Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.971
Filtrar
1.
Radiat Environ Biophys ; 63(2): 297-306, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722389

RESUMO

For locally advanced cervical cancer, the standard therapeutic approach involves concomitant chemoradiation therapy, supplemented by a brachytherapy boost. Moreover, an external beam radiotherapy (RT) boost should be considered for treating gross lymph node (LN) volumes. Two boost approaches exist with Volumetric Intensity Modulated Arc Therapy (VMAT): Sequential (SEQ) and Simultaneous Integrated Boost (SIB). This study undertakes a comprehensive dosimetric and radiobiological comparison between these two boost strategies. The study encompassed ten patients who underwent RT for cervical cancer with node-positive disease. Two sets of treatment plans were generated for each patient: SIB-VMAT and SEQ-VMAT. Dosimetric as well as radiobiological parameters including tumour control probability (TCP) and normal tissue complication probability (NTCP) were compared. Both techniques were analyzed for two different levels of LN involvement - only pelvic LNs and pelvic with para-aortic LNs. Statistical analysis was performed using SPSS software version 25.0. SIB-VMAT exhibited superior target coverage, yielding improved doses to the planning target volume (PTV) and gross tumour volume (GTV). Notably, SIB-VMAT plans displayed markedly superior dose conformity. While SEQ-VMAT displayed favorable organ sparing for femoral heads, SIB-VMAT appeared as the more efficient approach for mitigating bladder and bowel doses. TCP was significantly higher with SIB-VMAT, suggesting a higher likelihood of successful tumour control. Conversely, no statistically significant difference in NTCP was observed between the two techniques. This study's findings underscore the advantages of SIB-VMAT over SEQ-VMAT in terms of improved target coverage, dose conformity, and tumour control probability. In particular, SIB-VMAT demonstrated potential benefits for cases involving para-aortic nodes. It is concluded that SIB-VMAT should be the preferred approach in all cases of locally advanced cervical cancer.


Assuntos
Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Humanos , Neoplasias do Colo do Útero/radioterapia , Neoplasias do Colo do Útero/patologia , Feminino , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria , Pessoa de Meia-Idade , Órgãos em Risco/efeitos da radiação , Metástase Linfática/radioterapia
2.
Biomed Phys Eng Express ; 10(4)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38697044

RESUMO

Objective.The aim of this work was to develop a Phase I control chart framework for the recently proposed multivariate risk-adjusted Hotelling'sT2chart. Although this control chart alone can identify most patients receiving extreme organ-at-risk (OAR) dose, it is restricted by underlying distributional assumptions, making it sensitive to extreme observations in the sample, as is typically found in radiotherapy plan quality data such as dose-volume histogram (DVH) points. This can lead to slightly poor-quality plans that should have been identified as out-of-control (OC) to be signaled in-control (IC).Approach. We develop a robust iterative control chart framework to identify all OC patients with abnormally high OAR dose and improve them via re-optimization to achieve an IC sample prior to establishing the Phase I control chart, which can be used to monitor future treatment plans.Main Results. Eighty head-and-neck patients were used in this study. After the first iteration, P14, P67, and P68 were detected as OC for high brainstem dose, warranting re-optimization aimed to reduce brainstem dose without worsening other planning criteria. The DVH and control chart were updated after re-optimization. On the second iteration, P14, P67, and P68 were IC, but P40 was identified as OC. After re-optimizing P40's plan and updating the DVH and control chart, P40 was IC, but P14* (P14's re-optimized plan) and P62 were flagged as OC. P14* could not be re-optimized without worsening target coverage, so only P62 was re-optimized. Ultimately, a fully IC sample was achieved. Multiple iterations were needed to identify and improve all OC patients, and to establish a more robust control limit to monitor future treatment plans.Significance. The iterative procedure resulted in a fully IC sample of patients. With this sample, a more robust Phase I control chart that can monitor OAR doses of new plans was established.


Assuntos
Órgãos em Risco , Controle de Qualidade , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Humanos , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias de Cabeça e Pescoço/radioterapia , Algoritmos
3.
Radiat Oncol ; 19(1): 54, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702761

RESUMO

BACKGROUND: Stereotactic ablative body radiotherapy (SABR) is an emerging treatment alternative for patients with localized low and intermediate risk prostate cancer patients. As already explored by some authors in the context of conventional moderate hypofractionated radiotherapy, focal boost of the index lesion defined by magnetic resonance imaging (MRI) is associated with an improved biochemical outcome. The objective of this phase II trial is to determine the effectiveness (in terms of biochemical, morphological and functional control), the safety and impact on quality of life, of prostate SABR with MRI guided focal dose intensification in males with intermediate and high-risk localized prostate cancer. METHODS: Patients with intermediate and high-risk prostate cancer according to NCCN definition will be treated with SABR 36.25 Gy in 5 fractions to the whole prostate gland with MRI guided simultaneous integrated focal boost (SIB) to the index lesion (IL) up to 50 Gy in 5 fractions, using a protocol of bladder trigone and urethra sparing. Intra-fractional motion will be monitored with daily cone beam computed tomography (CBCT) and intra-fractional tracking with intraprostatic gold fiducials. Androgen deprivation therapy (ADT) will be allowed. The primary endpoint will be efficacy in terms of biochemical and local control assessed by Phoenix criteria and post-treatment MRI respectively. The secondary endpoints will encompass acute and late toxicity, quality of life (QoL) and progression-free survival. Finally, the subgroup of high-risk patients will be involved in a prospective study focused on immuno-phenotyping. DISCUSSION: To the best of our knowledge, this is the first trial to evaluate the impact of post-treatment MRI on local control among patients with intermediate and high-risk prostate cancer undergoing SABR and MRI guided focal intensification. The results of this trial will enhance our understanding of treatment focal intensification through the employment of the SABR technique within this specific patient subgroup, particularly among those with high-risk disease, and will help to clarify the significance of MRI in monitoring local responses. Hopefully will also help to design more personalized biomarker-based phase III trials in this specific context. Additionally, this trial is expected to be incorporated into a prospective radiomics study focused on localized prostate cancer treated with radiotherapy. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT05919524; Registered 17 July 2023. TRIAL SPONSOR: IRAD/SEOR (Instituto de Investigación de Oncología Radioterápica / Sociedad Española de Oncología Radioterápica). STUDY SETTING: Clinicaltrials.gov identifier: NCT05919524; Registered 17 July 2023. TRIAL STATUS: Protocol version number and date: v. 5/ 17 May-2023. Date of recruitment start: August 8, 2023. Date of recruitment completion: July 1, 2024.


Assuntos
Neoplasias da Próstata , Radiocirurgia , Radioterapia Guiada por Imagem , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Tratamentos com Preservação do Órgão/métodos , Órgãos em Risco/efeitos da radiação , Estudos Prospectivos , Neoplasias da Próstata/radioterapia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/patologia , Qualidade de Vida , Radiocirurgia/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Bexiga Urinária/efeitos da radiação , Ensaios Clínicos Fase II como Assunto
4.
Int J Radiat Oncol Biol Phys ; 119(2): 669-680, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38760116

RESUMO

The Pediatric Normal Tissue Effects in the Clinic (PENTEC) consortium has made significant contributions to understanding and mitigating the adverse effects of childhood cancer therapy. This review addresses the role of diagnostic imaging in detecting, screening, and comprehending radiation therapy-related late effects in children, drawing insights from individual organ-specific PENTEC reports. We further explore how the development of imaging biomarkers for key organ systems, alongside technical advancements and translational imaging approaches, may enhance the systematic application of imaging evaluations in childhood cancer survivors. Moreover, the review critically examines knowledge gaps and identifies technical and practical limitations of existing imaging modalities in the pediatric population. Addressing these challenges may expand access to, minimize the risk of, and optimize the real-world application of, new imaging techniques. The PENTEC team envisions this document as a roadmap for the future development of imaging strategies in childhood cancer survivors, with the overarching goal of improving long-term health outcomes and quality of life for this vulnerable population.


Assuntos
Lesões por Radiação , Humanos , Criança , Lesões por Radiação/diagnóstico por imagem , Sobreviventes de Câncer , Órgãos em Risco/diagnóstico por imagem , Órgãos em Risco/efeitos da radiação , Neoplasias/radioterapia , Neoplasias/diagnóstico por imagem , Radioterapia/efeitos adversos , Diagnóstico por Imagem/métodos
6.
Int J Radiat Oncol Biol Phys ; 119(2): 338-353, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38760115

RESUMO

At its very core, radiation oncology involves a trade-off between the benefits and risks of exposing tumors and normal tissue to relatively high doses of ionizing radiation. This trade-off is particularly critical in childhood cancer survivors (CCS), in whom both benefits and risks can be hugely consequential due to the long life expectancy if the primary cancer is controlled. Estimating the normal tissue-related risks of a specific radiation therapy plan in an individual patient relies on predictive mathematical modeling of empirical data on adverse events. The Pediatric Normal-Tissue Effects in the Clinic (PENTEC) collaborative network was formed to summarize and, when possible, to synthesize dose-volume-response relationships for a range of adverse events incident in CCS based on the literature. Normal-tissue clinical radiation biology in children is particularly challenging for many reasons: (1) Childhood malignancies are relatively uncommon-constituting approximately 1% of new incident cancers in the United States-and biologically heterogeneous, leading to many small series in the literature and large variability within and between series. This creates challenges in synthesizing data across series. (2) CCS are at an elevated risk for a range of adverse health events that are not specific to radiation therapy. Thus, excess relative or absolute risk compared with a reference population becomes the appropriate metric. (3) Various study designs and quantities to express risk are found in the literature, and these are summarized. (4) Adverse effects in CCS often occur 30, 50, or more years after therapy. This limits the information content of series with even very extended follow-up, and lifetime risk estimates are typically extrapolations that become dependent on the mathematical model used. (5) The long latent period means that retrospective dosimetry is required, as individual computed tomography-based radiation therapy plans gradually became available after 1980. (6) Many individual patient-level factors affect outcomes, including age at exposure, attained age, lifestyle exposures, health behaviors, other treatment modalities, dose, fractionation, and dose distribution. (7) Prospective databases with individual patient-level data and radiation dosimetry are being built and will facilitate advances in dose-volume-response modeling. We discuss these challenges and attempts to overcome them in the setting of PENTEC.


Assuntos
Sobreviventes de Câncer , Relação Dose-Resposta à Radiação , Humanos , Sobreviventes de Câncer/estatística & dados numéricos , Criança , Lesões por Radiação , Órgãos em Risco/efeitos da radiação , Neoplasias/radioterapia , Medição de Risco , Neoplasias Induzidas por Radiação/etiologia , Dosagem Radioterapêutica
7.
Int J Radiat Oncol Biol Phys ; 119(2): 697-707, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38760117

RESUMO

The major aim of Pediatric Normal Tissue Effects in the Clinic (PENTEC) was to synthesize quantitative published dose/-volume/toxicity data in pediatric radiation therapy. Such systematic reviews are often challenging because of the lack of standardization and difficulty of reporting outcomes, clinical factors, and treatment details in journal articles. This has clinical consequences: optimization of treatment plans must balance between the risks of toxicity and local failure; counseling patients and their parents requires knowledge of the excess risks encountered after a specific treatment. Studies addressing outcomes after pediatric radiation therapy are particularly challenging because: (a) survivors may live for decades after treatment, and the latency time to toxicity can be very long; (b) children's maturation can be affected by radiation, depending on the developmental status of the organs involved at time of treatment; and (c) treatment regimens frequently involve chemotherapies, possibly modifying and adding to the toxicity of radiation. Here we discuss: basic reporting strategies to account for the actuarial nature of the complications; the reporting of modeling of abnormal development; and the need for standardized, comprehensively reported data sets and multivariate models (ie, accounting for the simultaneous effects of radiation dose, age, developmental status at time of treatment, and chemotherapy dose). We encourage the use of tools that facilitate comprehensive reporting, for example, electronic supplements for journal articles. Finally, we stress the need for clinicians to be able to trust artificial intelligence models of outcome of radiation therapy, which requires transparency, rigor, reproducibility, and comprehensive reporting. Adopting the reporting methods discussed here and in the individual PENTEC articles will increase the clinical and scientific usefulness of individual reports and associated pooled analyses.


Assuntos
Neoplasias , Lesões por Radiação , Humanos , Criança , Neoplasias/radioterapia , Lesões por Radiação/prevenção & controle , Lesões por Radiação/etiologia , Órgãos em Risco/efeitos da radiação , Radioterapia/efeitos adversos , Radioterapia/normas , Sobreviventes de Câncer , Dosagem Radioterapêutica , Projetos de Pesquisa/normas , Pré-Escolar
8.
Technol Cancer Res Treat ; 23: 15330338241241898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38557213

RESUMO

Introduction: In this study, we sought to develop a thermoplastic patient-specific helmet bolus that could deliver a uniform therapeutic dose to the target and minimize the dose to the normal brain during whole-scalp treatment with a humanoid head phantom. Methods: The bolus material was a commercial thermoplastic used for patient immobilization, and the holes in the netting were filled with melted paraffin. We compared volumetric-modulated arc therapy treatment plans with and without the bolus for quantitative dose distribution analysis. We analyzed the dose distribution in the region of interest to compare dose differences between target and normal organs. For quantitative analysis of treatment dose, OSLD chips were attached at the vertex (VX), posterior occipital (PO), right (RT), and left temporal (LT) locations. Results: The average dose in the clinical target volume was 6553.8 cGy (99.3%) with bolus and 5874 cGy (89%) without bolus, differing by more than 10% from the prescribed dose (6600 cGy) to the scalp target. For the normal brain, it was 3747.8 cGy (56.8%) with bolus and 5484.6 cGy (83.1%) without bolus. These results show that while the dose to the treatment target decreased, the average dose to the normal brain, which is mostly inside the treatment target, increased by more than 25%. With the bolus, the OSLD measured dose was 102.5 ± 1.2% for VX and 101.5 ± 1.9%, 95.9 ± 1.9%, and 81.8 ± 2.1% for PO, RT, and LT, respectively. In addition, the average dose in the treatment plan was 102%, 101%, 93.6%, and 80.7% for VX, PO, RT, and LT. When no bolus was administered, 59.6 ± 2.4%, 112.6 ± 1.8%, 47.1 ± 1.6%, and 53.1 ± 2.3% were assessed as OSLD doses for VX, PO, RT, and LT, respectively. Conclusion: This study proposed a method to fabricate patient-specific boluses that are highly reproducible, accessible, and easy to fabricate for radiotherapy to the entire scalp and can effectively spare normal tissue while delivering sufficient surface dose.


Assuntos
Compostos Organotiofosforados , Radioterapia de Intensidade Modulada , Humanos , Radioterapia de Intensidade Modulada/métodos , Couro Cabeludo , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Estudos de Viabilidade , Dispositivos de Proteção da Cabeça , Órgãos em Risco/efeitos da radiação
9.
Asian Pac J Cancer Prev ; 25(4): 1383-1390, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38680000

RESUMO

BACKGROUND: The study aims to investigate potential dosimetric benefits between non-coplanar and coplanar beam arrangements of Volumetric-Modulated Arc Therapy (VMAT) plans for liver stereotactic body radiotherapy (SBRT). METHODS: Thirteen patients who had undergone liver SBRT treatment in our department were chosen retrospectively for the study. Two sets of SBRT-VMAT plans namely, non-coplanar (NC-VMAT) and Coplanar (C-VMAT) were generated in Monaco(v5.11) planning system for Elekta Versa HD Linac using unflatten 6MV photon. The NC-VMAT plans were created by two/three non-coplanar partial arcs with couch rotation of ±150 and had an arc span of 1300 to 1600 whereas the C-VMAT plans consisted of a full arc. Both plans were compared by statistically analyzing various dosimetric and technical parameters. RESULTS: There is no statistically significant difference observed between the C-VMAT and NC-VMAT plans for planning target volume (PTV) coverage. However, the spine dose (D1cc) was much less in the NC-VMAT plan compared to the C-VMAT plan, with mean values of 6.127 ± 3.08Gy and 9.058 ± 4.76Gy, respectively (p-value=0.002). The low dose spillage to the healthy tissue was compared by the volume receiving 5Gy (V5Gy) and 10Gy (V10Gy). V5Gy of the NC-VMAT plan was 2399.23±1870.76cc while that of C-VMAT plans was 2835.36±1930.20cc with the p-value <0.001. Moreover, the monitor units(MU) were less with NC-VMAT than with C-VMAT SBRT plans (p=0.015). CONCLUSION: The plan quality of NC-VMAT plans was favorable compared to C-VMAT plans for liver SBRT especially in reducing spine dose, low dose spillage to healthy tissue, and MU.


Assuntos
Neoplasias Hepáticas , Órgãos em Risco , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/cirurgia , Estudos Retrospectivos , Órgãos em Risco/efeitos da radiação , Prognóstico , Masculino , Feminino , Seguimentos , Idoso , Pessoa de Meia-Idade
10.
Phys Med ; 121: 103346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608421

RESUMO

Partial breast irradiation for the treatment of early-stage breast cancer patients can be performed by means of Intra Operative electron Radiation Therapy (IOeRT). One of the main limitations of this technique is the absence of a treatment planning system (TPS) that could greatly help in ensuring a proper coverage of the target volume during irradiation. An IOeRT TPS has been developed using a fast Monte Carlo (MC) and an ultrasound imaging system to provide the best irradiation strategy (electron beam energy, applicator position and bevel angle) and to facilitate the optimisation of dose prescription and delivery to the target volume while maximising the organs at risk sparing. The study has been performed in silico, exploiting MC simulations of a breast cancer treatment. Ultrasound-based input has been used to compute the absorbed dose maps in different irradiation strategies and a quantitative comparison between the different options was carried out using Dose Volume Histograms. The system was capable of exploring different beam energies and applicator positions in few minutes, identifying the best strategy with an overall computation time that was found to be completely compatible with clinical implementation. The systematic uncertainty related to tissue deformation during treatment delivery with respect to imaging acquisition was taken into account. The potential and feasibility of a GPU based full MC TPS implementation of IOeRT breast cancer treatments has been demonstrated in-silico. This long awaited tool will greatly improve the treatment safety and efficacy, overcoming the limits identified within the clinical trials carried out so far.


Assuntos
Neoplasias da Mama , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador , Neoplasias da Mama/radioterapia , Neoplasias da Mama/diagnóstico por imagem , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Elétrons/uso terapêutico , Fatores de Tempo , Gráficos por Computador , Feminino , Órgãos em Risco/efeitos da radiação
11.
Phys Med ; 121: 103369, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669811

RESUMO

PURPOSE: In radiotherapy it is often necessary to transfer a patient's DICOM (Digital Imaging and COmmunications in Medicine) dataset from one system to another for re-treatment, plan-summation or registration purposes. The aim of the study is to evaluate effects of dataset transfer between treatment planning systems. MATERIALS AND METHODS: Twenty-five patients treated in a 0.35T MR-Linac (MRidian, ViewRay) for locally-advanced pancreatic cancer were enrolled. For each patient, a nominal dose distribution was optimized on the planning MRI. Each plan was daily re-optimized if needed to match the anatomy and exported from MRIdian-TPS (ViewRay Inc.) to Eclipse-TPS (Siemens-Varian). A comparison between the two TPSs was performed considering the PTV and OARs volumes (cc), as well as dose coverages and clinical constraints. RESULTS: From the twenty-five enrolled patients, 139 plans were included in the data comparison. The median values of percentage PTV volume variation are 10.8 % for each fraction, while percentage differences of PTV coverage have a mean value of -1.4 %. The median values of the percentage OARs volume variation are 16.0 %, 7.0 %, 10.4 % and 8.5 % for duodenum, stomach, small and large bowel, respectively. The percentage variations of the dose constraints are 41.0 %, 52.7 % and 49.8 % for duodenum, stomach and small bowel, respectively. CONCLUSIONS: This study has demonstrated a non-negligible variation in size and dosimetric parameters when datasets are transferred between TPSs. Such variations should be clinically considered. Investigations are focused on DICOM structure algorithm employed by the TPSs during the transfer to understand the cause of such variations.


Assuntos
Neoplasias Pancreáticas , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/diagnóstico por imagem , Órgãos em Risco/efeitos da radiação , Imageamento por Ressonância Magnética
12.
J Appl Clin Med Phys ; 25(5): e14361, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642406

RESUMO

PURPOSES: This study aimed to develop and validate algorithms for automating intensity modulated radiation therapy (IMRT) planning in breast cancer patients, with a focus on patient anatomical characteristics. MATERIAL AND METHODS: We retrospectively selected 400 breast cancer patients without lymph node involvement for automated treatment planning. Automation was achieved using the Eclipse Scripting Application Programming Interface (ESAPI) integrated into the Eclipse Treatment Planning System. We employed three beam insertion geometries and three optimization strategies, resulting in 3600 plans, each delivering a 40.05 Gy dose in 15 fractions. Gantry angles in the tangent fields were selected based on a criterion involving the minimum intersection area between the Planning Target Volume (PTV) and the ipsilateral lung in the Beam's Eye View projection. ESAPI was also used to gather patient anatomical data, serving as input for Random Forest models to select the optimal plan. The Random Forest classification considered both beam insertion geometry and optimization strategy. Dosimetric data were evaluated in accordance with the Radiation Therapy Oncology Group (RTOG) 1005 protocol. RESULTS: Overall, all approaches generated high-quality plans, with approximately 94% meeting the acceptable dose criteria for organs at risk and/or target coverage as defined by RTOG guidelines. Average automated plan generation time ranged from 6 min and 37 s to 9 min and 22 s, with the mean time increasing with additional fields. The Random Forest approach did not successfully enable automatic planning strategy selection. Instead, our automated planning system allows users to choose from the tested geometry and strategy options. CONCLUSIONS: Although our attempt to correlate patient anatomical features with planning strategy using machine learning tools was unsuccessful, the resulting dosimetric outcomes proved satisfactory. Our algorithm consistently produced high-quality plans, offering significant time and efficiency advantages.


Assuntos
Algoritmos , Neoplasias da Mama , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Feminino , Neoplasias da Mama/radioterapia , Órgãos em Risco/efeitos da radiação , Estudos Retrospectivos , Automação , Prognóstico
13.
J Appl Clin Med Phys ; 25(5): e14345, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664894

RESUMO

PURPOSE: To establish the clinical applicability of deep-learning organ-at-risk autocontouring models (DL-AC) for brain radiotherapy. The dosimetric impact of contour editing, prior to model training, on performance was evaluated for both CT and MRI-based models. The correlation between geometric and dosimetric measures was also investigated to establish whether dosimetric assessment is required for clinical validation. METHOD: CT and MRI-based deep learning autosegmentation models were trained using edited and unedited clinical contours. Autosegmentations were dosimetrically compared to gold standard contours for a test cohort. D1%, D5%, D50%, and maximum dose were used as clinically relevant dosimetric measures. The statistical significance of dosimetric differences between the gold standard and autocontours was established using paired Student's t-tests. Clinically significant cases were identified via dosimetric headroom to the OAR tolerance. Pearson's Correlations were used to investigate the relationship between geometric measures and absolute percentage dose changes for each autosegmentation model. RESULTS: Except for the right orbit, when delineated using MRI models, the dosimetric statistical analysis revealed no superior model in terms of the dosimetric accuracy between the CT DL-AC models or between the MRI DL-AC for any investigated brain OARs. The number of patients where the clinical significance threshold was exceeded was higher for the optic chiasm D1% than other OARs, for all autosegmentation models. A weak correlation was consistently observed between the outcomes of dosimetric and geometric evaluations. CONCLUSIONS: Editing contours before training the DL-AC model had no significant impact on dosimetry. The geometric test metrics were inadequate to estimate the impact of contour inaccuracies on dose. Accordingly, dosimetric analysis is needed to evaluate the clinical applicability of DL-AC models in the brain.


Assuntos
Neoplasias Encefálicas , Aprendizado Profundo , Imageamento por Ressonância Magnética , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X , Humanos , Órgãos em Risco/efeitos da radiação , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Radiometria/métodos , Processamento de Imagem Assistida por Computador/métodos
14.
J Appl Clin Med Phys ; 25(5): e14366, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38669190

RESUMO

PURPOSE: Skin collimation is a useful tool in electron beam therapy (EBT) to decrease the penumbra at the field edge and minimize dose to nearby superficial organs at risk (OARs), but manually fabricating these collimation devices in the clinic to conform to the patient's anatomy can be a difficult and time intensive process. This work compares two types of patient-specific skin collimation (in-house 3D printed and vendor-provided machined brass) using clinically relevant metrics. METHODS: Attenuation measurements were performed to determine the thickness of each material needed to adequately shield both 6 and 9 MeV electron beams. Relative and absolute dose planes at various depths were measured using radiochromic film to compare the surface dose, flatness, and penumbra of the different skin collimation materials. RESULTS: Clinically acceptable thicknesses of each material were determined for both 6 and 9 MeV electron beams. Field width, flatness, and penumbra results between the two systems were very similar and significantly improved compared to measurements performed with no surface collimation. CONCLUSION: Both skin collimation methods investigated in this work generate sharp penumbras at the field edge and can minimize dose to superficial OARs compared to treatment fields with no surface collimation. The benefits of skin collimation are greatest for lower energy electron beams, and the benefits decrease as the measurement depth increases. Using bolus with skin collimation is recommended to avoid surface dose enhancement seen with collimators placed on the skin surface. Ultimately, the appropriate choice of material will depend on the desire to create these devices in-house or outsource the fabrication to a vendor.


Assuntos
Elétrons , Órgãos em Risco , Impressão Tridimensional , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Pele , Humanos , Elétrons/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Órgãos em Risco/efeitos da radiação , Pele/efeitos da radiação , Imagens de Fantasmas , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação
15.
Phys Med Biol ; 69(11)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38688290

RESUMO

Objective. Lowering treatment costs and improving treatment quality are two primary goals for next-generation proton therapy (PT) facilities. This work will design a compact large momentum acceptance superconducting (LMA-SC) gantry beamline to reduce the footprint and expense of the PT facilities, with a novel mixed-size spot scanning method to improve the sparing of organs at risk (OAR).Approach. For the LMA-SC gantry beamline, the movable energy slit is placed in the middle of the last achromatic bending section, and the beam momentum spread of delivered spots can be easily changed during the treatment. Simultaneously, changing the collimator size can provide spots with various lateral spot sizes. Based on the provided large-size and small-size spot models, the treatment planning with mixed spot scanning is optimized: the interior of the target is irradiated with large-size spots (to cover the uniform-dose interior efficiently), while the peripheral of the target is irradiated with small-size spots (to shape the sharp dose falloff at the peripheral accurately).Main results. The treatment plan with mixed-size spot scanning was evaluated and compared with small and large-size spot scanning for thirteen clinical prostate cases. The mixed-size spot plan had superior target dose homogeneities, better protection of OAR, and better plan robustness than the large-size spot plan. Compared to the small-size spot plan, the mixed-size spot plan had comparable plan quality, better plan robustness, and reduced plan delivery time from 65.9 to 40.0 s.Significance. The compact LMA-SC gantry beamline is proposed with mixed-size spot scanning, with demonstrated footprint reduction and improved plan quality compared to the conventional spot scanning method.


Assuntos
Neoplasias da Próstata , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador , Terapia com Prótons/instrumentação , Terapia com Prótons/métodos , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Próstata/radioterapia , Masculino , Supercondutividade , Dosagem Radioterapêutica , Órgãos em Risco/efeitos da radiação
16.
J Egypt Natl Canc Inst ; 36(1): 11, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584227

RESUMO

BACKGROUND: The moderate deep inspiratory breath hold (mDIBH) is a modality famed for cardiac sparing. Prospective studies based on this are few from the eastern part of the world and India. We intend to compare the dosimetry between mDIBH and free-breathing (FB) plans. METHODS: Thirty-two locally advanced left breast cancer patients were taken up for the study. All patients received a dose of 50 Gy in 25 fractions to the chest wall/intact breast, followed by a 10-Gy boost to the lumpectomy cavity in the case of breast conservation surgery. All the patients were treated in mDIBH using active breath coordinator (ABC). The data from the two dose volume histograms were compared regarding plan quality and the doses received by the organs at risk. Paired t-test was used for data analysis. RESULTS: The dose received by the heart in terms of V5, V10, and V30 (4.55% vs 8.39%) and mean dose (4.73 Gy vs 6.74 Gy) were statistically significant in the ABC group than that in the FB group (all p-values < 0.001). Also, the dose received by the LADA in terms of V30 (19.32% vs 24.87%) and mean dose (32.99 Gy vs 46.65 Gy) were significantly less in the ABC group. The mean treatment time for the ABC group was 20 min, while that for the free-breathing group was 10 min. CONCLUSIONS: Incorporating ABC-mDIBH for left-sided breast cancer radiotherapy significantly reduces the doses received by the heart, LADA, and left and right lung, with no compromise in plan quality but with an increase in treatment time.


Assuntos
Neoplasias da Mama , Neoplasias Unilaterais da Mama , Humanos , Feminino , Suspensão da Respiração , Neoplasias Unilaterais da Mama/radioterapia , Neoplasias da Mama/radioterapia , Estudos Prospectivos , Coração , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Órgãos em Risco
17.
Technol Cancer Res Treat ; 23: 15330338241242654, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38584413

RESUMO

Purpose: Deep learning (DL) is widely used in dose prediction for radiation oncology, multiple DL techniques comparison is often lacking in the literature. To compare the performance of 4 state-of-the-art DL models in predicting the voxel-level dose distribution for cervical cancer volumetric modulated arc therapy (VMAT). Methods and Materials: A total of 261 patients' plans for cervical cancer were retrieved in this retrospective study. A three-channel feature map, consisting of a planning target volume (PTV) mask, organs at risk (OARs) mask, and CT image was fed into the three-dimensional (3D) U-Net and its 3 variants models. The data set was randomly divided into 80% as training-validation and 20% as testing set, respectively. The model performance was evaluated on the 52 testing patients by comparing the generated dose distributions against the clinical approved ground truth (GT) using mean absolute error (MAE), dose map difference (GT-predicted), clinical dosimetric indices, and dice similarity coefficients (DSC). Results: The 3D U-Net and its 3 variants DL models exhibited promising performance with a maximum MAE within the PTV 0.83% ± 0.67% in the UNETR model. The maximum MAE among the OARs is the left femoral head, which reached 6.95% ± 6.55%. For the body, the maximum MAE was observed in UNETR, which is 1.19 ± 0.86%, and the minimum MAE was 0.94 ± 0.85% for 3D U-Net. The average error of the Dmean difference for different OARs is within 2.5 Gy. The average error of V40 difference for the bladder and rectum is about 5%. The mean DSC under different isodose volumes was above 90%. Conclusions: DL models can predict the voxel-level dose distribution accurately for cervical cancer VMAT treatment plans. All models demonstrated almost analogous performance for voxel-wise dose prediction maps. Considering all voxels within the body, 3D U-Net showed the best performance. The state-of-the-art DL models are of great significance for further clinical applications of cervical cancer VMAT.


Assuntos
Aprendizado Profundo , Radioterapia de Intensidade Modulada , Neoplasias do Colo do Útero , Feminino , Humanos , Radioterapia de Intensidade Modulada/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Dosagem Radioterapêutica , Neoplasias do Colo do Útero/diagnóstico por imagem , Neoplasias do Colo do Útero/radioterapia , Estudos Retrospectivos , Órgãos em Risco
18.
Radiat Oncol ; 19(1): 45, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589961

RESUMO

BACKGROUND: Current automated planning solutions are calibrated using trial and error or machine learning on historical datasets. Neither method allows for the intuitive exploration of differing trade-off options during calibration, which may aid in ensuring automated solutions align with clinical preference. Pareto navigation provides this functionality and offers a potential calibration alternative. The purpose of this study was to validate an automated radiotherapy planning solution with a novel multi-dimensional Pareto navigation calibration interface across two external institutions for prostate cancer. METHODS: The implemented 'Pareto Guided Automated Planning' (PGAP) methodology was developed in RayStation using scripting and consisted of a Pareto navigation calibration interface built upon a 'Protocol Based Automatic Iterative Optimisation' planning framework. 30 previous patients were randomly selected by each institution (IA and IB), 10 for calibration and 20 for validation. Utilising the Pareto navigation interface automated protocols were calibrated to the institutions' clinical preferences. A single automated plan (VMATAuto) was generated for each validation patient with plan quality compared against the previously treated clinical plan (VMATClinical) both quantitatively, using a range of DVH metrics, and qualitatively through blind review at the external institution. RESULTS: PGAP led to marked improvements across the majority of rectal dose metrics, with Dmean reduced by 3.7 Gy and 1.8 Gy for IA and IB respectively (p < 0.001). For bladder, results were mixed with low and intermediate dose metrics reduced for IB but increased for IA. Differences, whilst statistically significant (p < 0.05) were small and not considered clinically relevant. The reduction in rectum dose was not at the expense of PTV coverage (D98% was generally improved with VMATAuto), but was somewhat detrimental to PTV conformality. The prioritisation of rectum over conformality was however aligned with preferences expressed during calibration and was a key driver in both institutions demonstrating a clear preference towards VMATAuto, with 31/40 considered superior to VMATClinical upon blind review. CONCLUSIONS: PGAP enabled intuitive adaptation of automated protocols to an institution's planning aims and yielded plans more congruent with the institution's clinical preference than the locally produced manual clinical plans.


Assuntos
Neoplasias da Próstata , Radioterapia de Intensidade Modulada , Masculino , Humanos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Bexiga Urinária , Neoplasias da Próstata/radioterapia , Órgãos em Risco
19.
In Vivo ; 38(3): 1412-1420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38688603

RESUMO

BACKGROUND/AIM: To compare implant sparing irradiation with conventional radiotherapy (RT) using helical (H) and TomoDirect (TD) techniques in breast cancer patients undergoing immediate breast reconstruction (IBR). PATIENTS AND METHODS: The dosimetric parameters of 40 patients with retropectoral implants receiving 50.4 Gy delivered in 28 fractions were analyzed. Three plans were created: H plan using conventional planning target volume (PTV) that included the chest wall, skin, and implant; TD plan using conventional PTV; and Hs plan using implant-sparing PTV. The H, TD, and Hs plans were compared for PTV doses, organ-at-risk (OAR) doses, and treatment times. RESULTS: Dose distribution in the Hs plan was less homogeneous and uniform than that in the H and TD plans. The TD plan had lower lung, heart, contralateral breast, spinal cord, liver, and esophagus doses than the Hs plan. Compared to the Hs plan, the H plan had lower lung volume receiving 5Gy (V5) (39.1±3.9 vs. 41.2±3.9 Gy; p<0.001), higher V20 (12.3±1.3 vs. 11.5±2.6 Gy; p=0.02), and higher V30 (7.5±1.6 vs. 4.4±1.7 Gy; p<0.001). H plan outperformed Hs plan in heart dosimetric parameters except V20. The Hs plan had significantly lower mean implant doses (43.4±2.1 Gy) than the H plan (51.4±0.5 Gy; p<0.001) and the TD plan (51.9±0.6 Gy; p<0.001). Implementing an implant sparing technique for silicone dose reduction decreases lung doses. CONCLUSION: Conventional H and TD plans outperform the implant sparing helical plan dosimetrically. Because capsular contracture during RT is unpredictable, long-term clinical outcomes are required to determine whether silicon should be spared.


Assuntos
Neoplasias da Mama , Mamoplastia , Órgãos em Risco , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Pessoa de Meia-Idade , Mamoplastia/métodos , Adulto , Implantes de Mama , Radiometria , Idoso
20.
Radiat Oncol ; 19(1): 53, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689338

RESUMO

PURPOSE: The number of older adults with head and neck squamous cell carcinoma (HNSCC) is continuously increasing. Older HNSCC patients may be more vulnerable to radiotherapy-related toxicities, so that extrapolation of available normal tissue complication probability (NTCP) models to this population may not be appropriate. Hence, we aimed to investigate the correlation between organ at risk (OAR) doses and chronic toxicities in older patients with HNSCC undergoing definitive radiotherapy. METHODS: Patients treated with definitive radiotherapy, either alone or with concomitant systemic treatment, between 2009 and 2019 in a large tertiary cancer center were eligible for this analysis. OARs were contoured based on international consensus guidelines, and EQD2 doses using α/ß values of 3 Gy for late effects were calculated based on the radiation treatment plans. Treatment-related toxicities were graded according to Common Terminology Criteria for Adverse Events version 5.0. Logistic regression analyses were carried out, and NTCP models were developed and internally validated using the bootstrapping method. RESULTS: A total of 180 patients with a median age of 73 years fulfilled the inclusion criteria and were analyzed. Seventy-three patients developed chronic moderate xerostomia (grade 2), 34 moderate dysgeusia (grade 2), and 59 moderate-to-severe (grade 2-3) dysphagia after definitive radiotherapy. The soft palate dose was significantly associated with all analyzed toxicities (xerostomia: OR = 1.028, dysgeusia: OR = 1.022, dysphagia: OR = 1.027) in the multivariable regression. The superior pharyngeal constrictor muscle was also significantly related to chronic dysphagia (OR = 1.030). Consecutively developed and internally validated NTCP models were predictive for the analyzed toxicities (optimism-corrected AUCs after bootstrapping: AUCxerostomia=0.64, AUCdysgeusia=0.60, AUCdysphagia=0.64). CONCLUSIONS: Our data suggest that the dose to the soft palate is associated with chronic moderate xerostomia, moderate dysgeusia and moderate-to-severe dysphagia in older HNSCC patients undergoing definitive radiotherapy. If validated in external studies, efforts should be undertaken to reduce the soft palate dose in these patients.


Assuntos
Neoplasias de Cabeça e Pescoço , Órgãos em Risco , Palato Mole , Lesões por Radiação , Dosagem Radioterapêutica , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Idoso , Feminino , Masculino , Neoplasias de Cabeça e Pescoço/radioterapia , Órgãos em Risco/efeitos da radiação , Palato Mole/efeitos da radiação , Lesões por Radiação/etiologia , Idoso de 80 Anos ou mais , Pessoa de Meia-Idade , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Estudos Retrospectivos , Planejamento da Radioterapia Assistida por Computador/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA