Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 357
Filtrar
1.
Biomed Pharmacother ; 153: 113456, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076569

RESUMO

Dexamethasone acts as an immunosuppressive drug and has been used recently in the management of specific coronavirus disease 2019 (COVID-19) cases; however, various adverse effects could limit its use. In this work, we studied the mitigation effects of black pepper oil (BP oil) on glycemic parameters, dyslipidemia, oxidative and nitrosative stress and pancreatic fibrosis in dexamethasone-treated rats. Animals were divided into five groups that were treated with vehicle, dexamethasone (10 mg/kg, SC) or black pepper oil (BP oil, 0.5 mL, or 1 mL/kg) or metformin (50 mg/kg) plus dexamethasone for 4 consecutive days. Serum insulin, blood glucose, total cholesterol, triglycerides, and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR) were higher in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic nitric oxide, inducible nitric oxide synthase and malondialdehyde levels were increased in the dexamethasone group vs the control group and decreased in BP oil and metformin groups relative to the dexamethasone group. Pancreatic endothelial nitric oxide synthase and reduced glutathione were declined in the dexamethasone group vs the control group. They were increased in BP oil and metformin groups relative to the dexamethasone group. Moreover, the pancreatic islets diameter and collagen deposition were assessed and found to be higher in the dexamethasone group vs the control group. BP oil and metformin groups showed to regress this effect. In conclusion, BP oil may alleviate hyperglycemia, hyperinsulinemia, insulin resistance, dyslipidemia and pancreatic structural derangements and fibrosis by suppressing oxidative stress, increasing endogenous antioxidant levels, modulating nitric oxide signaling, preventing pancreatic stellate cells transition and collagen deposition.


Assuntos
Dexametasona , Metformina , Pâncreas , Piper nigrum , Óleos de Plantas , Animais , Glicemia , Dexametasona/efeitos adversos , Dexametasona/farmacologia , Dislipidemias/tratamento farmacológico , Fibrose , Resistência à Insulina , Metformina/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pâncreas/efeitos dos fármacos , Pâncreas/patologia , Piper nigrum/química , Óleos de Plantas/farmacologia , Óleos de Plantas/uso terapêutico , Ratos , Ratos Wistar , Tratamento Farmacológico da COVID-19
2.
J Ethnopharmacol ; 290: 115086, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35157952

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Chestnut flowers were one of the by-products during chestnut industrial processing. Chestnut (Castanea mollissima Blume) flower is rich in flavonoids and has been used as a traditional medicine to treat a variety of diseases including respiratory disorders for a long history. AIM OF THE STUDY: The present study aims to investigate the potential anti-inflammatory effect of flavonoids from chestnut flower (FCF) in lipopolysaccharide (LPS)-treated RAW 264.7 cells and stimulated acute lung injury (ALI) in mice. MATERIALS AND METHODS: HPLC-ESI-MS/MS was applied to identify flavonoids from Chestnut flower. The ROS content in cells and lung tissue was measured by flow cytometry. The malondialdehyde (MDA) content, superoxide dismutase (SOD) activity and glutathione (GSH) content in cells and bronchoalveolar lavage fluid (BALF) was analyzed by photometry. Furthermore, the level of pro-inflammatory factors was analyzed by ELISA, and the expression of inflammatory gene mRNA by fluorescence quantitative PCR. H&E staining was used to evaluate the degree of lung tissue injury in mice. MPO activity was used to measure the degree of neutrophil infiltration. Total protein content was detected by BCA method. RESULTS: A total of forty-nine flavonoids compounds were tentatively identified in FCF by mass spectrometry analysis. The results of cell experiment suggested that FCF could alleviate oxidative injury via increasing SOD activity and GSH content, as well as inhibiting the production of intracellular ROS and MDA. FCF exerted its protective effect by suppressing the expression of both inducible nitric oxide synthase (iNOS) and cycooxygenase 2 (COX-2) to inhibit the synthesis of pro-inflammatory factors and cytokines, including NO, PGE2, TNF-α, IL-6 and IL-1ß. Besides, FCF treatment could alleviate the thickening of alveolar wall and pulmonary congestion in LPS-treated ALI mice, and significantly inhibit the activity of myeloperoxidas (MPO) and the expression of cytokines in BALF. CONCLUSIONS: FCF could ameliorate inflammation and oxidative stress in LPS-treated inflammation, resulting in an overall improvement in both macroscopic and histological parameters.


Assuntos
Lesão Pulmonar Aguda/patologia , Anti-Inflamatórios/farmacologia , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Citocinas/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Flores , Glutationa/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Células RAW 264.7 , Distribuição Aleatória , Superóxido Dismutase/efeitos dos fármacos , Espectrometria de Massas em Tandem
3.
Hum Exp Toxicol ; 41: 9603271211066065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130744

RESUMO

Cardiovascular disorders are the leading cause of death globally. Rosuvastatin is a member of statins (inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase) with many pleiotropic properties. This study investigated cardioprotective effects of rosuvastatin in isoprenaline-induced myocardial injury. Male rats were given rosuvastatin (1, 5, or 10 mg/kg, oral) daily for 1 week and on seventh and eighth day isoprenaline (150 mg/kg, subcutaneous) was given to induce cardiac injury. On ninth day, rats were euthanized and different samples were harvested for analysis. Isoprenaline administration resulted in increased cardiac mass, increased cardiac injury marker levels (cTnI, CK-MB, ALT, and AST), increased lipid/protein oxidation, and increased cardiac nitrite levels. It also decreased superoxide dismutase, CAT, GST, and glutathione reductase activities, and total antioxidant activity. Isoprenaline also increased TNF-α and IL-6 levels. Decreased mRNA expression of Nrf2 and Bcl-2 along with increased mRNA expression of Bax, eNOS and iNOS genes was observed in isoprenaline treated animals. Histopathological evaluations of rosuvastatin pre-treated groups showed reduction of myocardial necrosis. Pretreatment with rosuvastatin (5 and 10 mg/kg) reduced many of these pathological changes. The current study showed that rosuvastatin significantly reduces myocardial injury induced by isoprenaline.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Isoproterenol/efeitos adversos , Infarto do Miocárdio/prevenção & controle , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Rosuvastatina Cálcica/administração & dosagem , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antioxidantes , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Isoproterenol/uso terapêutico , Masculino , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Óxido Nítrico Sintase Tipo II/genética , Substâncias Protetoras/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos , Ratos Wistar
4.
Neurochem Int ; 152: 105221, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34780806

RESUMO

The study aims to investigate whether kaemperfol (KAE) inhibits microglia pyroptosis and subsequent neuroinflammatory response to exert neuroprotective effects, along with the underlying mechanisms. The results showed KAE could ameliorate the behavioral deficits of Parkinson's disease (PD) rats, inhibit the activation of microglia and astrocytes, reduce the loss of TH-positive neurons, down-regulate levels of pyroptosis-related NOD-like receptor family pyrin domain containing 3 (NLRP3), GasderminD-N Term (GSDMD-NT), caspase1, apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC), interleukin (IL)-1ß, and IL-18, and decrease the levels of inflammatory molecules (inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2)) and p38 mitogen-activated protein kinase/nuclear factor-kappaB (p38MAPK/NF-κB) signaling pathway molecules (p38MAPK, p-p38MAPK, NF-κB, and p-NF-κB) in the substantia nigra of PD rats. Further in vitro study indicated that KAE reversed the activation of BV2 cells and down-regulated the expressions of pyrolytic proteins, inflammatory mediators and key molecules in p38MAPK/NF-κB signaling pathway. Collectively, KAE inhibits the microglia pyroptosis and subsequent neuroinflammatory response to exert neuroprotective effects on 6-hydroxydopamine (6-OHDA)-induced PD rats and lipopolysaccharide (LPS)-induced BV2 inflammatory cells through inhibiting p38MAPK/NF-κB signaling pathway.


Assuntos
Microglia/efeitos dos fármacos , Oxidopamina/farmacologia , Doença de Parkinson/tratamento farmacológico , Piroptose/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Microglia/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Doença de Parkinson/metabolismo , Ratos Sprague-Dawley
5.
Acta Pharmacol Sin ; 43(3): 602-612, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34011968

RESUMO

Cardiac fibrosis (CF) is an irreversible pathological process that occurs in almost all kinds of cardiovascular diseases. Phosphorylation-dependent activation of c-Jun N-terminal kinase (JNK) induces cardiac fibrosis. However, whether S-nitrosylation of JNK mediates cardiac fibrosis remains an open question. A biotin-switch assay confirmed that S-nitrosylation of JNK (SNO-JNK) increased significantly in the heart tissues of hypertrophic patients, transverse aortic constriction (TAC) mice, spontaneously hypertensive rats (SHRs), and neonatal rat cardiac fibroblasts (NRCFs) stimulated with angiotensin II (Ang II). Site to site substitution of alanine for cysteine in JNK was applied to determine the S-nitrosylated site. S-Nitrosylation occurred at both Cys116 and Cys163 and substitution of alanine for cysteine 116 and cysteine 163 (C116/163A) inhibited Ang II-induced myofibroblast transformation. We further confirmed that the source of S-nitrosylation was inducible nitric oxide synthase (iNOS). 1400 W, an inhibitor of iNOS, abrogated the profibrotic effects of Ang II in NRCFs. Mechanistically, SNO-JNK facilitated the nuclear translocation of JNK, increased the phosphorylation of c-Jun, and induced the transcriptional activity of AP-1 as determined by chromatin immunoprecipitation and EMSA. Finally, WT and iNOS-/- mice were subjected to TAC and iNOS knockout reduced SNO-JNK and alleviated cardiac fibrosis. Our findings demonstrate an alternative mechanism by which iNOS-induced SNO-JNK increases JNK pathway activity and accelerates cardiac fibrosis. Targeting SNO-JNK might be a novel therapeutic strategy against cardiac fibrosis.


Assuntos
Fibrose/patologia , Cardiopatias/patologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Angiotensina II/farmacologia , Animais , Aorta/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Iminas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Ratos , Ratos Endogâmicos SHR , Transdução de Sinais/efeitos dos fármacos
6.
Pak J Pharm Sci ; 34(2): 493-498, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34275821

RESUMO

P. petiolosa as a typical Chinese herbal medicine has been generally utilized as Chinese native medicine formulation for treatment of chronic bronchitis, bronchial asthma and pneumoconiosis. The objective of this study was to evaluate the anti-inflammatory and antibacterial activities of P. petiolosa ethyl acetate extract (PPEAE) against S. aureusin mice. In our study, mice were infected pneumonia by S. aureus, colonization of S. aureus in lung tissue was calculated and the number of white blood cells (WBC) in blood was measured. Meanwhile, the hematoxylin-eosin staining (H&E) was observed and the Real-time PCR was employed to determine the relative mRNA expression. The results showed that, after treated with PPEAE the wet/dry (W/D) weight ratio and the number of WBC decreased dramatically, the number of S. aureus was significantly reduced. Furthermore, H&E staining showed that PPEAE obviously relieved the inflammation of infected mice and real-time PCR results indicated that PPEAE significantly down regulated the inflammatory iNOS, TNF-α and up regulated the anti-inflammatory HO-1 mRNA. In summary, our study revealed that application of crude product PPEAE had prominent antibacterial activity against S. aureus. PPEAE significantly reduced the biomass of S. aureus and effectively relieved the inflammation of S. aureus-induced pneumonia.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Pulmão/efeitos dos fármacos , Extratos Vegetais/farmacologia , Pneumonia Estafilocócica/genética , Polypodiaceae , Staphylococcus aureus/efeitos dos fármacos , Animais , Heme Oxigenase-1/efeitos dos fármacos , Heme Oxigenase-1/genética , Inflamação/genética , Inflamação/metabolismo , Pulmão/metabolismo , Pulmão/microbiologia , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/genética , Camundongos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Pneumonia Estafilocócica/metabolismo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/genética
7.
Neurochem Int ; 148: 105100, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34139299

RESUMO

Nitric oxide generation is related to the activity of certain proteins located at synaptic sites. Previous findings show that NOS activity, nNOS protein expression, respiratory parameters and mitochondrial complex activities are altered in rat cerebral cortex by administration of levocabastine, an antagonist of histamine H1 and neurotensin NTS2 receptors. ATP provision by mitochondria may play an important role in the functional interaction between synaptic proteins NMDA receptor and PSD-95 with NO synthesis. In this context, our purpose was to evaluate the effect of levocabastine administration on protein expression of PSD-95, GluN2B and iNOS, as well as on mitochondrial ATP production. Male Wistar rats received a single (i.p.) dose of levocabastine (50 µg/kg) or saline solution (controls) and were decapitated 18 h later. Mitochondrial and synaptosomal membrane fractions were isolated from cerebral cortex by differential and sucrose gradient centrifugation. Expression of synaptic proteins was evaluated by Western blot assays in synaptosomal membrane fractions. Oxygen consumption, mitochondrial membrane potential and ATP production rate were determined in fresh crude mitochondrial fractions. After levocabastine treatment, protein expression of PSD-95, GluN2B and ß-actin decreased 97, 45 and 55%, respectively, whereas that of iNOS enhanced 3.5-fold versus controls. In crude mitochondrial fractions levocabastine administration reduced roughly 15% respiratory control rate as assayed with malate-glutamate or succinate as substrates, decreased mitochondrial membrane potential (21%), and ATP production rates (57%). Results suggested that levocabastine administration induces alterations in synaptic proteins of the protein complex PSD-95/NMDA receptor/nNOS and in neuron cytoskeleton. Mitochondrial bioenergetics impairment may play a role in the functional link between synaptic proteins and NO synthesis.


Assuntos
Proteína 4 Homóloga a Disks-Large/metabolismo , Antagonistas dos Receptores Histamínicos H1/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Membranas Mitocondriais/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinaptossomos/efeitos dos fármacos
8.
Aging (Albany NY) ; 13(4): 5369-5382, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33536347

RESUMO

Osteoarthritis (OA) is one of the most common degenerative diseases, ultimately leading to long-term joint pain and severe articular malformation. Controlling local chronic inflammation is a crucial strategy for delaying OA development. Linarin is a natural flavonoid glycoside that is widely available in Compositae, Chrysanthemum indicum and Dendrocalamus and processes protective effects in several animal models. The purpose of our work was to study the protective effect of Linarin for OA. Cellular experiments data showed that Linarin suppressed lipopolysaccharide (LPS)-caused the overproduction of nitric oxide (NO), prostaglandin E2 (PGE2), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) in chondrocyte. In addition, LPS-stimulated expression of cyclooxygenase-2 (COX-2) and inducible nitric oxide nitrate (iNOS) was decreased by Linarin pre-treatment. Together, Linarin prevented the catabiosis of extracellular matrix caused by LPS. For mechanism, Linarin inhibited the formation of Toll-like receptor 4 (TLR4) / myeloid differentiation protein-2 (MD-2) dipolymer complex and subsequently intervened NF-κB activation. Our mouse DMM model further clarified the protection of Linarin in vivo. In summary, our results suggested that Linarin may be a potential effective agent for OA.


Assuntos
Condrócitos/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Glicosídeos/farmacologia , Antígeno 96 de Linfócito/efeitos dos fármacos , Osteoartrite/metabolismo , Receptor 4 Toll-Like/efeitos dos fármacos , Animais , Condrócitos/metabolismo , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Humanos , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Antígeno 96 de Linfócito/metabolismo , Meniscos Tibiais/cirurgia , Camundongos , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Osteoartrite/patologia , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Eur J Pharmacol ; 894: 173874, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33460615

RESUMO

Hyperglycemic milieu in diabetes mellitus stimulates macrophages for exaggerated pro-inflammatory cytokine response, particularly IL-1ß, IL-6, and TNF-α. Although hyperglycemia causes macrophages to produce pro-inflammatory cytokines, AGEs (advanced glycation end products) active inflammation, produced as a result of chronic hyperglycemia, inducers cause polarization of macrophages into pro-inflammatory M1 phenotype. AGEs in diabetes accelerate atherosclerotic plaque initiation and progression via promoting macrophages polarization towards pro-inflammatory state. Gliclazide (Glz) is a well known antidiabetic drug with excellent safety profile. Its repurposing in the management of diabetes-associated late complications has tremendous merit. The present study demonstrated that Glz retards diabetic atherosclerotic progression, and cytokines storm in a concentration dependent manner over a concentration range of 1-100 µM than those of AGEs (200 µg/ml)-treated cells through a mechanism that alters macrophage M1 polarization state. Glz exerted these beneficial effects, independent of its antidiabetic effect. Glz pretreatment significantly (P < 0.05) inhibited the AGEs-induced pro-inflammatory mediators (NO•, reactive oxygen species, i-NOS), and production of pro-inflammatory cytokines, including IL-1ß, IL-6, and TNF-α. It also significantly (P < 0.05) promoted the production of anti-inflammatory cytokines (IL-10 and TGF-ß) in RAW 264.7 mouse macrophages. Glz pretreatment also effectively abated the AGEs-induced RAGE (~2-fold decrease), and CD86 surface marker expressions (P < 0.001 at 100 µM) on macrophages by inhibiting the NF-kß activation in a concentration dependent manner (1-100 µM) (P < 0.001). In conclusion, our data demonstrates that Glz alleviates the diabetic atherosclerosis progression by ameliorating the AGEs-mediated M1 pro-inflammatory phenotype via blocking AGE-RAGE/TLR4-reactive oxygen species -activated NF-kß nexus in macrophages.


Assuntos
Aterosclerose/tratamento farmacológico , Complicações do Diabetes/tratamento farmacológico , Gliclazida/farmacologia , Produtos Finais de Glicação Avançada/antagonistas & inibidores , Receptor para Produtos Finais de Glicação Avançada/antagonistas & inibidores , Animais , Antígenos de Superfície/efeitos dos fármacos , Aterosclerose/etiologia , Sobrevivência Celular/efeitos dos fármacos , Citocinas/metabolismo , Diabetes Mellitus/metabolismo , Ativação de Macrófagos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Camundongos , Subunidade p50 de NF-kappa B/antagonistas & inibidores , Subunidade p50 de NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/antagonistas & inibidores
10.
Neuroreport ; 32(4): 296-305, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33470764

RESUMO

AIM: To evaluate neuroprotective efficacy of fisetin against the experimental model of spinal cord injury (SCI). MATERIALS AND METHODS: SCI was induced in male Sprague-Dawley rats by placing an aneurysm clip extradurally. Rats were treated either with vehicle or fisetin for 28 days after SCI. RESULTS: Treatment with fisetin significantly attenuated SCI-induced alternations in mechano-tactile and thermal allodynia, hyperalgesia and nerve conduction velocities. SCI-induced upregulated tumor necrosis factor-alpha, interleukins, inducible nitric oxide synthase, cyclooxygenase-II, Bcl-2-associated X protein and caspase-3 mRNA expressions in the spinal cord and these were markedly reduced by fisetin. Spinal nuclear factor kappa B and nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha protein levels were also significantly downregulated by fisetin. Hematoxylin and eosin staining of spinal cord suggested that fisetin significantly ameliorated histological aberrations such as neuronal degeneration, necrosis and inflammatory infiltration induced in it. CONCLUSION: Fisetin exerts neuroprotection via modulation of nuclear factor kappa B/nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor-alpha pathway by inhibiting release of inflammatory mediators (inducible nitric oxide synthase and cyclooxygenase-II), proinflammatory cytokines (tumor necrosis factor-alpha and interleukins), apoptotic mediators (Bcl-2-associated X protein and caspase-3).


Assuntos
Flavonóis/farmacologia , Inibidor de NF-kappaB alfa/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Traumatismos da Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Animais , Caspase 3/efeitos dos fármacos , Caspase 3/metabolismo , Ciclo-Oxigenase 2/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Hiperalgesia/fisiopatologia , Locomoção/efeitos dos fármacos , Masculino , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Condução Nervosa/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/fisiopatologia , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/efeitos dos fármacos , Proteína X Associada a bcl-2/metabolismo
11.
Neurobiol Dis ; 150: 105244, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33385516

RESUMO

There is a growing body of evidence demonstrating the significant involvement of the sigma-1 chaperone protein in the modulation of seizures. Several sigma-1 receptor (Sig1R) ligands have been demonstrated to regulate the seizure threshold in acute and chronic seizure models. However, the mechanism by which Sig1R modulates the excitatory and inhibitory pathways in the brain has not been elucidated. The aim of this study was to compare the susceptibility to seizures of wild type (WT) and Sig1R knockout (Sig1R-/-) mice in intravenous pentylenetetrazol (PTZ) and (+)-bicuculline (BIC) infusion-induced acute seizure and Sig1R antagonist NE-100-induced seizure models. To determine possible molecular mechanisms, we used quantitative PCR, Western blotting and immunohistochemistry to assess the possible involvement of several seizure-related genes and proteins. Peripheral tissue contractile response of WT and Sig1R-/- mice was studied in an isolated vasa deferentia model. The most important finding was the significantly decreased expression of the R2 subunit of the GABA-B receptor in the hippocampus and habenula of Sig1R-/- mice. Our results demonstrated that Sig1R-/- mice have decreased thresholds for PTZ- and BIC-induced tonic seizures. In the NE-100-induced seizure model, Sig1R-/- animals demonstrated lower seizure scores, shorter durations and increased latency times of seizures compared to WT mice. Sig1R-independent activities of NE-100 included downregulation of the gene expression of iNOS and GABA-A γ2 and inhibition of KCl-induced depolarization in both WT and Sig1R-/- animals. In conclusion, the results of this study indicate that the lack of Sig1R resulted in decreased expression of the R2 subunit of the GABA-B receptor and increased susceptibility to seizures. Our results confirm that Sig1R is a significant molecular target for seizure modulation and warrants further investigation for the development of novel anti-seizure drugs.


Assuntos
Convulsivantes/toxicidade , Habenula/metabolismo , Hipocampo/metabolismo , Receptores de GABA-B/genética , Receptores sigma/genética , Convulsões/genética , Animais , Anisóis/toxicidade , Bicuculina/toxicidade , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Predisposição Genética para Doença , Habenula/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , Pentilenotetrazol/toxicidade , Propilaminas/toxicidade , Receptores de GABA-A/efeitos dos fármacos , Receptores de GABA-A/genética , Receptores de GABA-B/metabolismo , Convulsões/induzido quimicamente , Receptor Sigma-1
12.
J Alzheimers Dis ; 79(1): 211-224, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33252072

RESUMO

BACKGROUND: Diabetes is one of the strongest disease-related risk factors for Alzheimer's disease (AD). In diabetics, hyperglycemia-induced microvascular complications are the major cause of end-organ injury, contributing to morbidity and mortality. Microvascular pathology is also an important and early feature of AD. The cerebral microvasculature may be a point of convergence of both diseases. Several lines of evidence also implicate thrombin in AD as well as in diabetes. OBJECTIVE: Our objective was to investigate the role of thrombin in glucose-induced brain microvascular endothelial injury. METHODS: Cultured Human brain microvascular endothelial cells (HBMVECs) were treated with 30 mM glucose±100 nM thrombin and±250 nM Dabigatran or inhibitors of PAR1, p38MAPK, MMP2, or MMP9. Cytotoxicity and thrombin activity assays on supernatants and western blotting for protein expression in lysates were performed. RESULTS: reatment of HBMVECs with 30 mM glucose increased thrombin activity and expression of inflammatory proteins TNFα, IL-6, and MMPs 2 and 9; this elevation was reduced by the thrombin inhibitor dabigatran. Direct treatment of brain endothelial cells with thrombin upregulated p38MAPK and CREB, and induced TNFα, IL6, MMP2, and MMP9 as well as oxidative stress proteins NOX4 and iNOS. Inhibition of thrombin, thrombin receptor PAR1 or p38MAPK decrease expression of inflammatory and oxidative stress proteins, implying that thrombin may play a central role in glucose-induced endothelial injury. CONCLUSION: Since preventing brain endothelial injury would preserve blood-brain barrier integrity, prevent neuroinflammation, and retain intact functioning of the neurovascular unit, inhibiting thrombin, or its downstream signaling effectors, could be a therapeutic strategy for mitigating diabetes-induced dementia.


Assuntos
Antitrombinas/farmacologia , Encéfalo/irrigação sanguínea , Dabigatrana/farmacologia , Células Endoteliais/metabolismo , Endotélio Vascular/fisiopatologia , Glucose/toxicidade , Trombina/metabolismo , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/efeitos dos fármacos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Humanos , Inflamação , Interleucina-6/metabolismo , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Microvasos/citologia , NADPH Oxidase 4/efeitos dos fármacos , NADPH Oxidase 4/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Trombina/efeitos dos fármacos , Trombina/farmacologia , Fator de Necrose Tumoral alfa/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima , Proteínas Quinases p38 Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
13.
Inflamm Res ; 69(12): 1215-1234, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33044562

RESUMO

OBJECTIVE AND DESIGN: Macrophages exhibit strong phenotypic plasticity and can mediate renal inflammation by polarizing into an M1 phenotype. They play a pivotal role in diabetic nephropathy (DN). Here, we have investigated the regulatory role of transforming growth factor ß-activated kinase 1-binding protein 1 (TAB1) in glycolysis and activation of macrophages during DN. METHODS: TAB1 was inhibited using siRNA in high glucose (HG)-stimulated bone marrow-derived macrophages (BMMs) and lentiviral vector-mediated TAB1 knockdown was used in streptozotocin (STZ)-induced diabetic mice. Western blotting, flow cytometry, qRT-PCR, ELISA, PAS staining and immunohistochemical staining were used for assessment of TAB1/nuclear factor-κB (NF-κB)/hypoxia-inducible factor-1α (HIF-1α), iNOS, glycolysis, inflammation and the clinical and pathological manifestations of diabetic nephropathy. RESULTS: We found that TAB1/NF-κB/HIF-1α, iNOS and glycolysis were up-regulated in BMMs under HG conditions, leading to release of further inflammatory factors, Downregulation of TAB1 could inhibit glycolysis/polarization of macrophages and inflammation in vivo and in vitro. Furthermore, albuminuria, the tubulointerstitial damage index and glomerular mesangial expansion index of STZ-induced diabetic nephropathy mice were decreased by TAB1 knockdown. CONCLUSIONS: Our results suggest that the TAB1/NF-κB/HIF-1α signaling pathway regulates glycolysis and activation of macrophages in DN.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Glicólise/genética , Ativação de Macrófagos/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Albuminúria/tratamento farmacológico , Albuminúria/patologia , Animais , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Técnicas de Silenciamento de Genes , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Células Mesangiais/patologia , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/efeitos dos fármacos , Nefrite Intersticial/patologia , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , RNA Interferente Pequeno/farmacologia
14.
Pharmacology ; 105(9-10): 505-513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32784309

RESUMO

OBJECTIVE: This research was aimed to explore protective effects of allicin on rat model of myocardial infarction via JNK signaling pathway. METHODS: Rat myocardial ischemia model was established with subcutaneous injection of isoproterenol (ISO). Seventy-five rats were randomly divided into 5 groups (n = 15): sham group, ISO group, low-dose group (1.2 mg/kg/days for 7 days), medium-dose group (1.8 mg/kg/days for 7 days), and high-dose group (3.6 mg/kg/days for 7 days). Routine HE staining and Masson staining were performed to observe myocardial histopathology. The expression of oxidative stress-related indicators, heart tissue apoptosis-related proteins, and JNK and p-JNK proteins were measured for different groups. RESULTS: Compared with the sham group, the T wave value of the ISO group was significantly increased (p < 0.01). When allicin was administered, the T wave values at different time points in all groups were all decreased. Compared with the sham group, the ratio of eNOS, Bcl-2/Bax was significantly decreased, and p-eNOS, iNOS, caspase-3, caspase-9, and Cyt-c were significantly elevated in the ISO group (p < 0.05). After allicin was administered, significant changes in these proteins were observed in the medium- and high-dose groups. There was no significant change in the expression of JNK protein in the ISO group compared with the sham group; however, the expression of eNOS and p-JNK protein were significantly upregulated (p < 0.01) and the expression of p-eNOS and iNOS were significantly downregulated (p < 0.01). When allicin was administered, expression of p-JNK protein was significantly downregulated. CONCLUSION: Allicin can reduce oxidative stress damage and cardiomyocyte apoptosis in rat model of myocardial infarction and can significantly regulate JNK signaling pathway.


Assuntos
Antioxidantes/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/metabolismo , Ácidos Sulfínicos/farmacologia , Animais , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Dissulfetos , Isoproterenol/toxicidade , Proteínas Quinases JNK Ativadas por Mitógeno/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Infarto do Miocárdio/induzido quimicamente , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Ácidos Sulfínicos/uso terapêutico
15.
Int Immunopharmacol ; 86: 106576, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32575007

RESUMO

Osmanthus fragrans var. aurantiacus has been used for the treatment of menopausal pain, foul breath, and intestinal bleeding. Four phenylpropyl triterpenoids, 3-O-trans-p-coumaroyltormentic acid (1), 3ß-trans-p-coumaroyloxy-2α-hydroxyl-urs-12-en-28-oic acid (2), 3ß-cis-p-coumaroyloxy-2α-hydroxyl-urs-12-en-28-oic acid (3), 3-O-cis-coumaroylmaslinic acid (4), were isolated from the leaves of O. fragrans var. aurantiacus and the inhibitory effect on nitric oxide (NO) production in lipopolysaccharide (LPS)-induced macrophages were evaluated. Among them, compounds 2-4 concentration dependently showed NO production inhibitory effects. To determine the signaling factors involved in the inhibition of NO production by compounds 2-4, we assessed anti-inflammatory activity. Western blot analysis revealed compounds 2-4 significantly decreased the expression of LPS-stimulated protein, inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, nuclear factor-kappa B (NF-κB) and phosphorylated extracellular regulated kinase (pERK)1/2. Also, compounds 2-4 downregulated tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 and IL-8 levels in LPS-induced macrophages and colonic epithelial cells. This study demonstrated that phenylpropyl triterpenoids 2-4 isolated from O. fragrans var. aurantiacus leaves can be used as potential candidates for the prevention and treatment of inflammatory bowel disease.


Assuntos
Anti-Inflamatórios/farmacologia , Oleaceae/química , Triterpenos/farmacologia , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Sobrevivência Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/efeitos dos fármacos , Citocinas/efeitos dos fármacos , Células HT29 , Humanos , Lipopolissacarídeos/toxicidade , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/efeitos dos fármacos , Subunidade p50 de NF-kappa B/efeitos dos fármacos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Folhas de Planta/química , Células RAW 264.7 , Triterpenos/química , Triterpenos/isolamento & purificação
16.
J Nat Prod ; 83(6): 1740-1750, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32496797

RESUMO

Bitter taste receptors (hTAS2R) are expressed ectopically in various tissues, raising the possibility of a pharmacological exploitation. This seems of particular relevance in airways, since hTAS2Rs are involved in the protection of the aerial tissues from infections and in bronchodilation. The bis-guaianolide absinthin (1), one of the most bitter compounds known, targets the hTAS2R46 bitter receptor. Absinthin (1), an unstable compound, readily turns into anabsinthin (2) with substantial retention of the bitter properties, and this compound was used as a starting material to explore the chemical space around the bis-guaianolide bitter pharmacophore. Capitalizing on the chemoselective opening of the allylic lactone ring, the esters 3 and 4, and the nor-azide 6 were prepared and assayed on human bronchoepithelial (BEAS-2B) cells expressing hTAS2R46. Anti-inflammatory activity was evaluated by measuring the expression of MUC5AC, iNOS, and cytokines, as well as the production of superoxide anion, qualifying the methyl ester 3 as the best candidate for additional studies.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Brônquios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Sesquiterpenos de Guaiano/farmacologia , Artemisia/química , Brônquios/citologia , Cálcio/metabolismo , Linhagem Celular , Citocinas/antagonistas & inibidores , Ésteres/química , Humanos , Estrutura Molecular , Mucina-5B/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Superóxidos/metabolismo , Papilas Gustativas
17.
Biochim Biophys Acta Mol Basis Dis ; 1866(10): 165850, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32497615

RESUMO

Abnormal wound healing with excessive scarring is a major health problem with socioeconomic and psychological impacts. In human, chronic wounds and scarring are associated with upregulation of the inducible nitric oxide synthase (iNOS). Recently, we have shown physiological regulation of iNOS in wound healing. Here, we sought to investigate the possible mechanistic role of iNOS in wound healing using biochemical and immunohistochemical assays. We found: (a) iNOS is the main source of wound nitric oxide (NO), (b) NOS inhibition in the wound, downregulated iNOS protein, mRNA and enzymatic activity, and reduced wound NO, and (c) iNOS inhibition resulted in delayed healing at early time points, and excessive scarring at late time points. Furthermore, molecular and cellular analysis of the wound showed that iNOS inhibition significantly (P < 0.05) increased TGF-ß1 mRNA and protein levels, fibroblasts and collagen deposition. These latter findings suggest that iNOS might be exerting its action in the wound by signaling through TGF-ß1 that activates wound fibroblasts to produce excessive collagen. Our current findings provide further support that iNOS is crucial for physiological wound healing, and suggest that dysregulation of iNOS during the inflammatory phase impairs healing, and results in disfiguring post-healing scarring. Thus, the mutual feedback regulation between iNOS and TGF-ß1 at the gene, protein and functional levels might be the mechanism through which iNOS regulates the healing. Monitoring and maintenance of wound NO levels might be important for healing and avoiding long-term complications in susceptible people including patients with diabetic wounds, venous ulcers or keloid prone.


Assuntos
Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Cicatrização/fisiologia , Animais , Arginase/metabolismo , Colágeno/metabolismo , Modelos Animais de Doenças , Fibroblastos/metabolismo , Guanidinas/farmacologia , Humanos , Masculino , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Pele/metabolismo , Pele/patologia
18.
Neurosci Lett ; 728: 134952, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32283112

RESUMO

Nitric oxide has been implicated in symptoms of ethanol withdrawal in animal models. Zebrafish have been used as models to study neurobehavioral effects of ethanol (EtOH) withdrawal, but the mechanisms associated with these effects are not yet clear. Adult zebrafish were treated with 1% EtOH for 20 min per day for 8 days, injected with the nitric oxide synthase 2 (NOS-2) inhibitor aminoguanidine (50 mg/kg), and allowed to experience withdrawal (WD) in their hometanks for 7 days. EtOH WD increased anxiety-like behavior in the novel tank test, an effect that was blocked by aminoguanidine. EtOH WD also increased brain levels of nitrite, an effect that was partially blocked by aminoguanidine. These results underline a novel mechanism by which NOS-2 controls anxiety-like responses to ethanol withdrawal, with implications for the mechanistic study of symptoms associated with chronic ethanol abuse. Preprint: https://dx.doi.org/10.20944/preprints201912.0219.v1 Data and scripts: https://github.com/lanec-unifesspa/etoh-withdrawal/tree/master/NOS2.


Assuntos
Alcoolismo/metabolismo , Etanol/farmacologia , Óxido Nítrico Sintase Tipo II/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Animais , Ansiedade/tratamento farmacológico , Comportamento Animal , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Peixe-Zebra/metabolismo
19.
Mol Neurobiol ; 57(1): 96-104, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31832973

RESUMO

Gallic acid (3,4,5-trihydroxybenzoic acid, GA), a phenolic acid, is ubiquitous in almost all parts of the plant. In the present study, a neuroinflammatory rat model using intranigral infusion of lipopolysaccharides (LPS, 4 µg/µL) was employed to study the neuroprotective effect of GA which was orally administered daily. Compared with the vehicle-treated rats, systemic administration of GA (100 mg/kg) significantly attenuated LPS-induced increases in glial fibrillary acidic protein (a biomarker of activated astrocytes) and ED-1 (a biomarker of activated microglia), as well as inducible nitric oxide synthase (iNOS, a proinflammatory enzyme) and interleukin-1ß (a proinflammatory cytokine), in the LPS-infused substantia nigra (SN) of rat brain. At the same time, GA attenuated LPS-induced elevation in heme oxygenase-1 level (a redox-regulated protein) and α-synuclein aggregation (a hallmark of CNS neurodegeneration), suggesting that GA is capable of inhibiting LPS-induced oxidative stress and protein conjugation. Furthermore, GA prevented LPS-induced caspase 3 activation (a biomarker of programmed cell death) and LPS-induced increases in receptor-interacting protein kinase (RIPK)-1 and RIPK-3 levels (biomarkers of necroptosis), indicating that GA inhibited LPS-induced apoptosis and necroptosis in the nigrostriatal dopaminergic system of rat brain. Moreover, an in vitro study was employed to investigate the anti-inflammatory effect of GA on BV2 microglial cells which were subjected to LPS (1 µg/mL) treatment. Consistently, co-incubation of GA diminished LPS-induced increases in iNOS mRNA and iNOS protein expression in the treated BV-2 cells as well as NO production in the culture medium. The anti-oxidative activity of GA was evaluated using iron-induced lipid peroxidation of brain homogenates. After 3-h incubation at 37 °C, GA was more potent than glutathione and less potent than trolox in inhibiting iron-induced lipid peroxidation. Conclusively, the present study suggests that GA is anti-inflammatory via attenuating LPS-induced neuroinflammation, oxidative stress, and protein conjugation. Furthermore, GA prevented LPS-induced programmed cell deaths of nigrostriatal dopaminergic neurons of the rat brain, suggesting that GA may be neuroprotective by attenuating neuroinflammation in CNS neurodegenerative diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Ácido Gálico/farmacologia , Inflamação/tratamento farmacológico , Necroptose/efeitos dos fármacos , Agregados Proteicos/efeitos dos fármacos , Animais , Citocinas/metabolismo , Inflamação/induzido quimicamente , Peroxidação de Lipídeos/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Substância Negra/efeitos dos fármacos
20.
Neuroscience ; 426: 101-114, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31846748

RESUMO

We and others have shown that insulin-like growth factor-1 (IGF-1) is neuroprotective when administered systemically shortly following stroke. In the current study, we addressed the hypothesis that microglia mediate neuroprotection by IGF-1 following ischemic stroke. Furthermore, we investigated whether IGF-1 modulates pro- and anti-inflammatory mediators in ischemic brain with a special reference to microglia. Ischemic stroke was induced in normal conscious Wistar rats by infusing the vasoconstrictor, endothelin-1 (Et-1), next to middle cerebral artery (MCA). IGF-1 (300 µg) was injected subcutaneously (SC) at 30 and 120 min following stroke. Microglial inhibitor, minocycline, was injected intraperitoneally (IP) at 1 h before stroke (25 mg/kg) and 11 h after stroke (45 mg/kg). Post-stroke IGF-1 treatment reduced the infarct size and increased the sensorimotor function which coincided with an increase in the number of ameboid microglia in the ischemic cortex. Minocycline treatment abrogated the increase in ameboid microglia by IGF-1, while the effect of IGF-1 in the reduction of infarct size was only partially affected. IGF-1 suppressed mRNA expression of inducible nitric oxide synthase (iNOS) and interleukin (IL)-1ß in the ischemic hemisphere, while in purified microglia, only iNOS expression levels were reduced. Our findings show that microglia are a target for IGF-1 and that neuroprotection by IGF-1 coincides with down-regulation of inflammatory mediators which could be instrumental to the beneficial effects.


Assuntos
Anti-Inflamatórios/farmacologia , Isquemia Encefálica/tratamento farmacológico , Inflamação/tratamento farmacológico , Fator de Crescimento Insulin-Like I/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Modelos Animais de Doenças , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/metabolismo , Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Fármacos Neuroprotetores/farmacologia , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA