Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Sci Rep ; 14(1): 11779, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783070

RESUMO

Most terrestrial mammals have a vomeronasal system to detect specific chemicals. The peripheral organ of this system is a vomeronasal organ (VNO) opening to the incisive duct, and its primary integrative center is an accessory olfactory bulb (AOB). The VNO in seals is thought to be degenerated like whales and manatees, unlike otariids, because of the absence of the AOB. However, olfaction plays pivotal roles in seals, and thus we conducted a detailed morphological evaluation of the vomeronasal system of three harbor seals (Phoca vitulina). The VNO lumen was not found, and the incisive duct did not open into the oral cavity but was recognized as a fossa on the anteroventral side of the nasal cavity. This fossa is rich in mucous glands that secrete acidic mucopolysaccharides, which might originate from the vomeronasal glands. The olfactory bulb consisted only of a main olfactory bulb that received projections from the olfactory mucosa, but an AOB region was not evident. These findings clarified that harbor seals do not have a VNO to detect some chemicals, but the corresponding region is a specialized secretory organ.


Assuntos
Cavidade Nasal , Bulbo Olfatório , Phoca , Órgão Vomeronasal , Animais , Órgão Vomeronasal/metabolismo , Órgão Vomeronasal/anatomia & histologia , Phoca/metabolismo , Phoca/anatomia & histologia , Cavidade Nasal/anatomia & histologia , Cavidade Nasal/metabolismo , Bulbo Olfatório/metabolismo , Bulbo Olfatório/anatomia & histologia , Muco/metabolismo , Mucosa Olfatória/metabolismo , Mucosa Olfatória/anatomia & histologia , Masculino , Olfato/fisiologia , Feminino
2.
Int. j. morphol ; 42(2): 374-381, abr. 2024. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1558150

RESUMO

SUMMARY: The vomeronasal organ (VNO) is located in the anteroinferior part of the nose and the accessory olfactory organ in mammals which is responsible of sense of smell. This study aims to compare the macro and microanatomical structure of the VNO between sheep and dogs. In the current study, we used ten adult slaughtered sheep and ten adult synchronized dogs with different sexes ages 1-2 years. The head of both animals were preserved in 10 % formalin for one week. This study shows in both animals, the VNO occupies the same position in the cavity of the vomer bone and the same relationship in the cranial part of the nasal cavity. Furthermore, the VNO is divided into three parts based on shape that are the rostral, central, and caudal part. The results show the VNO in sheep has a (U) shape and is opened dorsolaterally. It has a small and narrow cavity. It is long 6 cm long, and it has different diameters on its course. In comparison, the vomeronasal organ in dogs is very developed and has a (J) shape. It has a large and long cavity and ends at the fourth molar. Its length is about 10 cm, and it has one diameter on its course. The VNO receives the blood supply from the sphenopalatine and caudal palatine arteries. The present study shows main differences between sheep and dogs VNO in which the structure of vomeronasal bone between the sheep and dog is completely different. The finding will illustrate fundamental differences and provide specific structural differences between the two species.


El órgano vomeronasal (OVN) se encuentra en la parte anteroinferior de la nariz y el órgano olfativo accesorio en los mamíferos es responsable del sentido del olfato. Este estudio tuvo como objetivo comparar la estructura macro y microanatómica del OVN entre ovejas y perros. En el estudio utilizamos diez ovejas adultas y diez perros adultos de diferentes sexos con edades de 1 a 2 años. Las cabezas de ambos animales se conservaron en formol al 10 % durante una semana. Este estudio mostró que en ambos animales, el OVN ocupa la misma posición en la cavidad del hueso vómer y la misma relación en la parte craneal de la cavidad nasal. Según su forma el OVN se divide en tres partes: rostral, central y caudal. Los resultados mostraron que el OVN en las ovejas tiene forma de (U) y está abierto dorsolateralmente. Presenta una cavidad pequeña y estrecha. Además, tiene una longitud de 6 cm y tiene diferentes diámetros en su recorrido. En comparación, el órgano vomeronasal en los perros está muy desarrollado y tiene forma de (J). Presenta una cavidad grande y larga y termina en el cuarto molar. Su longitud es de unos 10 cm y tiene un diámetro distinto en su recorrido. El OVN recibe el suministro de sangre de las arterias esfenopalatina y palatina caudal. El presente estudio muestra las principales diferencias entre el OVN de ovejas y perros en el que la estructura del hueso vomeronasal entre estos dos animales es completamente diferente. Además, los hallazgos ilustran diferencias fundamentales y determinan diferencias estructurales específicas entre las dos especies.


Assuntos
Animais , Ovinos/anatomia & histologia , Órgão Vomeronasal/anatomia & histologia , Cães/anatomia & histologia , Anatomia Comparada , Órgão Vomeronasal/irrigação sanguínea
3.
J Vet Med Sci ; 86(5): 458-462, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38508726

RESUMO

Little is known about the neuronal structure of the vomeronasal organ (VNO), a receptor organ responsible for pheromone perception, in the alpaca (Vicugna pacos). This study was performed to determine the localization of neuronal elements, including protein gene product 9.5 (PGP 9.5), a pan-neuronal marker, olfactory marker protein (OMP), a marker of mature olfactory receptor cells, and phospholipase C beta 2 (PLC-ß2), a marker of solitary chemoreceptor cells (SCCs), in the VNO. OMP was identified in receptor cells of the vomeronasal sensory epithelium (VSE), while PGP 9.5 and PLC-ß2 were localized in both the VSE and vomeronasal non-sensory epithelium. Collectively, these results suggested that the alpaca VNO possesses SCCs and olfactory receptor cells, which recognize both harmful substances and pheromones.


Assuntos
Camelídeos Americanos , Proteína de Marcador Olfatório , Órgão Vomeronasal , Animais , Órgão Vomeronasal/anatomia & histologia , Órgão Vomeronasal/citologia , Camelídeos Americanos/anatomia & histologia , Masculino , Proteína de Marcador Olfatório/metabolismo , Fosfolipase C beta/metabolismo , Feminino , Neurônios Receptores Olfatórios , Células Quimiorreceptoras , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética
4.
Anat Rec (Hoboken) ; 307(8): 2912-2932, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38112130

RESUMO

The fossorial water vole, Arvicola scherman, is an herbivorous rodent that causes significant agricultural damages. The application of cairomones and alarm pheromones emerges as a promising sustainable method to improve its integrated management. These chemical signals would induce stress responses that could interfere with the species regular reproductive cycles and induce aversive reactions, steering them away from farmlands and meadows. However, there is a paucity of information regarding the water vole vomeronasal system, both in its morphological foundations and its functionality, making it imperative to understand the same for the application of chemical communication in pest control. This study fills the existing gaps in knowledge through a morphological and immunohistochemical analysis of the fossorial water vole vomeronasal organ. The study is primarily microscopic, employing two approaches: histological, using serial sections stained with various dyes (hematoxylin-eosin, Periodic acid-Schiff, Alcian blue, Nissl), and immunohistochemical, applying various markers that provide morphofunctional and structural information. These procedures have confirmed the presence of a functional vomeronasal system in fossorial water voles, characterized by a high degree of differentiation and a significant expression of cellular markers indicative of active chemical communication in this species.


Assuntos
Arvicolinae , Imuno-Histoquímica , Órgão Vomeronasal , Animais , Órgão Vomeronasal/fisiologia , Órgão Vomeronasal/metabolismo , Órgão Vomeronasal/anatomia & histologia , Arvicolinae/fisiologia , Arvicolinae/anatomia & histologia , Masculino , Feminino
5.
Anat Rec (Hoboken) ; 306(11): 2765-2780, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37523493

RESUMO

The extensive diversity observed in bat nasal chemosensory systems has been well-documented at the histological level. Understanding how this diversity evolved and developing hypotheses as to why particular patterns exist require a phylogenetic perspective, which was first outlined in the work of anatomist Kunwar Bhatnagar. With the onset of genetics and genomics, it might be assumed that the puzzling patterns observed in the morphological data have been clarified. However, there is still a widespread mismatch of genetic and morphological correlations among bat chemosensory systems. Novel genomic evidence has set up new avenues to explore that demand more evidence from anatomical structures. Here, we outline the progress that has been made in both morphological and molecular studies on the olfactory and vomeronasal systems in bats since the work of Bhatnagar. Genomic data of olfactory and vomeronasal receptors demonstrate the strong need for further morphological sampling, with a particular focus on receiving brain regions, glands, and ducts.


Assuntos
Quirópteros , Órgão Vomeronasal , Animais , Órgão Vomeronasal/anatomia & histologia , Quirópteros/genética , Quirópteros/anatomia & histologia , Filogenia , Olfato , Proteínas de Transporte
6.
J Morphol ; 283(8): 1080-1093, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35723180

RESUMO

The nasolacrimal apparatus (NLA) is a feature common to many sauropsid amniotes. It consists of an orbital Harderian gland (HG)whose secretions drain into the nasal cavity, in the vicinity of the vomeronasal organ (VNO), an accessory olfactory organ derived from the olfactory epithelium, and a connecting nasolacrimal duct (NLD). Though not all features are present in all posthatchling sauropsids (i.e., no VNO in crocodilomorphs), it is not clear if this system either never existed or failed to develop during the embryonic stages. The purpose of this study is to histologically describe the ontogeny of the NLA and the main olfactory organ in Alligator mississippiensis. Alligator specimens, from embryonic stage 9 to hatchling, were serially histologically sectioned, stained, photographed, and segmented into different tissues using Abobe Photoshop and then reconstructed using Amira for 3D analysis and quantitative nasal epithelial distribution. Though there was no evidence of a VNO, the rest of the NLA was present. The development of the NLA could be subdivided into four phases: (1) inception of NLD, (2) establishment of orbitonasal connections of NLD, (3) bone development, and (4) nasal cavity growth. Glands mature during this last phase and the nasal region rapidly grows, rotates, and is displaced anteriorly. The gradual proportional increase in nonolfactory epithelial distribution during ontogeny is consistent with the literature. Alligator embryonic nasal and NLD growth differs from that of mammals and squamates. The NLD is connected to the anterior third of the nasal region during its initial attachment, but as anterior nasal growth exceeds posterior growth, it is gradually displaced into the posterior third of the nasal region by hatching. It is unknown whether this is a derived archosaur condition or just another example of the morphological variation seen within sauropsid amniotes.


Assuntos
Jacarés e Crocodilos , Aparelho Lacrimal , Ducto Nasolacrimal , Órgão Vomeronasal , Jacarés e Crocodilos/anatomia & histologia , Animais , Mamíferos , Ducto Nasolacrimal/anatomia & histologia , Nariz , Órgão Vomeronasal/anatomia & histologia
7.
J Anat ; 241(3): 809-819, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35437747

RESUMO

In contrast to the main olfactory system that detects volatile chemicals in the nasal air, the vomeronasal system can detect nonvolatile chemicals as well as volatiles. In the vomeronasal system, chemicals are perceived by the vomeronasal organ (VNO) projecting axons to the accessory olfactory bulb (AOB). Beavers (Castor spp.) are semiaquatic mammals that have developed chemical communication. It is possible that the beaver's anal gland secretions, nonvolatile and insoluble substances, may work as a messenger in the water and that beavers may detect the nonvolatile chemicals floating on the water surface via the VNO. The present study aimed to clarify the specificities of the beaver vomeronasal system by histologically and immunohistochemically analyzing the VNO and AOB of 12 Eurasian beavers (C. fiber). The VNO directly opened to the nasal cavity and was independent of a narrow nasopalatine duct connecting the oral and nasal cavities. The VNO comprised soft tissues including sensory and nonsensory epithelium, glands, a venous sinus, an artery, as well as cartilage inner, and bone outer enclosures. The AOB had distinct six layers, and anti-G protein α-i2 and α-o subunits were, respectively, immunoreactive in rostral and caudal glomeruli layers indicating expressions of V1Rs and V2Rs. According to gene repertories analysis, the beavers had 23 and six intact V1R and V2R genes respectively. These findings suggested that beavers recognize volatile odorants and nonvolatile substances using the vomeronasal system. The beaver VNO was developed as well as in other rodents, and it had two specific morphological features, namely, disadvantaged contact with the oral cavity because of a tiny nasopalatine duct, and a double bone and cartilage envelope. Our results highlight the importance of the vomeronasal system in beaver chemical communication and support the possibility that beavers can detect chemicals floating on the water surface via the VNO.


Assuntos
Órgão Vomeronasal , Animais , Bulbo Olfatório/metabolismo , Roedores , Órgão Vomeronasal/anatomia & histologia , Água/análise , Água/metabolismo
8.
Nature ; 590(7845): 284-289, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33461212

RESUMO

Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans1-3. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish. The lungfish genome continues to expand independently (its transposable elements are still active), through mechanisms different to those of the enormous genomes of salamanders. The 17 fully assembled lungfish macrochromosomes maintain synteny to other vertebrate chromosomes, and all microchromosomes maintain conserved ancient homology with the ancestral vertebrate karyotype. Our phylogenomic analyses confirm previous reports that lungfish occupy a key evolutionary position as the closest living relatives to tetrapods4,5, underscoring the importance of lungfish for understanding innovations associated with terrestrialization. Lungfish preadaptations to living on land include the gain of limb-like expression in developmental genes such as hoxc13 and sall1 in their lobed fins. Increased rates of evolution and the duplication of genes associated with obligate air-breathing, such as lung surfactants and the expansion of odorant receptor gene families (which encode proteins involved in detecting airborne odours), contribute to the tetrapod-like biology of lungfishes. These findings advance our understanding of this major transition during vertebrate evolution.


Assuntos
Adaptação Fisiológica/genética , Evolução Biológica , Peixes/genética , Marcha/genética , Genoma/genética , Pulmão , Vertebrados/genética , Ar , Nadadeiras de Animais/anatomia & histologia , Animais , Teorema de Bayes , Cromossomos/genética , Extremidades/anatomia & histologia , Feminino , Peixes/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox/genética , Genômica , Humanos , Elementos Nucleotídeos Longos e Dispersos/genética , Pulmão/anatomia & histologia , Pulmão/fisiologia , Camundongos , Anotação de Sequência Molecular , Filogenia , Respiração , Olfato/fisiologia , Sintenia , Vertebrados/fisiologia , Órgão Vomeronasal/anatomia & histologia
9.
Sci Rep ; 10(1): 13304, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764621

RESUMO

The vomeronasal system (VNS) is responsible for the perception mainly of pheromones and kairomones. Primarily studied in laboratory rodents, it plays a crucial role in their socio-sexual behaviour. As a wild rodent, the capybara offers a more objective and representative perspective to understand the significance of the system in the Rodentia, avoiding the risk of extrapolating from laboratory rodent strains, exposed to high levels of artificial selection pressure. We have studied the main morphological and immunohistochemical features of the capybara vomeronasal organ (VNO) and accessory olfactory bulb (AOB). The study was done in newborn individuals to investigate the maturity of the system at this early stage. We used techniques such as histological stains, lectins-labelling and immunohistochemical characterization of a range of proteins, including G proteins (Gαi2, Gαo) and olfactory marking protein. As a result, we conclude that the VNS of the capybara at birth is capable of establishing the same function as that of the adult, and that it presents unique features as the high degree of differentiation of the AOB and the active cellular migration in the vomeronasal epithelium. All together makes the capybara a promising model for the study of chemical communication in the first days of life.


Assuntos
Roedores/anatomia & histologia , Órgão Vomeronasal/anatomia & histologia , Órgão Vomeronasal/metabolismo , Animais , Animais Recém-Nascidos , Imuno-Histoquímica , Lectinas/metabolismo
10.
J Morphol ; 281(10): 1173-1190, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32803898

RESUMO

This article studies the morphological remodeling of olfactory organs in the fire salamander (Salamandridae, Caudata), from the larval stages of ontogeny to the adult and throughout the course of the annual cycle. The fire salamander exhibits adaptations to the aquatic environment during premetamorphic life and terrestrial adaptations after metamorphosis. During adulthood, the annual activity of this species is divided into three seasonal periods: a breeding period, a nonbreeding period, and hibernation. We observed significant differences in morphology of olfactory organs between developmental stages as well as between each period within the annual cycle. For the first time in caudates, we examined the morphology of olfactory organs during the winter period (wintering larvae, hibernating adults). The results show that the remodeling of olfactory organs during the life of the fire salamander occurs both on macro- and micromorphological levels. Macromorphological ontogenetic variability includes the shape of the main olfactory chamber (MOC) and the distribution of olfactory epithelium (OE) in the MOC and in the vomeronasal organ (VNO). In larvae, the vomeronasal epithelium (VNE) is in a separate cavity, while in the post-metamorphic stages of ontogeny, the VNE occurs in the diverticulum of the MOC. In adult fire salamanders, both olfactory organs are most developed during the breeding season and reduced during hibernation. The VNE and OE in the MOC are also reduced during hibernation. Micro-morphological changes included different types/subtypes of olfactory receptor neurons (ORNs) in the OE in particular stages of ontogeny and periods within the annual cycle, for example, ciliate ORNs are present in the VNE only in the larval stages and giant ORNs occur only in nonbreeding adults. Also, there was a variable set of types of olfactory supporting cells in the VNO of the fire salamander during pre- and postmetamorphic life stages.


Assuntos
Mucosa Olfatória/anatomia & histologia , Salamandra/anatomia & histologia , Animais , Hibernação , Larva/anatomia & histologia , Larva/citologia , Larva/ultraestrutura , Masculino , Mucosa Olfatória/ultraestrutura , Órgão Vomeronasal/anatomia & histologia , Órgão Vomeronasal/citologia
11.
J Anat ; 237(5): 890-906, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32584430

RESUMO

The vomeronasal system (VNS) has been extensively studied within specific animal families, such as Rodentia. However, the study of the VNS in other families, such as Canidae, has long been neglected. Among canids, the vomeronasal organ (VNO) has only been studied in detail in the dog, and no studies have examined the morphofunctional or immunohistochemical characteristics of the VNS in wild canids, which is surprising, given the well-known importance of chemical senses for the dog and fox and the likelihood that the VNS plays roles in the socio-reproductive physiology and behaviours of these species. In addition, characterising the fox VNS could contribute to a better understanding of the domestication process that occurred in the dog, as the fox would represent the first wild canid to be studied in depth. Therefore, the aim of this study was to analyze the morphological and immunohistochemical characteristics of the fox VNO. Tissue dissection and microdissection techniques were employed, followed by general and specific histological staining techniques, including with immunohistochemical and lectin-histochemical labelling strategies, using antibodies against olfactory marker protein (OMP), growth-associated protein 43 (GAP-43), calbindin (CB), calretinin (CR), α-tubulin, Gαo, and Gαi2 proteins, to highlight the specific features of the VNO in the fox. This study found significant differences in the VNS between the fox and the dog, particularly concerning the expression of Gαi2 and Gαo proteins, which were associated with the expression of the type 1 vomeronasal receptors (V1R) and type 2 vomeronasal receptors (V2R), respectively, in the vomeronasal epithelium. Both are immunopositive in foxes, as opposed to the dog, which only expresses Gαi2. This finding suggests that the fox possesses a well-developed VNO and supports the hypothesis that a profound transformation in the VNS is associated with domestication in the canid family. Furthermore, the unique features identified in the fox VNO confirm the necessity of studying the VNS system in different species to better comprehend specific phylogenetic aspects of the VNS.


Assuntos
Raposas/anatomia & histologia , Órgão Vomeronasal/anatomia & histologia , Animais , Feminino , Raposas/metabolismo , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Órgão Vomeronasal/metabolismo
12.
Int. j. morphol ; 38(3): 602-610, June 2020. graf
Artigo em Inglês | LILACS | ID: biblio-1098294

RESUMO

Due to the great change in the morphology of squamate vomeronasal organ (VNO), the histomorphology characteristics of VNO in Scincella tsinlingensis were studied by light and electronic microscopy. The results indicated that the VNO of S. tsinlingensis was located at the base of nasal cavity and consisted of a mushroom body situated anteroventrally and a sensory epithelium (SE) situated dorsocaudally. SE was composed of supporting cells, receptor cells and basal cells, and the supporting cells contained secretory granules near the surface membrane. Most of receptor cells were irregular in shape with long cytoplasmic extensions and characterized by microtubules, vesicles, and mitochondria. The basal cells with long cytoplasmic extensions were also irregular in shape and appeared a greater electron density than others. The thick nerve bundles were found on the dorsomedial area of VNO, and the surface of mushroom body was non-sensory epithelium consisting of ciliated and basal cells, without goblet cells. Epithelial cells were arranged in irregular, with many cilia and microvilli distributed on its free surface. Cells on the basal layer were irregularly circular in shape and arranged sparsely. Taken together, the results indicated that the fine structure of VNO in S. tsinlingensis was similar to other species from scincomorphs.


Debido al gran cambio en la morfología del órgano vomeronasal (OVN), se estudiaron las características histomorfológicas en la Scincella tsinlingensis por microscopías de luz y electrónica. Los resultados indicaron que el OVN de S. tsinlingensis se localizaba en la base de la cavidad nasal y consistía en un cuerpo como hongo situado anteroventralmente y un epitelio sensorial (ES) situado dorso caudamente. El ES estaba compuesto de células de soporte, células receptoras y células basales, y las células de soporte contenían gránulos secretores cerca de la membrana superficial. En gran parte de la mayoría de las células receptoras se observó una forma irregular con largas extensiones citoplasmáticas, caracterizadas por microtúbulos, vesículas y mitocondrias. Las células basales con extensiones citoplasmáticas también tenían forma irregular y algunas parecían tener una mayor densidad de electrones. Los haces gruesos nerviosos se encontraron en el área dorsomedial del OVN, la superficie del cuerpo de estaba compuesto de epitelio no sensorial y consistía de células ciliadas y basales, sin células caliciformes. Las células epiteliales estaban dispuestas de manera irregular, con muchos cilios y microvellosidades distribuidas en su superficie libre. Las células en la capa basal eran escasas y de forma circular irregular. Tomados en conjunto, los resultados indicaron que la estructura fina del OVN en S. tsinlingensis era similar a otras especies de scincomorpha.


Assuntos
Animais , Órgão Vomeronasal/anatomia & histologia , Lagartos/anatomia & histologia , Microscopia Eletrônica de Varredura , Órgão Vomeronasal/ultraestrutura , Microscopia Eletrônica de Transmissão
13.
Anat Rec (Hoboken) ; 303(2): 318-329, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-30614661

RESUMO

The colonial naked mole rat Heterocephalus glaber is a subterranean, eusocial rodent. The H. glaber vomeronasal organ neuroepithelium (VNE) displays little postnatal growth. However, the VNE remains neuronal in contrast to some mammals that possess nonfunctional vomeronasal organ remnants, for example, catarrhine primates and some bats. Here, we describe the vomeronasal organ (VNO) microanatomy in the naked mole rat and we make preliminary observations to determine if H. glaber shares its minimal postnatal VNE growth with other African mole rats. We also determine the immunoreactivity to the mitotic marker Ki67, growth-associated protein 43 (GAP43), and olfactory marker protein (OMP) in six adult and three subadult H. glaber individuals. VNE volume measurements on a small sample of Cryptomys hottentotus and Fukomys damarensis indicate that the VNE of those African mole rat species are also likely to be growth-deficient. Ki67(+) cells show that the sensory epithelium is mitotically active. GAP43 labelling indicates neurogenesis and OMP(+) cells are present though less numerous compared to GAP43(+) cells. In this respect, the VNO of H. glaber does not appear vestigial. The African mole rat VNE may be unusually variable, perhaps reflecting reduced selection pressure on the vomeronasal system. If so, African mole rats may provide a useful genetic model for understanding the morphological variability observed in the mammalian VNO. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc. Anat Rec, 303:318-329, 2020. © 2019 American Association for Anatomy.


Assuntos
Ratos-Toupeira/anatomia & histologia , Órgão Vomeronasal/anatomia & histologia , Animais , Ratos-Toupeira/fisiologia , Neurônios/fisiologia , Mucosa Olfatória/anatomia & histologia , Mucosa Olfatória/fisiologia , Órgão Vomeronasal/fisiologia
14.
Rev. bras. ciênc. vet ; 26(3): 87-92, jul./set. 2019. tab
Artigo em Português | LILACS, VETINDEX | ID: biblio-1491647

RESUMO

Objetivou-se avaliar características quali - quantitativas da carcaça em machos Nelore, submetidos ao bloqueio dos ductos incisivos no período pré puberal. Além disso, objetivou-se avaliar as concentrações séricas de testosterona e do hormônio do crescimento semelhante a insulina do tipo I (IGF-I), e a arquitetura histológica do órgão vomeronasal (OVN). Trinta e quatro machos, no período pré puberal, foram divididos em três grupos experimentais: inteiros – animais controle sem qualquer procedimento (n = 11); bloqueados - animais com os ductos incisivos bilateralmente obstruídos (n = 10); castrados - animais com orquiepididectomia bilateral (n = 13). O OVN foi obtido no abate, ao final do experimento, para avaliação histomorfométrica. As coletas de sangue foram realizadas a cada três meses, em dois turnos (manhã e tarde), totalizando cinco avaliações. Observaram-se maiores (P0,05). Registrou-se redução da altura do epitélio neuro sensitivo do OVN nos bloqueados e castrados (P<0,05). Foi registrada menor concentração de testosterona nos bloqueados nas coletas quatro e cinco à tarde (P<0,05). Conclui-se que a obstrução dos ductos incisivos reduziu os estímulos sensoriais para o OVN, que por sua vez, promoveu alteração na concentração sérica de testosterona, sem alterar o ganho de peso dos animais, porém, não promoveu melhoria na qualidade da carcaça nas condições deste estudo.


A total of 34 prepuberal Nellore males were divided into three groups: control – animals without any procedure (n = 11); blocked - with bilaterally incisors ducts obstructed (n = 10); castrated - with bilateral orchiectomy (n = 13). This study aimed to evaluate the effect of blocking the vomeronasal organ (VNO) in qualitative and quantitative characteristics of the carcass. Also, this study aimed to evaluate testosterone and insulin-like growth factor (IGF-I) serum concentration, and the histological architecture of the OVN. Blood samples were taken every three months during two daily collections (morning and afternoon), totalizing five evaluations. It was observed higher (P 0.05). It was observed a reduction (P<0.05) of the VNO sensory epithelium height in blocked and castrated groups compared with control group. It was registered lower (P<0.05) serum testosterone concentration in blocked group at the fourth and fifth blood collection (afternoon). It was concluded that the obstruction of the incisive ducts reduced the sensorial stimuli for the OVN, which, in turn, promoted a change in the serum concentration of testosterone, without altering the weight gain of the animals, but did not promote improvement in the quality of the carcass under the conditions of this study.


Assuntos
Masculino , Animais , Bovinos , Aumento de Peso , Bulbo Olfatório , Carne Vermelha , Testosterona , Órgão Vomeronasal/anatomia & histologia , Órgão Vomeronasal/química , Fator de Crescimento Insulin-Like I
15.
Rev. bras. ciênc. vet ; 26(3): 87-92, jul./set. 2019. il.
Artigo em Português | LILACS, VETINDEX | ID: biblio-1390975

RESUMO

Objetivou-se avaliar características quali - quantitativas da carcaça em machos Nelore, submetidos ao bloqueio dos ductos incisivos no período pré puberal. Além disso, objetivou-se avaliar as concentrações séricas de testosterona e do hormônio do crescimento semelhante a insulina do tipo I (IGF-I), e a arquitetura histológica do órgão vomeronasal (OVN). Trinta e quatro machos, no período pré puberal, foram divididos em três grupos experimentais: inteiros ­ animais controle sem qualquer procedimento (n = 11); bloqueados - animais com os ductos incisivos bilateralmente obstruídos (n = 10); castrados - animais com orquiepididectomia bilateral (n = 13). O OVN foi obtido no abate, ao final do experimento, para avaliação histomorfométrica. As coletas de sangue foram realizadas a cada três meses, em dois turnos (manhã e tarde), totalizando cinco avaliações. Observaram-se maiores (P<0,05) pesos corporais finais (inteiros = 494,1 ± 28,71; bloqueados = 500,6 ± 23,6 e castrados = 468,3 ± 21,8 Kg) nos inteiros e bloqueados. O acabamento da carcaça foi maior nos castrados (P<0,05) em relação aos inteiros e bloqueados, enquanto o rendimento de carcaça não apresentou diferenças entre os três tratamentos (P>0,05). Registrou-se redução da altura do epitélio neuro sensitivo do OVN nos bloqueados e castrados (P<0,05). Foi registrada menor concentração de testosterona nos bloqueados nas coletas quatro e cinco à tarde (P<0,05). Conclui-se que a obstrução dos ductos incisivos reduziu os estímulos sensoriais para o OVN, que por sua vez, promoveu alteração na concentração sérica de testosterona, sem alterar o ganho de peso dos animais, porém, não promoveu melhoria na qualidade da carcaça nas condições deste estudo.


A total of 34 prepuberal Nellore males were divided into three groups: control ­ animals without any procedure (n = 11); blocked - with bilaterally incisors ducts obstructed (n = 10); castrated - with bilateral orchiectomy (n = 13). This study aimed to evaluate the effect of blocking the vomeronasal organ (VNO) in qualitative and quantitative characteristics of the carcass. Also, this study aimed to evaluate testosterone and insulin-like growth factor (IGF-I) serum concentration, and the histological architecture of the OVN. Blood samples were taken every three months during two daily collections (morning and afternoon), totalizing five evaluations. It was observed higher (P<0.05) final body weight (control= 494.1 ± 28.71; blocked = 500.6 ± 23.6; castrated = 468.3 ± 21.8 kg) at the control and blocked groups. Carcass finishing was higher in castrated animals (P <0.05), while carcass yield did not differ between treatments (P> 0.05). It was observed a reduction (P<0.05) of the VNO sensory epithelium height in blocked and castrated groups compared with control group. It was registered lower (P<0.05) serum testosterone concentration in blocked group at the fourth and fifth blood collection (afternoon). It was concluded that the obstruction of the incisive ducts reduced the sensorial stimuli for the OVN, which, in turn, promoted a change in the serum concentration of testosterone, without altering the weight gain of the animals, but did not promote improvement in the quality of the carcass under the conditions of this study.


Assuntos
Animais , Bovinos , Bulbo Olfatório/anatomia & histologia , Testosterona/análise , Fator de Crescimento Insulin-Like I/análise , Bovinos/anatomia & histologia , Aumento de Peso , Castração/veterinária , Órgão Vomeronasal/anatomia & histologia , Abate de Animais
16.
Pesqui. vet. bras ; Pesqui. vet. bras;38(10): 1999-2005, out. 2018. ilus
Artigo em Português | LILACS, VETINDEX | ID: biblio-976370

RESUMO

O órgão vomeronasal é um receptor químico capaz de detectar feromônios e por essa razão está envolvido nos comportamentos reprodutivos, sociais e de defesa. A reprodução de pacas tem se destacado na área de comercialização de carne e para fins conservacionistas e de pesquisa, como modelo experimental. Diante da necessidade do detalhamento da morfologia do sistema olfatório secundário, o sistema vomeronasal, foi descrita a anatomia macroscópica, anatomia microscópica e topografia do órgão vomeronasal (OVN) da paca (Cuniculus paca). Foram utilizadas cinco pacas adultas do Setor de Animais Silvestres da FCAV, UNESP, Jaboticabal-SP. Após a eutanásia dos animais, a solução fixadora de formaldeído 10% em tampão fosfato de sódio (PBS) foi perfundida sistemicamente (via aorta ascendente). Mediante dissecação, o OVN foi localizado e individualizado para a descrição topográfica e anatômica. Posteriormente, foi isolado e incluído em parafina plástica. Cortes de cinco micrômetros foram corados com Hematoxilina-Eosina. O OVN encontra-se no assoalho da cavidade nasal em ambos os lados da base do septo nasal e está relacionado com o osso vômer, processos palatinos dos ossos pré-maxilar e maxilar. Rostralmente, comunica-se com a cavidade oral estabelecendo relação com a papila incisiva. É um órgão par com superfície irregular, levemente elíptico em secção transversal, apresentando coloração amarronzada repleta de vasos sanguíneos. À microscopia de luz, notou-se presença da cartilagem vomeronasal. O órgão é revestido por um epitélio não sensorial e neurossensorial.(AU)


The vomeronasal organ is a chemical receptor capable of detecting pheromones and for this reason is involved in reproductive, social and defense behaviors. The breeding of pacas has been highlighted in commercialization of meat and for conservation and research purposes, as an experimental model. Regarding the necessity of detailing the morphology of the secondary olfactory system, the vomeronasal system, the macroscopic anatomy, microscopic anatomy and topography of the vomeronasal organ (OVN) was described. Five adult pacas, from the wild animal Sector at FCAV, Unesp, Jaboticabal, SP were used. After the euthanasia, it was perfused 10% formaldehyde solution by ascendent aorta. The OVN was dissected for topographic and anatomical descriptions. Then, it was included in plastic paraffin. Five micrometres sections were collected and stained with hematoxylin and eosin. The OVN is located on the floor of the nasal cavity in both sides of the base of nasal septum and it was related to the vomer, palatine process of the premaxilar and maxilar bones. In rostral aspect, it has a communication with the oral cavity and with the incisive papilla. It is a paired organ with irregular surface. In transversal section is slight elliptical with brownish colour similar to a sponge full of blood vessels. By light microscopy, it was observed the vomeronasal cartilage. The organ is covered with non-sensorial and neurossensorial epithelia.(AU)


Assuntos
Animais , Órgão Vomeronasal/anatomia & histologia , Cuniculidae/anatomia & histologia
17.
J Anat ; 233(6): 814-827, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30255591

RESUMO

The characterization of the rabbit mammary pheromone, which is sensed by the main olfactory system, has made this species a unique model for the study of pheromonal communication in mammals. This discovery has brought attention to the global understanding of chemosensory communication in this species. Chemocommunication is mediated by two distinct organs located in the nasal cavity, the main olfactory epithelium and the vomeronasal organ (VNO). However, there is a lack of knowledge about the vomeronasal system in rabbits. To understand the role of this system, an exhaustive anatomical and histological study of the rabbit VNO was performed. The rabbit VNO was studied macroscopically by light microscopy, and by histochemical and immunohistochemical techniques. We employed specific histological staining techniques (periodic acid-Schiff, Alcian blue, Gallego's trichrome), confocal autofluorescence, histochemical labelling with the lectin Ulex europaeus agglutinin (UEA-I), and immunohistochemical studies of the expression of the Gαi2 and Gαo proteins and olfactory marker protein. The opening of the vomeronasal duct into the nasal cavity and its indirect communication with the oral cavity through a functional nasopalatine duct was demonstrated by classical dissection and microdissection. In a series of transverse histological sections, special attention was paid to the general distribution of the various soft-tissue components of this organ (duct, glands, connective tissue, blood vessels and nerves) and to the nature of the capsule of the organ. Among the main morphological features that distinguish the rabbit VNO, the presence of a double envelope, which is bony externally and cartilaginous internally, and highly developed venous sinuses stand out. This observation indicates the crucial role played in this species by the pumping mechanism that introduces chemical signals into the vomeronasal duct. The functional properties of the organ are also confirmed by the presence of a well-developed neuroepithelium and profuse glandular tissue that is positive for neutral mucopolysaccharides. The role of glycoconjugates was assessed by the identification of the α1-2 fucose glycan system in the neuroepithelium of the VNO employing UEA-I lectin. The pattern of labelling, which was concentrated around the commissures of the sensory epithelium and more diffuse in the central segments, is different from that found in most mammals studied. According to the expression of G-proteins, two pathways have been described in the VNOs of mammals: neuroreceptor cells expressing the Gαi2 protein (associated with vomeronasal receptor type 1); and cells expressing Gαo (associated with vomeronasal receptor type 2). The latter pathway is absent in most mammals studied. The expression of both G-protein families in the rabbit VNO places Lagomorpha together with rodents and insectivores in a small group of mammals belonging to the two-path model. These findings support the notion that the rabbit possesses a highly developed VNO, with many specific morphological features, which highlights the significance of chemocommunication in this species.


Assuntos
Coelhos/anatomia & histologia , Coelhos/fisiologia , Órgão Vomeronasal/anatomia & histologia , Órgão Vomeronasal/fisiologia , Animais , Imuno-Histoquímica , Órgão Vomeronasal/metabolismo
18.
J Morphol ; 279(1): 37-49, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28948636

RESUMO

The aquatic-to-terrestrial shift in the life cycle of most anurans suggests that the differences between the larval and adult morphology of the nose are required for sensory function in two media with different physical characteristics. However, a better controlled test of specialization to medium is to compare adult stages of terrestrial frogs with those that remain fully aquatic as adults. The Ceratophryidae is a monophyletic group of neotropical frogs whose diversification from a common terrestrial ancestor gave rise to both terrestrial (Ceratophrys, Chacophrys) and aquatic (Lepidobatrachus) adults. So, ceratophryids represent an excellent model to analyze the morphology and possible changes related to a secondary aquatic life. We describe the histomorphology of the nose during the ontogeny of the Ceratophryidae, paying particular attention to the condition in adult stages of the recessus olfactorius (a small area of olfactory epithelium that appears to be used for aquatic olfaction) and the eminentia olfactoria (a raised ridge on the floor of the principal cavity correlated with terrestrial olfaction). The species examined (Ceratophrys cranwelli, Chacophrys pierottii, Lepidobatrachus laevis, and L. llanensis) share a common larval olfactory organ composed by the principal cavity, the vomeronasal organ and the lateral appendix. At postmetamorphic stages, ceratophryids present a common morphology of the nose with the principal, middle, and inferior cavities with characteristics similar to other neobatrachians at the end of metamorphosis. However, in advanced adult stages, Lepidobatrachus laevis presents a recessus olfactorius with a heightened (peramorphic) development and a rudimentary (paedomorphic) eminentia olfactoria. Thus, the adult nose in Lepidobatrachus laevis arises from a common developmental 'terrestrial' pathway up to postmetamorphic stages, when its ontogeny leads to a distinctive morphology related to the evolutionarily derived, secondarily aquatic life of adults of this lineage.


Assuntos
Anuros/anatomia & histologia , Anuros/crescimento & desenvolvimento , Evolução Biológica , Mucosa Olfatória/anatomia & histologia , Mucosa Olfatória/crescimento & desenvolvimento , Animais , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Órgão Vomeronasal/anatomia & histologia , Órgão Vomeronasal/crescimento & desenvolvimento
20.
Sci Rep ; 7(1): 10141, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871144

RESUMO

Foraging mode plays a pivotal role in traditional reconstructions of squamate evolution. Transitions between modes are said to spark concerted changes in the morphology, physiology, behaviour, and life history of lizards. With respect to their sensory systems, species that adopt a sit-and-wait strategy are thought to rely on visual cues primarily, while actively hunting species would predominantly use chemical information. The morphology of the tongue and the vomeronasal-organs is believed to mirror this dichotomy. Still, support for this idea of concerted evolution of the morphology of the lizard sensory system merely originates from studies comparing only a few, distantly related taxa that differ in many aspects of their biology besides foraging mode. Hence, we compared vomeronasal-lingual morphology among closely related lizard species (Lacertidae). Our findings show considerable interspecific variation indicating that the chemosensory system of lacertids has undergone substantial change over a short evolutionary time. Although our results imply independent evolution of tongue and vomeronasal-organ form, we find evidence for co-variation between sampler and sensor, hinting towards an 'optimization' for efficient chemoreception. Furthermore, our findings suggest species' degree of investment in chemical signalling, and not foraging behaviour, as a leading factor driving the diversity in vomeronasal-lingual morphology among lacertid species.


Assuntos
Evolução Biológica , Lagartos/genética , Língua/anatomia & histologia , Órgão Vomeronasal/anatomia & histologia , Animais , Lagartos/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA