ITC affinity studies, X-ray analysis, MD simulations, and anion-induced critical precipitation concentrations. Our findings emphasize the multitude of NCIs that guanidiniums can form and how this repertoire qualitatively surpasses that of ammoniums. Additionally, our studies demonstrate the ease by which anions can dispense with a fraction of their hydration-shell waters, rearrange those that remain, and form direct NCIs with the hosts. This raises many questions concerning how solvent shell plasticity varies as a function of anion, how the energetics of this impact the different NCIs between anions and ammoniums/guanidiniums, and how this affects the aggregation of solutes at high anion concentrations.


Assuntos
Compostos de Amônio , Ânions , Arginina , Guanidina , Lisina , Guanidina/química , Ânions/química , Arginina/química , Compostos de Amônio/química , Lisina/química , Simulação de Dinâmica Molecular
7.
Chemosphere ; 358: 141980, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670508

RESUMO

Generally, the pH of fluorinated groundwater or many industrial wastewater is neutral, while the majority of metal-modified adsorbents can work efficiently only under acidic conditions. In this study, we synthesized a novel hybrid adsorbent, Mg-Zr-D213, by loading nano-Mg/Zr binary metal (hydrogen) oxides in a strong-base anion exchanger, D213, to enhance the adsorption of fluoride from neutral water. Mg-Zr-D213 exhibited a better fluoride-removal capacity in neutral water than monometallic modified resins. Under the interference of competing anions and coexisting organic acids, Mg-Zr-D213 exhibited superior selectivity. The Langmuir model indicated that the fitted maximum sorption capacity of Mg-Zr-D213 was 41.38 mg/g. The results of column experiments showed that the effective treatment volume of Mg-Zr-D213 was 8-16-times higher than that of D213 for both synthetic groundwater and actual industrial wastewater, and that NaOH-NaCl eluent could effectively recover more than 95% of fluoride. Adsorption experiments with Mg/Zr metal (hydrogen) oxide particles and D213 separately demonstrated a synergistic effect between -N+(CH3)3 and Mg/Zr metal (hydrogen) oxide particles. The ligand exchange or metal-ligand interaction of Mg/Zr metal (hydrogen) oxide particles on fluoride was further demonstrated via X-ray photoelectron spectroscopy. Overall, Mg-Zr-D213 has great potential for enhanced fluoride removal in neutral water.


Assuntos
Fluoretos , Água Subterrânea , Nanopartículas Metálicas , Poluentes Químicos da Água , Purificação da Água , Zircônio , Fluoretos/química , Adsorção , Zircônio/química , Poluentes Químicos da Água/química , Nanopartículas Metálicas/química , Água Subterrânea/química , Purificação da Água/métodos , Ânions/química , Águas Residuárias/química , Óxidos/química , Concentração de Íons de Hidrogênio
8.
J Chromatogr A ; 1722: 464843, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38574599

RESUMO

Reversed-phase high performance liquid chromatography (RP-HPLC) is the most widely used chromatographic method. In addition to hydrophobic interactions, additional interactions such as electrostatic interactions may participate in the retention behaviour of an analyte. This makes it possible to use RP-HPLC for many types of analyte. We describe a simple method for separating inorganic anions on a C18 column, in which retention of inorganic anions is almost entirely due to electrostatic interactions. This leads to rapid separations as well as higher theoretical plate numbers. We used 2 mM phosphoric acid containing a low concentration of disodium molybdate as the mobile phase, which allows UV detection of non-UV-absorbing anions. With this method, we determined eight inorganic anions including several non-UV-absorbing anions photometrically at 220 nm. The detection limits of the examined eight inorganic anions calculated at a signal-to-noise ratio of 3 were between 0.3 and 10 µM. The detector response was linear over three orders of magnitude of inorganic anion concentration. The proposed RP-HPLC/UV method was successfully applied to determine inorganic anions in some water samples.


Assuntos
Ânions , Cromatografia de Fase Reversa , Molibdênio , Ácidos Fosfóricos , Ânions/química , Molibdênio/química , Ácidos Fosfóricos/química , Cromatografia de Fase Reversa/métodos , Cromatografia Líquida de Alta Pressão/métodos , Limite de Detecção
9.
J Phys Chem B ; 128(15): 3605-3613, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38592238

RESUMO

Since Hofmeister's seminal studies in the late 19th century, it has been known that salts and buffers can drastically affect the properties of peptides and proteins. These Hofmeister effects can be conceived of in terms of three distinct phenomena/mechanisms: water-salt interactions that indirectly induce the salting-out of a protein by water sequestration by the salt, and direct salt-protein interactions that can either salt-in or salt-out the protein. Unfortunately, direct salt-protein interactions responsible for Hofmeister effects are weak and difficult to quantify. As such, they are frequently construed of as being nonspecific. Nevertheless, there has been considerable effort to better specify these interactions. Here, we use pentapeptides to demonstrate the utility of the H-dimension of nuclear magnetic resonance (NMR) spectroscopy to assess anion binding using N-H signal shifts. We qualify binding using these, demonstrating the upfield shifts induced by anion association and revealing how they are much larger than the corresponding downfield shifts induced by magnetic susceptibility and other ionic strength change effects. We also qualify binding in terms of how the pattern of signal shifts changes with point mutations. In general, we find that the observed upfield shifts are small compared with those induced by anion binding to amide-based hosts, and MD simulations suggest that this is so. Thus, charge-diffuse anions associate mostly with the nonpolar regions of the peptide rather than directly interacting with the amide N-H groups. These findings reveal the utility of 1H NMR spectroscopy for qualifying affinity to peptides─even when affinity constants are very low─and serve as a benchmark for using NMR spectroscopy to study anion binding to more complex systems.


Assuntos
Peptídeos , Proteínas , Peptídeos/química , Ânions/química , Proteínas/química , Amidas/química , Cloreto de Sódio , Água
10.
J Chromatogr A ; 1722: 464871, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38593520

RESUMO

Mixed-mode reversed-phase/anion-exchange chromatography (RP/AEX) is an effective method for the chromatographic analysis of acidic drugs because it combines reversed-phase chromatography (RP) with anion-exchange chromatography (AEX). However, the result repeatability for the RP/AEX analysis of acidic drugs is frequently compromised by the detrimental effects of residual silanol groups in an RP/AEX stationary phase on peak separation and analyte retention. In this study, an RP/weak-AEX stationary phase with amino anion-exchange groups, Sil-AA, was prepared. Subsequently, an RP/strong-AEX stationary phase, Sil-PBQA, was prepared by replacing the amino groups in Sil-AA with a benzene ring and a benzyl-containing quaternary ammonium salt. The chromatographic behaviors of Sil-PBQA and Sil-AA were compared, and the effect of residual silanol groups on the chromatographic behavior of an RP/AEX stationary phase was evaluated. Residual silanol groups not only caused additional electrostatic interactions for acidic analytes, but also competed with the analytes for the anion-exchange sites in an RP/AEX stationary phase. The effects of different salt-containing mobile-phase systems on the analyte-retention behavior of Sil-PBQA were investigated to develop a method that enhanced the repeatability of the RP/AEX acidic-analyte-analysis results obtained using Sil-PBQA and facilitated the separation of nonsteroidal anti-inflammatory drugs on Sil-PBQA. The ideas presented in this paper can improve the separation of peaks and repeatability of results in the RP/AEX analysis of acidic drugs.


Assuntos
Anti-Inflamatórios não Esteroides , Cromatografia de Fase Reversa , Cromatografia de Fase Reversa/métodos , Cromatografia por Troca Iônica/métodos , Anti-Inflamatórios não Esteroides/análise , Anti-Inflamatórios não Esteroides/química , Ânions/química , Ânions/análise , Reprodutibilidade dos Testes , Silanos/química , Concentração de Íons de Hidrogênio , Cromatografia Líquida de Alta Pressão/métodos
11.
Environ Sci Technol ; 58(17): 7628-7635, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38646668

RESUMO

Partitioning from water to nonaqueous phases is an important process that controls the behavior of contaminants in the environment and biota. However, for ionic chemicals including many perfluoroalkyl and polyfluoroalkyl substances (PFAS), environmentally relevant partition coefficients cannot be predicted using the octanol/water partition coefficient, which is commonly used as a hydrophobicity indicator for neutral compounds. As an alternative, this study measured C18 liquid chromatography retention times of 39 anionic PFAS and 20 nonfluorinated surfactants using isocratic methanol/water eluent systems. By measuring a series of PFAS with different perfluoroalkyl chain lengths, retention factors at 100% water (k0) were successfully extrapolated even for long-chain PFAS. Molecular size was the most important factor determining the k0 of PFAS and non-PFAS, suggesting that the cavity formation process is the key driver for retention. Log k0 showed a high correlation with the log of partition coefficients from water to the phospholipid membrane, air/water interface, and soil organic carbon. The results indicate the potential of C18 retention factors as predictive descriptors for anionic PFAS partition coefficients and the possibility of developing a more comprehensive multiparameter model for the partitioning of anionic substances in general.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Ânions/química , Adsorção , Fluorocarbonos/química , Tensoativos/química , Água/química , Cromatografia Líquida
12.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673814

RESUMO

Over the past three decades, the synthesis of new ionic liquids (ILs) and the expansion of their use in newer applications have grown exponentially. From the beginning of this vertiginous period, it was known that many of them were hygroscopic, which in some cases limited their use or altered the value of their measured physical properties with all the problems that this entails. In an earlier article, we addressed the hygroscopic grade achieved by the ILs 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium bromide, 1-ethyl-3-methylimidazolium methyl sulfate, 1-ethyl-3-methylimidazolium ethyl sulfate, 1-ethyl-3-methylpyridinium ethyl sulfate, 1-ethyl-3-methylimidazolium tosylate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium tetrafluoroborate, 1-dodecyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylpyridinium tetrafluoroborate, 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide, 1-methyl-1-propylpyrrolidinium bis(trifluoromethyl sulfonyl)imide, 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl sulfonyl)imide, and methyl trioctyl ammonium bis(trifluoromethyl sulfonyl)imide. The objective was to determine the influence of the chemical nature of the compounds, exposed surface area, sample volume, agitation, and temperature. For this purpose, we exposed the samples to abrupt increases in relative humidity from 15 to 100% for days in an atmosphere chamber and then proceeded with the reverse process in a gentle manner. The results show that the sorption of water from the atmosphere depends on the nature of the IL, especially the anion, with the chloride anion being of particular importance (chloride ≫ alkyl sulfates~bromide > tosylate ≫ tetrafluoroborate). It has also been proven for the EMIM-ES and EMIM-BF4 samples that the mechanism of moisture capture is both absorption and adsorption, and that the smaller the exposed surface area, the higher the ratio of the mass of water per unit area.


Assuntos
Ânions , Cátions , Líquidos Iônicos , Líquidos Iônicos/química , Ânions/química , Cátions/química , Imidazóis/química , Molhabilidade , Água/química
13.
Int J Biol Macromol ; 267(Pt 2): 131521, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608976

RESUMO

Herein, the effects of anionic xanthan gum (XG), neutral guar gum (GG), and neutral konjac glucomannan (KGM) on the dissolution, physicochemical properties, and emulsion stabilization ability of soy protein isolate (SPI)-polysaccharide conjugates were studied. The SPI-polysaccharide conjugates had better water dissolution than the insoluble SPI. Compared with SPI, SPI-polysaccharide conjugates had lower ß-sheet (39.6 %-56.4 % vs. 47.3 %) and α-helix (13.0 %-13.2 % vs. 22.6 %) percentages, and higher ß-turn (23.8 %-26.5 % vs. 11.0 %) percentages. The creaming stability of SPI-polysaccharide conjugate-stabilized fish oil-loaded emulsions mainly depended on polysaccharide type: SPI-XG (Creaming index: 0) > SPI-GG (Creaming index: 8.1 %-21.2 %) > SPI-KGM (18.1 %-40.4 %). In addition, it also depended on the SPI preparation concentrations, glycation times, and glycation pH. The modification by anionic XG induced no obvious emulsion creaming even after 14-day storage, which suggested that anionic polysaccharide might be the best polysaccharide to modify SPI for emulsion stabilization. This work provided useful information to modify insoluble proteins by polysaccharides for potential application.


Assuntos
Emulsões , Óleos de Peixe , Galactanos , Mananas , Gomas Vegetais , Polissacarídeos Bacterianos , Solubilidade , Proteínas de Soja , Mananas/química , Polissacarídeos Bacterianos/química , Gomas Vegetais/química , Emulsões/química , Proteínas de Soja/química , Galactanos/química , Óleos de Peixe/química , Ânions/química
14.
Water Sci Technol ; 89(8): 2132-2148, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678414

RESUMO

Given the substantial environmental pollution from industrial expansion, environmental protection has become particularly important. Nowadays, anion exchange membranes (AEMs) are widely used in wastewater treatment. With the use of polyvinyl alcohol (PVA), ethylene-vinyl alcohol (EVOH) copolymer, and methyl iminodiacetic acid (MIDA), a series of cross-linked AEMs were successfully prepared using the solvent casting technique, and the network structure was formed in the membranes due to the cross-linking reaction between PVA/EVOH and MIDA. Fourier transform infrared spectrometer, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy were used to analyze the prepared membranes. At the same time, its comprehensive properties which include water uptake, linear expansion rate, ion exchange capacity, thermal stability, chemical stability, and mechanical stability were thoroughly researched. In addition, diffusion dialysis performance in practical applications was also studied in detail. The acid dialysis coefficient (UH+) ranged from 10.2 to 35.6 × 10-3 m/h. Separation factor (S) value ranged from 25 to 38, which were all larger than that of the commercial membrane DF-120 (UH+: 8.5 × 10-3 m/h, S: 18.5). The prepared membranes had potential application value in acid recovery.


Assuntos
Membranas Artificiais , Álcool de Polivinil , Álcool de Polivinil/química , Iminoácidos/química , Difusão , Purificação da Água/métodos , Diálise/métodos , Troca Iônica , Ânions/química , Polivinil/química
15.
Angew Chem Int Ed Engl ; 63(22): e202403314, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38517056

RESUMO

Artificial ion transport systems have emerged as an important class of compounds that promise applications in chemotherapeutics as anticancer agents or to treat channelopathies. Stimulus-responsive systems that offer spatiotemporally controlled activity for targeted applications remain rare. Here we utilize dynamic hydrogen bonding interactions of a 4,6-dihydroxy-isophthalamide core to generate a modular platform enabling access to stimuli-responsive ion transporters that can be activated in response to a wide variety of external stimuli, including light, redox, and enzymes, with excellent OFF-ON activation profiles. Alkylation of the two free hydroxyl groups with stimulus-responsive moieties locks the amide bonds through intramolecular hydrogen bonding and hence makes them unavailable for anion binding and transport. Triggering using a particular stimulus to cleave both cages reverses the hydrogen bonding arrangement, to generate a highly preorganized anion binding cavity for efficient transmembrane transport. Integration of two cages that are responsive to orthogonal stimuli enables multi-stimuli activation, where both stimuli are required to trigger transport in an AND logic process. Importantly, the strategy provides a facile method to post-functionalize the highly active transporter core with a variety of stimulus-responsive moieties for targeted activation with multiple triggers.


Assuntos
Ligação de Hidrogênio , Ânions/química , Ionóforos/química , Oxirredução , Estrutura Molecular , Transporte de Íons
16.
J Am Soc Mass Spectrom ; 35(4): 784-792, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38489759

RESUMO

We previously discovered that electron attachment to gaseous peptide anions can occur within a relatively narrow electron energy range. The resulting charge-increased radical ions undergo dissociation analogous to conventional cation electron capture/transfer dissociation (ECD/ETD), thus enabling a novel tandem mass spectrometry (MS/MS) technique that we termed negative ion electron capture dissociation (niECD). We proposed that gaseous zwitterionic structures are required for niECD with electron capture either occurring at or being directed by a positively charged site. Here, we further evaluate this zwitterion mechanism by performing niECD of peptides derivatized to alter their ability to form zwitterionic gaseous structures. Introduction of a fixed positive charge tag, a highly basic guanidino group, or a highly acidic sulfonate group to promote zwitterionic structures in singly charged anions, rescued the niECD ability of a peptide refractory to niECD in its unmodified form. We also performed a systematic study of five sets of synthetic peptides with decreasing zwitterion propensity and found that niECD efficiency decreased accordingly, further supporting the zwitterion mechanism. However, traveling-wave ion mobility-mass spectrometry experiments, performed to gain further insight into the gas-phase structures of peptides showing high niECD efficiency, exhibited an inverse correlation between the orientationally averaged collision cross sections and niECD efficiency. These results indicate that compact salt-bridged structures are also a requirement for effective niECD.


Assuntos
Gases , Espectrometria de Massas em Tandem , Gases/química , Espectrometria de Massas em Tandem/métodos , Elétrons , Ânions/química , Peptídeos/química , Cátions , Cloreto de Sódio
17.
J Am Soc Mass Spectrom ; 35(4): 756-766, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38456425

RESUMO

G-quadruplex (G4) DNA can form highly stable secondary structures in the presence of metal cations, and research has shown its potential as a transcriptional regulator for oncogenes in the human genome. In order to explore the interactions of DNA with metal cations using mass spectrometry, employing complementary fragmentation methods can enhance structural information. This study explores the use of ion-ion reactions for sequential negative electron transfer collision-induced dissociation (nET-CID) as a complement to traditional ion-trap CID (IT-CID). The resulting nET-CID data for G4 anions with and without metal cations show an increase in fragment ion type diversity and yield of structurally informative ions relative to IT-CID. The nET-CID yields greater sequence coverage by virtue of fragmentation at the 3'-side of thymine residues, which is lacking with IT-CID. Potassium adductions to backbone fragments in IT-CID and nET-CID spectra were nearly identical. Of note is a prominent fragment resulting from a loss of a 149 Da anion seen in nET-CID of large, G-rich sequences, proposed to be radical anion guanine loss. Neutral loss of neutral guanine (151 Da) and deprotonated nucleobase loss (150 Da) have been previously reported, but this is the first report of radical anion guanine loss (149 Da). Confirmation of the identity of the 149 Da anion results from the examination of the homonucleobase sequence 5'-GGGGGGGG-3'. Loss of a charged adenine radical anion at much lower relative abundance was also noted for the sequence 5'-AAAAAAAA-3'. DFT modeling indicates that the loss of a nucleobase as a radical anion from odd-electron nucleic acid anions is a thermodynamically favorable fragmentation pathway for G.


Assuntos
Quadruplex G , Guanina , Humanos , Elétrons , Ânions/química , Cátions/química , Metais , DNA
18.
Int J Biol Macromol ; 266(Pt 1): 131213, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552690

RESUMO

To avoid the weakness (lower adsorption rate and selectivity) of peach gum polysaccharide (PGP) and improve the adsorption performance of polyacrylamide (PAAm) hydrogel (lower adsorption capacity), in the present work, the PGP was chemically tailored to afford ammoniated PGP (APGP) and quaternized PGP (QPGP), and attapulgite (ATP) was bi-functionalized with cation groups and carbon­carbon double bond. Then, PAAm/APGP and PAAm/QPGP/ATP hydrogels were synthesized via redox polymerization. The synthesis procedure and properties of hydrogels were traced by FTIR, SEM, XPS, TGA, TEM, and BET methods, and the dye adsorption performance of the hydrogels was evaluated using the new coccine (NC) and tartrazine (TTZ) aqueous solutions as the model anionic dyes. Effects of initial dye concentration, pH, and ionic strength on the adsorption were investigated. Compared with PAAm/APGP hydrogel, PAAm/APGP/ATP hydrogel exhibits higher adsorption rate, superior adsorption capacity, stability, and selectivity towards anionic dye. The adsorption process of PAAm/QPGP/ATP hydrogel reached equilibrium in about 20 min and followed the pseudo-second-order kinetic model and Langmuir isotherm. The adsorption capacities towards NC and TTZ of PAAm/QPGP/ATP hydrogel were calculated as 873.235 and 731.432 mg/g. This hydrogel adsorbent originating from PAAm, PGP, and ATP shows great promise for application in practical water treatment.


Assuntos
Resinas Acrílicas , Corantes , Hidrogéis , Compostos de Magnésio , Gomas Vegetais , Compostos de Silício , Poluentes Químicos da Água , Hidrogéis/química , Resinas Acrílicas/química , Corantes/química , Corantes/isolamento & purificação , Adsorção , Gomas Vegetais/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Compostos de Silício/química , Compostos de Magnésio/química , Concentração de Íons de Hidrogênio , Cinética , Polissacarídeos/química , Purificação da Água/métodos , Ânions/química , Soluções , Água/química
19.
Chemosphere ; 356: 141778, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554864

RESUMO

Physical fouling characteristics on silicon carbide (SiC) membranes induced by various organic matter compounds vary depending on the presence of calcium ions (Ca2+). Both destructive techniques (morphological surface analysis) and non-destructive techniques (fouling properties monitoring) were used to determine the fouling mechanisms and behavior during the membrane filtration systems. Destructive analysis and a modified Hermia model were employed to assess the fouling mechanisms. Fouling behavior was also analyzed through non-destructive monitoring techniques including optical coherence tomography (OCT) and three-dimensional laser scanning confocal microscopy (3D-LSM). At concentrations of 10, 30, and 100 mg/L without Ca2+, the flux decreased by 57-95% for humic acid (HA) and anionic polyacrylamide (APAM). APAM exhibited a notable removal rate of up to 56% without Ca2+. At concentration of 10, 30, and 100 mg/L in the absence of Ca2+, the flux decreased by 6-8% for sodium alginate (SA). However, the addition of Ca2+ led to a reduction in the flux for SA by up to 91% and resulted in a removal rate of 40%. Furthermore, addition of Ca2+ led to an alteration of the fouling characteristics of HA and SA. In the case of HA, higher concentrations resulted in elevated thickness and roughness with correlation coefficients of 0.991 and 0.992, respectively. For SA, increased SA concentration led to a thicker (correlation coefficient of 0.999) but smoother surfaces (correlation coefficients of 0.502). Monitoring of these physical characteristics of the fouling layer through non-destructive analysis is crucial for effective fouling management, optimization of the system performance and extending the lifespan of the membrane. By continuously assessing the fouling layer thickness and surface roughness, we expect to be able to provide insights on the fouling behavior, identify trends, that can help scientists and engineers to make informed decisions regarding fouling control strategies in future.


Assuntos
Resinas Acrílicas , Filtração , Substâncias Húmicas , Membranas Artificiais , Substâncias Húmicas/análise , Resinas Acrílicas/química , Filtração/métodos , Purificação da Água/métodos , Cálcio/química , Cálcio/análise , Ânions/química , Incrustação Biológica/prevenção & controle , Alginatos/química
20.
Chemistry ; 30(27): e202400378, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38418406

RESUMO

Fluorescence imaging-guided photodynamic therapy (PDT) has attracted extensive attention due to its potential of real-time monitoring the lesion locations and visualizing the treatment process with high sensitivity and resolution. Aggregation-induced emission luminogens (AIEgens) show enhanced fluorescence and reactive oxygen species (ROS) generation after cellular uptake, giving them significant advantages in bioimaging and PDT applications. However, most AIEgens are unfavorable for the application in organisms due to their severe hydrophobicity. Anion-π+ type AIEgens carry intrinsic charges that can effectively alleviate their hydrophobicity and improve their binding capability to cells, which is expected to enhance the bioimaging quality and PDT performance. This concept summarizes the applications of anion-π+ type AIEgens in fluorescence imaging, fluorescence imaging-guided photodynamic anticancer and antimicrobial therapy in recent years, hoping to provide some new ideas for the construction of robust photosensitizers. Finally, the current problems and future challenges of anion-π+ AIEgens are discussed.


Assuntos
Ânions , Imagem Óptica , Fotoquimioterapia , Fármacos Fotossensibilizantes , Espécies Reativas de Oxigênio , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Humanos , Ânions/química , Espécies Reativas de Oxigênio/metabolismo , Corantes Fluorescentes/química , Interações Hidrofóbicas e Hidrofílicas , Neoplasias/tratamento farmacológico , Neoplasias/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA