Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.328
Filtrar
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1407-1418, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38695168

RESUMO

BACKGROUND: LCAT (lecithin cholesterol acyl transferase) catalyzes the conversion of unesterified, or free cholesterol, to cholesteryl ester, which moves from the surface of HDL (high-density lipoprotein) into the neutral lipid core. As this iterative process continues, nascent lipid-poor HDL is converted to a series of larger, spherical cholesteryl ester-enriched HDL particles that can be cleared by the liver in a process that has been termed reverse cholesterol transport. METHODS: We conducted a randomized, placebocontrolled, crossover study in 5 volunteers with atherosclerotic cardiovascular disease, to examine the effects of an acute increase of recombinant human (rh) LCAT via intravenous administration (300-mg loading dose followed by 150 mg at 48 hours) on the in vivo metabolism of HDL APO (apolipoprotein)A1 and APOA2, and the APOB100-lipoproteins, very low density, intermediate density, and low-density lipoproteins. RESULTS: As expected, recombinant human LCAT treatment significantly increased HDL-cholesterol (34.9 mg/dL; P≤0.001), and this was mostly due to the increase in cholesteryl ester content (33.0 mg/dL; P=0.014). This change did not affect the fractional clearance or production rates of HDL-APOA1 and HDL-APOA2. There were also no significant changes in the metabolism of APOB100-lipoproteins. CONCLUSIONS: Our results suggest that an acute increase in LCAT activity drives greater flux of cholesteryl ester through the reverse cholesterol transport pathway without significantly altering the clearance and production of the main HDL proteins and without affecting the metabolism of APOB100-lipoproteins. Long-term elevations of LCAT might, therefore, have beneficial effects on total body cholesterol balance and atherogenesis.


Assuntos
Apolipoproteína A-II , Apolipoproteína A-I , HDL-Colesterol , Estudos Cross-Over , Fosfatidilcolina-Esterol O-Aciltransferase , Proteínas Recombinantes , Humanos , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Masculino , Apolipoproteína A-I/sangue , Pessoa de Meia-Idade , HDL-Colesterol/sangue , Apolipoproteína A-II/sangue , Feminino , Ésteres do Colesterol/sangue , Ésteres do Colesterol/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/enzimologia , Aterosclerose/sangue , Apolipoproteína B-100/sangue , Idoso , Adulto , Lipoproteínas/sangue , Lipoproteínas/metabolismo
2.
J Biomed Sci ; 31(1): 44, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38685037

RESUMO

BACKGROUND: Helicobacter pylori, the main cause of various gastric diseases, infects approximately half of the human population. This pathogen is auxotrophic for cholesterol which it converts to various cholesteryl α-glucoside derivatives, including cholesteryl 6'-acyl α-glucoside (CAG). Since the related biosynthetic enzymes can be translocated to the host cells, the acyl chain of CAG likely comes from its precursor phosphatidylethanolamine (PE) in the host membranes. This work aims at examining how the acyl chain of CAG and PE inhibits the membrane functions, especially bacterial adhesion. METHODS: Eleven CAGs that differ in acyl chains were used to study the membrane properties of human gastric adenocarcinoma cells (AGS cells), including lipid rafts clustering (monitored by immunofluorescence with confocal microscopy) and lateral membrane fluidity (by the fluorescence recovery after photobleaching). Cell-based and mouse models were employed to study the degree of bacterial adhesion, the analyses of which were conducted by using flow cytometry and immunofluorescence staining, respectively. The lipidomes of H. pylori, AGS cells and H. pylori-AGS co-cultures were analyzed by Ultraperformance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS) to examine the effect of PE(10:0)2, PE(18:0)2, PE(18:3)2, or PE(22:6)2 treatments. RESULTS: CAG10:0, CAG18:3 and CAG22:6 were found to cause the most adverse effect on the bacterial adhesion. Further LC-MS analysis indicated that the treatment of PE(10:0)2 resulted in dual effects to inhibit the bacterial adhesion, including the generation of CAG10:0 and significant changes in the membrane compositions. The initial (1 h) lipidome changes involved in the incorporation of 10:0 acyl chains into dihydro- and phytosphingosine derivatives and ceramides. In contrast, after 16 h, glycerophospholipids displayed obvious increase in their very long chain fatty acids, monounsaturated and polyunsaturated fatty acids that are considered to enhance membrane fluidity. CONCLUSIONS: The PE(10:0)2 treatment significantly reduced bacterial adhesion in both AGS cells and mouse models. Our approach of membrane remodeling has thus shown great promise as a new anti-H. pylori therapy.


Assuntos
Colesterol/análogos & derivados , Helicobacter pylori , Helicobacter pylori/metabolismo , Helicobacter pylori/fisiologia , Camundongos , Animais , Humanos , Lipídeos de Membrana/metabolismo , Linhagem Celular Tumoral , Infecções por Helicobacter/tratamento farmacológico , Infecções por Helicobacter/microbiologia , Infecções por Helicobacter/metabolismo , Ésteres do Colesterol/metabolismo
3.
EBioMedicine ; 103: 105070, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564827

RESUMO

BACKGROUND: Cholesteryl ester (CE) accumulation in intracellular lipid droplets (LDs) is an essential signature of clear cell renal cell carcinoma (ccRCC), but its molecular mechanism and pathological significance remain elusive. METHODS: Enabled by the label-free Raman spectromicroscopy, which integrated stimulated Raman scattering microscopy with confocal Raman spectroscopy on the same platform, we quantitatively analyzed LD distribution and composition at the single cell level in intact ccRCC cell and tissue specimens in situ without any processing or exogenous labeling. Since we found that commonly used ccRCC cell lines actually did not show the CE-rich signature, primary cancer cells were isolated from human tissues to retain the lipid signature of ccRCC with CE level as high as the original tissue, which offers a preferable cell model for the study of cholesterol metabolism in ccRCC. Moreover, we established a patient-derived xenograft (PDX) mouse model that retained the CE-rich phenotype of human ccRCC. FINDINGS: Surprisingly, our results revealed that CE accumulation was induced by tumor suppressor VHL mutation, the most common mutation of ccRCC. Moreover, VHL mutation was found to promote CE accumulation by upregulating HIFα and subsequent PI3K/AKT/mTOR/SREBPs pathway. Inspiringly, inhibition of cholesterol esterification remarkably suppressed ccRCC aggressiveness in vitro and in vivo with negligible toxicity, through the reduced membrane cholesterol-mediated downregulations of integrin and MAPK signaling pathways. INTERPRETATION: Collectively, our study improves current understanding of the role of CE accumulation in ccRCC and opens up new opportunities for treatment. FUNDING: This work was supported by National Natural Science Foundation of China (No. U23B2046 and No. 62027824), National Key R&D Program of China (No. 2023YFC2415500), Fundamental Research Funds for the Central Universities (No. YWF-22-L-547), PKU-Baidu Fund (No. 2020BD033), Peking University First Hospital Scientific and Technological Achievement Transformation Incubation Guidance Fund (No. 2022CX02), and Beijing Municipal Health Commission (No. 2020-2Z-40713).


Assuntos
Carcinoma de Células Renais , Ésteres do Colesterol , Neoplasias Renais , Mutação , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Proteína Supressora de Tumor Von Hippel-Lindau , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ésteres do Colesterol/metabolismo , Animais , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Camundongos , Neoplasias Renais/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Linhagem Celular Tumoral , Progressão da Doença , Modelos Animais de Doenças
4.
Vitam Horm ; 124: 79-136, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38408810

RESUMO

The adrenal gland is composed of two distinctly different endocrine moieties. The interior medulla consists of neuroendocrine chromaffin cells that secrete catecholamines like adrenaline and noradrenaline, while the exterior cortex consists of steroidogenic cortical cells that produce steroid hormones, such as mineralocorticoids (aldosterone), glucocorticoids (cortisone and cortisol) and androgens. Synthesis of steroid hormones in cortical cells requires substantial amounts of cholesterol, which is the common precursor for steroidogenesis. Cortical cells may acquire cholesterol from de novo synthesis and uptake from circulating low- and high-density lipoprotein particles (LDL and HDL). As cholesterol is part of the plasma membrane in all mammalian cells and an important regulator of membrane fluidity, cellular levels of free cholesterol are tightly regulated. To ensure a robust supply of cholesterol for steroidogenesis and to avoid cholesterol toxicity, cortical cells store large amounts of cholesterol as cholesteryl esters in intracellular lipid droplets. Cortical steroidogenesis relies on both mobilization of cholesterol from lipid droplets and constant uptake of circulating cholesterol to replenish lipid droplet stores. This chapter will describe mechanisms involved in cholesterol uptake, cholesteryl ester synthesis, lipid droplet formation, hydrolysis of stored cholesteryl esters, as well as their impact on steroidogenesis. Additionally, animal models and human diseases characterized by altered cortical cholesteryl ester storage, with or without abnormal steroidogenesis, will be discussed.


Assuntos
Ésteres do Colesterol , Gotículas Lipídicas , Animais , Humanos , Ésteres do Colesterol/metabolismo , Gotículas Lipídicas/metabolismo , Colesterol/metabolismo , Esteroides/metabolismo , Hidrocortisona , Mamíferos
5.
J Proteome Res ; 23(4): 1506-1518, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422518

RESUMO

The metabolic contribution of the small intestine (SI) is still unclear despite recent studies investigating the involvement of single cells in regional differences. Using untargeted proteomics, we identified regional characteristics of the three intestinal tracts of C57BL/6J mice and found that proteins abundant in the mouse ileum correlated with the high ileal expression of the corresponding genes in humans. In the SI of C57BL/6J mice, we also detected an increasing abundance of lysosomal acid lipase (LAL), which is responsible for degrading triacylglycerols and cholesteryl esters within the lysosome. LAL deficiency in patients and mice leads to lipid accumulation, gastrointestinal disturbances, and malabsorption. We previously demonstrated that macrophages massively infiltrated the SI of Lal-deficient (KO) mice, especially in the duodenum. Using untargeted proteomics (ProteomeXchange repository, data identifier PXD048378), we revealed a general inflammatory response and a common lipid-associated macrophage phenotype in all three intestinal segments of Lal KO mice, accompanied by a higher expression of GPNMB and concentrations of circulating sTREM2. However, only duodenal macrophages activated a metabolic switch from lipids to other pathways, which were downregulated in the jejunum and ileum of Lal KO mice. Our results provide new insights into the process of absorption in control mice and possible novel markers of LAL-D and/or systemic inflammation in LAL-D.


Assuntos
Proteoma , Esterol Esterase , Animais , Camundongos , Ésteres do Colesterol/metabolismo , Jejuno , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Proteoma/genética , Esterol Esterase/genética , Esterol Esterase/metabolismo , Humanos
6.
Exp Eye Res ; 240: 109807, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278468

RESUMO

Subretinal fluid (SRF) accumulates between photoreceptor outer segments and retinal pigment epithelium during rhegmatogenous retinal detachment. Biomolecular components such as lipids originate from cells surrounding the SRF. Knowledge of the composition of these molecules in SRF potentially provides mechanistic insight into the physiologic transfer of lipids between retinal tissue compartments. Using mass spectrometry and tandem mass spectrometry analysis on an electrospray ionization quadrupole-time-of-flight mass spectrometer, we identified a total of 115 lipid molecular species of 11 subclasses and 9 classes in two samples from two patients with rhegmatogenous retinal detachment. These included 47 glycerophosphocholines, 6 glycerophosphoethanolamines, 1 glycerophosphoinositol, 18 sphingomyelins, 9 cholesteryl esters, free cholesterol, 3 ceramides, 22 triacylglycerols and 8 free fatty acids. Glycerophosphocholines were of the highest intensity. By minimizing the formation of different adduct forms or clustering ions of different adducts, we determined the relative intensity of lipid molecular species within the same subclasses. The profiles were compared with those of retinal cells available in the published literature. The glycerophosphocholine profile of SRF was similar to that of cone outer segments, suggesting that outer segment degradation products are constitutively released into the interphotoreceptor matrix, appearing in SRF during detachment. This hypothesis was supported by the retinal distributions of corresponding lipid synthases' mRNA expression obtained from an online resource based on publicly available single-cell sequencing data. In contrast, based on lipid profiles and relevant gene expression in this study, the sources of free cholesterol and cholesteryl esters in SRF appeared more ambiguous, possibly reflecting that outer retina takes up plasma lipoproteins. Further studies to identify and quantify lipids in SRF will help better understand etiology of diseases relevant to outer retina.


Assuntos
Descolamento Retiniano , Humanos , Descolamento Retiniano/metabolismo , Líquido Sub-Retiniano/metabolismo , Ésteres do Colesterol/metabolismo , Lipidômica , Retina/metabolismo
7.
Biomed Pharmacother ; 170: 115962, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042110

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane receptor protein predominantly expressed in microglia within the central nervous system (CNS). TREM2 regulates multiple microglial functions, including lipid metabolism, immune reaction, inflammation, and microglial phagocytosis. Recent studies have found that TREM2 is highly expressed in activated microglia after ischemic stroke. However, the role of TREM2 in the pathologic response after stroke remains unclear. Herein, TREM2-deficient microglia exhibit an impaired phagocytosis rate and cholesteryl ester (CE) accumulation, leading to lipid droplet formation and upregulation of Perilipin-2 (PLIN2) expression after hypoxia. Knockdown of TREM2 results in increased lipid synthesis (PLIN2, SOAT1) and decreased cholesterol clearance and lipid hydrolysis (LIPA, ApoE, ABCA1, NECH1, and NPC2), further impacting microglial phenotypes. In these lipid droplet-rich microglia, the TGF-ß1/Smad2/3 signaling pathway is downregulated, driving microglia towards a pro-inflammatory phenotype. Meanwhile, in a neuron-microglia co-culture system under hypoxic conditions, we found that microglia lost their protective effect against neuronal injury and apoptosis when TREM2 was knocked down. Under in vivo conditions, TREM2 knockdown mice express lower TGF-ß1 expression levels and a lower number of anti-inflammatory M2 phenotype microglia, resulting in increased cerebral infarct size, exacerbated neuronal apoptosis, and aggravated neuronal impairment. Our work suggests that TREM2 attenuates stroke-induced neuroinflammation by modulating the TGF-ß1/Smad2/3 signaling pathway. TREM2 may play a direct role in the regulation of inflammation and also exert an influence on the post-ischemic inflammation and the stroke pathology progression via regulation of lipid metabolism processes. Thus, underscoring the therapeutic potential of TREM2 agonists in ischemic stroke and making TREM2 an attractive new clinical target for the treatment of ischemic stroke and other inflammation-related diseases.


Assuntos
Lesões Encefálicas , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Lesões Encefálicas/metabolismo , Ésteres do Colesterol/metabolismo , Inflamação/metabolismo , AVC Isquêmico/metabolismo , Gotículas Lipídicas/metabolismo , Microglia/metabolismo , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
8.
J Pharm Biomed Anal ; 240: 115933, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154368

RESUMO

Hyperlipidemia is a global metabolic disorder characterized by dysregulation of lipid metabolism. This dysregulation is closely associated with the altered homeostasis of cholesterol-cholesteryl ester (CE) metabolism in systemic circulation, and some organs. Additionally, the relationship between oxidized cholesteryl ester (oxCE) and the disease has also gained attention. Currently, there is a lack of comprehensive research on the alterations in cholesterol-CE metabolism in the context of hyperlipidemia, as well as the characteristics of lipid-lowering agents in regulating this metabolic state. Therefore, 40 oxCEs were identified in the hamster liver sample, and novel ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) methods were established for simultaneous analysis of cholesterol, 57 CEs, and 40 oxCEs in the serum, liver, adipose tissue, and intestine of hyperlipidemic hamsters. This study investigated the metabolic alterations between cholesterol-CE/oxCE in hyperlipidemic hamsters and those treated with lipid-lowering agents, including the Niemann-Pick-C1 like-1 protein (NPC1L1) inhibitor ezetimibe and the acyl coenzyme A: cholesterol acyltransferase (ACAT) inhibitor avasimibe. The study findings demonstrate metabolic disorders in cholesterol-CE/oxCE homeostasis in hyperlipidemic hamsters. Lipid-lowering agent therapy can improve the metabolic dysregulation caused by hyperlipidemia, with distinct characteristics: ezetimibe is more effective in reducing cholesterol, while avasimibe is more effective in reducing CEs/oxCEs. Eight potential biomarkers indicating the dysregulation of cholesterol-CE metabolism caused by hyperlipidemia and its improvement by lipid-lowering agents have been identified in the serum. This study offers new insights into the hyperlipidemia pathophysiology and the mechanisms of lipid-lowering agents from a novel perspective on cholesterol-CE/oxCE metabolic homeostasis.


Assuntos
Acetamidas , Anticolesterolemiantes , Hiperlipidemias , Sulfonamidas , Cricetinae , Animais , Humanos , Ésteres do Colesterol/análise , Ésteres do Colesterol/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão , Colesterol , Hiperlipidemias/tratamento farmacológico , Hipolipemiantes/farmacologia , Hipolipemiantes/uso terapêutico , Metabolismo dos Lipídeos , Anticolesterolemiantes/farmacologia , Anticolesterolemiantes/uso terapêutico , Ezetimiba , Homeostase
9.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069414

RESUMO

(1) Background: Previous studies have enriched high-density lipoproteins (HDL) using cholesteryl esters in rabbits with a three-quarter reduction in functional renal mass, suggesting that the kidneys participate in the cholesterol homeostasis of these lipoproteins. However, the possible role of the kidneys in lipoprotein metabolism is still controversial. To understand the role of the kidneys in regulating the HDL lipid content, we determined the turnover of HDL-cholesteryl esters in rabbits with a three-quarter renal mass reduction. (2) Methods: HDL subclass characterization was conducted, and the kinetics of plasma HDL-cholesteryl esters, labeled with tritium, were studied in rabbits with a 75% reduction in functional renal mass (Ntx). (3) Results: The reduced renal mass triggered the enrichment of cholesterol, specifically cholesteryl esters, in HDL subclasses. The exchange of cholesteryl esters between HDL and apo B-containing lipoproteins (VLDL/LDL) was not significantly modified in Ntx rabbits. Moreover, the cholesteryl esters of HDL and VLDL/LDL fluxes from the plasmatic compartment tended to decrease, but they only reached statistical significance when both fluxes were added to the Nxt group. Accordingly, the fractional catabolic rate (FCR) of the HDL-cholesteryl esters was lower in Ntx rabbits, concomitantly with its accumulation in HDL subclasses, probably because of the reduced mass of renal cells requiring this lipid from lipoproteins.


Assuntos
Ésteres do Colesterol , Lipoproteínas HDL , Animais , Coelhos , Lipoproteínas HDL/metabolismo , Ésteres do Colesterol/metabolismo , Colesterol/metabolismo , Lipoproteínas/metabolismo , Proteínas de Transferência de Ésteres de Colesterol
10.
PLoS One ; 18(12): e0294764, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38039300

RESUMO

BACKGROUND: Cholesteryl ester transfer protein (CETP) transfers cholesteryl esters in plasma from high density lipoprotein (HDL) to very low density lipoprotein and low density lipoprotein. Loss-of-function variants in the CETP gene cause elevated levels of HDL cholesterol. In this study, we have determined the functional consequences of 24 missense variants in the CETP gene. The 24 missense variants studied were the ones reported in the Human Gene Mutation Database and in the literature to affect HDL cholesterol levels, as well as two novel variants identified at the Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital in subjects with hyperalphalipoproteinemia. METHODS: HEK293 cells were transiently transfected with mutant CETP plasmids. The amounts of CETP protein in lysates and media were determined by Western blot analysis, and the lipid transfer activities of the CETP variants were determined by a fluorescence-based assay. RESULTS: Four of the CETP variants were not secreted. Five of the variants were secreted less than 15% compared to the WT-CETP, while the other 15 variants were secreted in varying amounts. There was a linear relationship between the levels of secreted protein and the lipid transfer activities (r = 0.96, p<0.001). Thus, the secreted variants had similar specific lipid transfer activities. CONCLUSION: The effect of the 24 missense variants in the CETP gene on the lipid transfer activity was mediated predominantly by their impact on the secretion of the CETP protein. The four variants that prevented CETP secretion cause autosomal dominant hyperalphalipoproteinemia. The five variants that markedly reduced secretion of the respective variants cause mild hyperalphalipoproteinemia. The majority of the remaining 15 variants had minor effects on the secretion of CETP, and are considered neutral genetic variants.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Ésteres do Colesterol , Humanos , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , HDL-Colesterol , Células HEK293 , Transporte Biológico , Ésteres do Colesterol/metabolismo
11.
Sci Rep ; 13(1): 22646, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114521

RESUMO

Hypertriglyceridemia (HTG) is an independent risk factor for atherosclerotic cardiovascular disease (ASCVD). One of the multiple origins of HTG alteration is impaired lipoprotein lipase (LPL) activity, which is an emerging target for HTG treatment. We hypothesised that early, even mild, alterations in LPL activity might result in an identifiable metabolomic signature. The aim of the present study was to assess whether a metabolic signature of altered LPL activity in a preclinical model can be identified in humans. A preclinical LPL-dependent model of HTG was developed using a single intraperitoneal injection of poloxamer 407 (P407) in male Wistar rats. A rat metabolomics signature was identified, which led to a predictive model developed using machine learning techniques. The predictive model was applied to 140 humans classified according to clinical guidelines as (1) normal, less than 1.7 mmol/L; (2) risk of HTG, above 1.7 mmol/L. Injection of P407 in rats induced HTG by effectively inhibiting plasma LPL activity. Significantly responsive metabolites (i.e. specific triacylglycerols, diacylglycerols, phosphatidylcholines, cholesterol esters and lysophospholipids) were used to generate a predictive model. Healthy human volunteers with the impaired predictive LPL signature had statistically higher levels of TG, TC, LDL and APOB than those without the impaired LPL signature. The application of predictive metabolomic models based on mechanistic preclinical research may be considered as a strategy to stratify subjects with HTG of different origins. This approach may be of interest for precision medicine and nutritional approaches.


Assuntos
Hipertrigliceridemia , Lipase Lipoproteica , Animais , Humanos , Masculino , Ratos , Ésteres do Colesterol/metabolismo , Lipase Lipoproteica/metabolismo , Ratos Wistar , Triglicerídeos
12.
Sci Rep ; 13(1): 19588, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37949969

RESUMO

Arterial macrophage foam cells are filled with cholesterol ester (CE) stored in cytosolic lipid droplets (LDs). Foam cells are central players in progression of atherosclerosis as regulators of lipid metabolism and inflammation, two major driving forces of atherosclerosis development. Thus, foam cells are considered plausible targets for intervention in atherosclerosis. However, a compound that directly regulates the lipid metabolism of LDs in the arterial foam cells has not yet been identified. In this study, we screened compounds that inhibit macrophage foam cell formation using a library of 2697 FDA-approved drugs. From the foam cells generated via loading of human oxidized low-density lipoprotein (oxLDL), we found 21 and 6 compounds that reduced and enhanced accumulations of lipids respectively. Among them, verteporfin most significantly reduced oxLDL-induced foam cell formation whereas it did not display a significant impact on foam cell formation induced by fatty acid. Mechanistically our data demonstrate that verteporfin acts via inhibition of oxLDL association with macrophages, reducing accumulation of CE. Interestingly, while other drugs that reduced foam cell formation did not have impact on pre-existing foam cells, verteporfin treatment significantly reduced their total lipids, CE, and pro-inflammatory gene expression. Together, our study identifies verteporfin as a novel regulator of foam cell lipid metabolism and inflammation and a potential compound for intervention in atherosclerosis.


Assuntos
Aterosclerose , Células Espumosas , Humanos , Células Espumosas/metabolismo , Verteporfina/farmacologia , Verteporfina/metabolismo , Metabolismo dos Lipídeos , Macrófagos/metabolismo , Aterosclerose/metabolismo , Lipoproteínas LDL/metabolismo , Ésteres do Colesterol/metabolismo , Inflamação/metabolismo
13.
Mol Neurodegener ; 18(1): 86, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974180

RESUMO

This narrative review focuses on the role of cholesteryl ester transfer protein (CETP) and peripheral lipoproteins in the vascular contributions to cognitive impairment and dementia (VCID). Humans have a peripheral lipoprotein profile where low-density lipoproteins (LDL) represent the dominant lipoprotein fraction and high-density lipoproteins (HDL) represent a minor lipoprotein fraction. Elevated LDL-cholesterol (LDL-C) levels are well-established to cause cardiovascular disease and several LDL-C-lowering therapies are clinically available to manage this vascular risk factor. The efficacy of LDL-C-lowering therapies to reduce risk of all-cause dementia and AD is now important to address as recent studies demonstrate a role for LDL in Alzheimer's Disease (AD) as well as in all-cause dementia. The LDL:HDL ratio in humans is set mainly by CETP activity, which exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise LDL and lower HDL as CETP activity increases. Genetic and pharmacological studies support the hypothesis that CETP inhibition reduces cardiovascular risk by lowering LDL, which, by extension, may also lower VCID. Unlike humans, wild-type mice do not express catalytically active CETP and have HDL as their major lipoprotein fraction. As HDL has potent beneficial effects on endothelial cells, the naturally high HDL levels in mice protect them from vascular disorders, likely including VCID. Genetic restoration of CETP expression in mice to generate a more human-like lipid profile may increase the relevance of murine models for VCID studies. The therapeutic potential of existing and emerging LDL-lowering therapies for VCID will be discussed. Figure Legend. Cholesteryl Ester Transfer Protein in Alzheimer's Disease. CETP is mainly produced by the liver, and exchanges cholesteryl esters for triglycerides across lipoprotein fractions to raise circulating LDL and lower HDL as CETP activity increases. Low CETP activity is associated with better cardiovascular health, due to decreased LDL and increased HDL, which may also improve brain health. Although most peripheral lipoproteins cannot enter the brain parenchyma due to the BBB, it is increasingly appreciated that direct access to the vascular endothelium may enable peripheral lipoproteins to have indirect effects on brain health. Thus, lipoproteins may affect the cerebrovasculature from both sides of the BBB. Recent studies show an association between elevated plasma LDL, a well-known cardiovascular risk factor, and a higher risk of AD, and considerable evidence suggests that high HDL levels are associated with reduced CAA and lower neuroinflammation. Considering the potential detrimental role of LDL in AD and the importance of HDL's beneficial effects on endothelial cells, high CETP activity may lead to compromised BBB integrity, increased CAA deposits and greater neuroinflammation. Abbreviations: CETP - cholesteryl transfer ester protein; LDL - low-density lipoproteins; HDL - high-density lipoproteins; BBB - blood-brain barrier; CAA - cerebral amyloid angiopathy, SMC - smooth muscle cells, PVM - perivascular macrophages, RBC - red blood cells.


Assuntos
Doença de Alzheimer , Proteínas de Transferência de Ésteres de Colesterol , Humanos , Camundongos , Animais , Ésteres do Colesterol/metabolismo , LDL-Colesterol , Células Endoteliais/metabolismo , Doenças Neuroinflamatórias , Lipoproteínas/metabolismo , Lipoproteínas HDL/metabolismo , Triglicerídeos
15.
J Lipid Res ; 64(11): 100456, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821077

RESUMO

Compared with WT mice, HDL receptor-deficient (Scarb1-/-) mice have higher plasma levels of free cholesterol (FC)-rich HDL and exhibit multiple pathologies associated with a high mol% FC in ovaries, platelets, and erythrocytes, which are reversed by lowering HDL. Bacterial serum opacity factor (SOF) catalyzes the opacification of plasma by targeting and quantitatively converting HDL to neo HDL (HDL remnant), a cholesterol ester-rich microemulsion, and lipid-free APOA1. SOF delivery with an adeno-associated virus (AAVSOF) constitutively lowers plasma HDL-FC and reverses female infertility in Scarb1-/- mice in an HDL-dependent way. We tested whether AAVSOF delivery to Scarb1-/- mice will normalize erythrocyte morphology in an HDL-FC-dependent way. We determined erythrocyte morphology and FC content (mol%) in three groups-WT, untreated Scarb1-/- (control), and Scarb1-/- mice receiving AAVSOF-and correlated these with their respective HDL-mol% FC. Plasma-, HDL-, and tissue-lipid compositions were also determined. Plasma- and HDL-mol% FC positively correlated across all groups. Among Scarb1-/- mice, AAVSOF treatment normalized reticulocyte number, erythrocyte morphology, and erythrocyte-mol% FC. Erythrocyte-mol% FC positively correlated with HDL-mol% FC and with both the number of reticulocytes and abnormal erythrocytes. AAVSOF treatment also reduced FC of extravascular tissues to a lesser extent. HDL-FC spontaneously transfers from plasma HDL to cell membranes. AAVSOF treatment lowers erythrocyte-FC and normalizes erythrocyte morphology and lipid composition by reducing HDL-mol% FC.


Assuntos
Colesterol , Peptídeo Hidrolases , Feminino , Camundongos , Animais , HDL-Colesterol , Ésteres do Colesterol/metabolismo , Receptores Depuradores Classe B/genética , Receptores Depuradores Classe B/metabolismo
16.
Curr Opin Lipidol ; 34(6): 278-286, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37732779

RESUMO

PURPOSE OF REVIEW: Several large studies have shown increased mortality due to all-causes and to atherosclerotic cardiovascular disease. In most clinical settings, plasma HDL-cholesterol is determined as a sum of free cholesterol and cholesteryl ester, two molecules with vastly different metabolic itineraries. We examine the evidence supporting the concept that the pathological effects of elevations of plasma HDL-cholesterol are due to high levels of the free cholesterol component of HDL-C. RECENT FINDINGS: In a small population of humans, a high plasma HDL-cholesterol is associated with increased mortality. Similar observations in the HDL-receptor deficient mouse (Scarb1 -/- ), a preclinical model of elevated HDL-C, suggests that the pathological component of HDL in these patients is an elevated plasma HDL-FC. SUMMARY: Collective consideration of the human and mouse data suggests that clinical trials, especially in the setting of high plasma HDL, should measure free cholesterol and cholesteryl esters and not just total cholesterol.


Assuntos
Aterosclerose , Hipercolesterolemia , Humanos , Animais , Camundongos , HDL-Colesterol , Ésteres do Colesterol/metabolismo , Colesterol , Aterosclerose/genética , Proteínas de Transferência de Ésteres de Colesterol
17.
Biol Open ; 12(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37566396

RESUMO

Low colostrum intake relates to poorer health and infertility in swine. We previously connected vaginal lipid profiles at weaning to fertility of sows. We hypothesized vaginal lipidome varied with colostrum intake. Our objective was to determine whether indicators of colostrum intake, immunocrit (IM) and weight gain 24 h postnatal (PN), related to vaginal lipids at d21 PN. Gilts (n=60) were weighed and blood sampled to measure IM. On d21 PN vaginal swabs were taken and lipids measured using multiple reaction monitoring. Abundance of multiple lipids differed (P<0.05) between gilts categorized as high versus low IM and high versus low 24 h gain. The abundance of multiple lipids correlated with IM and 24 h gain. Phosphatidylcholine PC(36:3), PC(36:2), and arachidonic acid (C20:4) positively (P<0.05) correlated with IM. The ether lipid PCo(38:6) and multiple cholesteryl esters negatively (P<0.05) correlated with IM. ROC analysis indicated arachidonic acid and docosanoic acid (C22:0) may serve as excellent biomarkers that distinguish between high and low IM. Similar to gilts found to be infertile, lipid profiles of low colostrum intake animals had greater abundance of very long chain fatty acids, lipids with high levels of unsaturation, and cholesteryl esters, which are metabolized in peroxisomes indicating their potential dysfunction.


Assuntos
Ésteres do Colesterol , Colostro , Gravidez , Suínos , Animais , Feminino , Colostro/metabolismo , Ésteres do Colesterol/metabolismo , Peroxissomos , Dieta/veterinária , Ácidos Araquidônicos/metabolismo
18.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569628

RESUMO

Current structural and functional investigations of cholesteryl ester transfer protein (CETP) inhibitor design are nearly entirely based on a fully active mutation (CETPMutant) constructed for protein crystallization, limiting the study of the dynamic structural features of authentic CETP involved in lipid transport under physiological conditions. In this study, we conducted comprehensive molecular dynamics (MD) simulations of both authentic CETP (CETPAuthentic) and CETPMutant. Considering the structural differences between the N- and C-terminal domains of CETPAuthentic and CETPMutant, and their crucial roles in lipid transfer, we identified the two domains as binding pockets of the ligands for virtual screening to discover potential lead compounds targeting CETP. Our results revealed that CETPAuthentic displays greater flexibility and pronounced curvature compared to CETPMutant. Employing virtual screening and MD simulation strategies, we found that ZINC000006242926 has a higher binding affinity for the N- and C-termini, leading to reduced N- and C-opening sizes, disruption of the continuous tunnel, and increased curvature of CETP. In conclusion, CETPAuthentic facilitates the formation of a continuous tunnel in the "neck" region, while CETPMutant does not exhibit such characteristics. The ligand ZINC000006242926 screened for binding to the N- and C-termini induces structural changes in the CETP unfavorable to lipid transport. This study sheds new light on the relationship between the structural and functional mechanisms of CETP. Furthermore, it provides novel ideas for the precise regulation of CETP functions.


Assuntos
Proteínas de Transferência de Ésteres de Colesterol , Simulação de Dinâmica Molecular , Proteínas de Transferência de Ésteres de Colesterol/genética , Proteínas de Transferência de Ésteres de Colesterol/metabolismo , Lipídeos , Ésteres do Colesterol/metabolismo
19.
J Steroid Biochem Mol Biol ; 232: 106346, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37321513

RESUMO

Cholesterol plays important roles in many physiological processes, including cell membrane structure and function, hormone synthesis, and the regulation of cellular homeostasis. The role of cholesterol in breast cancer is complex, and some studies have suggested that elevated cholesterol levels may be associated with an increased risk of developing breast cancer, while others have found no significant association. On the other hand, other studies have shown that, for total cholesterol and plasma HDL-associated cholesterol levels, there was inverse association with breast cancer risk. One possible mechanism by which cholesterol may contribute to breast cancer risk is as a key precursor of estrogen. Other potential mechanisms by which cholesterol may contribute to breast cancer risk include its role in inflammation and oxidative stress, which have been linked to cancer progression. Cholesterol has also been shown to play a role in signaling pathways regulating the growth and proliferation of cancer cells. In addition, recent studies have shown that cholesterol metabolism can generate tumor promoters such as cholesteryl esters, oncosterone, 27-hydroxycholesterol but also tumor suppressor metabolites such as dendrogenin A. This review summarizes some of the most important clinical studies that have evaluated the role of cholesterol or its derivatives in breast cancer. It also addresses the role of cholesterol and its derivatives at the cellular level.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/metabolismo , Incidência , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Fatores de Risco
20.
PLoS One ; 18(6): e0286946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342997

RESUMO

Fatty acids (FA) in follicular fluid (FF) are present in an esterified form [triglycerides, cholesterol esters and phospholipids] or as non-esterified FA, which partly originate from blood. However, a comprehensive comparison of blood vs. FF FA in various lipid classes is missing. The aim of this study was to determine the distribution of the FA composition in each lipid class of serum and FF, and to investigate their mutual correlations. A total of 74 patients undergoing assisted reproductive technology treatment were involved in the study. Both in serum as well as FF, saturated FA and mono-unsaturated FA were predominant in non-esterified FA and triglycerides fractions while poly-unsaturated FA were mainly present in phospholipids and cholesterol esters fractions, although phospholipids also contained high proportions of saturated FA. Irrespective of the lipid class, the FA proportions differed between serum and FF (P < 0.05). Despite these differences, most of the FA in triglycerides, phospholipids and cholesterol esters of FF were well correlated with their proportions in serum. Nevertheless, only weak to moderate associations (r < 0.60) were observed for the majority of the FA in the non-esterified FA fraction. Differences in FA product/precursor-ratios were found between serum and FF, such as higher C20:4n-6 to C18:2n-6 and C20:5n-3 to C18:3n-3 in FF. FA metabolism (e.g. desaturation and elongation) takes place in cells of the intrafollicular micro-environment. Moreover, good correlations between esterified FA in serum and FF suggest esterified FA in blood could be representative of esterified FA in FF.


Assuntos
Ácidos Graxos , Líquido Folicular , Humanos , Feminino , Ácidos Graxos/metabolismo , Líquido Folicular/metabolismo , Ésteres do Colesterol/metabolismo , Fosfolipídeos/metabolismo , Técnicas de Reprodução Assistida , Ácidos Graxos não Esterificados/metabolismo , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA