Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.859
Filtrar
1.
Molecules ; 29(12)2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38930981

RESUMO

ZnO nanorod nonwoven fabrics (ZNRN) were developed through hydrothermal synthesis to facilitate the prevention of the transmission of respiratory pathogens. The superhydrophobicity and antibacterial properties of ZNRN were improved through the response surface methodology. The synthesized material exhibited significant water repellency, indicated by a water contact angle of 163.9°, and thus demonstrated antibacterial rates of 91.8% for Escherichia coli (E. coli) and 79.75% for Staphylococcus aureus (S. aureus). This indicated that E. coli with thinner peptidoglycan may be more easily killed than S. aureus. This study identified significant effects of synthesis conditions on the antibacterial effectiveness, with comprehensive multivariate analyses elucidating the underlying correlations. In addition, the ZnO nanorod structure of ZNRN was characterized through SEM and XRD analyses. It endows the properties of superhydrophobicity (thus preventing bacteria from adhering to the ZNRN surface) and antibacterial capacity (thus damaging cells through the puncturing of these nanorods). Consequently, the alignment of two such features is desired to help support the development of personal protective equipment, which assists in avoiding the spread of respiratory infections.


Assuntos
Antibacterianos , Escherichia coli , Interações Hidrofóbicas e Hidrofílicas , Nanotubos , Staphylococcus aureus , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Nanotubos/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Têxteis/microbiologia , Testes de Sensibilidade Microbiana , Propriedades de Superfície
2.
Sci Rep ; 14(1): 14753, 2024 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-38926522

RESUMO

The development of nanomaterials has been speedily established in recent years, yet nanoparticles synthesized by traditional methods suffer unacceptable toxicity and the sustainability of the procedure for synthesizing such nanoparticles is inadequate. Consequently, green biosynthesis, which employs biopolymers, is gaining attraction as an environmentally sound alternative to less sustainable approaches. Chitosan-encapsulated nanoparticles exhibit exceptional antibacterial properties, offering a wide range of uses. Chitosan, obtained from shrimp shells, aided in the environmentally friendly synthesis of high-purity zinc oxide nanoparticles (ZnO NPs) with desirable features such as the extraction yield (41%), the deacetylation (88%), and the crystallinity index (74.54%). The particle size of ZnO NPs was 12 nm, while that of chitosan-ZnO NPs was 21 nm, and the bandgap energies of these nanomaterials were 3.98 and 3.48, respectively. The strong antibacterial action was demonstrated by ZnO NPs, chitosan-ZnO NPs, and chitosan-ZnO/PVP, particularly against Gram-positive bacteria, making them appropriate for therapeutic use. The photocatalytic degradation abilities were also assessed for all nanoparticles. At a concentration of 6 × 10-5 M, chitosan removed 90.5% of the methylene blue (MB) dye, ZnO NPs removed 97.4%, chitosan-coated ZnO NPs removed 99.6%, while chitosan-ZnO/PVP removed 100%. In the case of toluidine blue (TB), at a concentration of 4 × 10-3 M, the respective efficiencies were 96.8%, 96.8%, 99.5%, and 100%, respectively. Evaluation of radical scavenger activity revealed increased scavenging of ABTS and DPPH radicals by chitosan-ZnO/PVP compared to individual zinc oxide or chitosan-ZnO, where the IC50 results were 0.059, 0.092, 0.079 mg/mL, respectively, in the ABTS test, and 0.095, 0.083, 0.061, and 0.064 mg/mL in the DPPH test, respectively. Moreover, in silico toxicity studies were conducted to predict the organ-specific toxicity through ProTox II software. The obtained results suggest the probable safety and the absence of organ-specific toxicity with all the tested samples.


Assuntos
Antibacterianos , Quitosana , Óxido de Zinco , Quitosana/química , Quitosana/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Catálise , Nanopartículas/química , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/química , Compostos de Bifenilo/química , Química Verde
3.
Viruses ; 16(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38932188

RESUMO

Bacteriophages (phages) are viruses that infect the bacteria within which their reproduction cycle takes place, a process that ends in the lysis and death of the bacterial cell. Some phages are also able to destroy bacterial biofilms. Due to increased antibiotics resistance, Pseudomonas aeruginosa, another biofilm-forming pathogen, is a problem in many parts of the world. Zinc oxide (ZnO) and other metal nanoparticles (NPs) are biologically active and also possess anti-biofilm properties. ZnO-NPs were prepared by the green synthesis method using orange peels. The vibrational peaks of the ZnO-NPs were analyzed using FTIR analysis, and their size and morphological properties were determined using scanning electron microscopy (SEM). The ability of the ZnO-NPs to reduce or eliminate P. aeruginosa biofilm alone or in combination with phages PB10 and PA19 was investigated. The P. aeruginosa cells were effectively killed in the preformed 48 h biofilms during a 24 h incubation with the ZnO-NP-phage combination, in comparison with the control or ZnO-NPs alone. The treatments on growing biofilms were most efficient in the final stages of biofilm development. All five treatment groups showed a significant biofilm reduction compared to the control group (p < 0.0001) at 48 h of incubation. The influence of the ZnO-NPs and phages on the quorum sensing system of P. aeruginosa was monitored by quantitative real-time PCR (qRT-PCR) of the autoinducer biosynthesis gene lasI. While the ZnO-NPs repressed the lasI gene transcription, the phages slightly activated it at 24 and 48 h of incubation. Also, the effect of the ZnO-NPs and phage PA19 on the viability of HFF2 cells was investigated and the results showed that the combination of NPs with PA19 reduced the toxic effect of ZnO-NPs and also stimulated the growth in normal cells.


Assuntos
Biofilmes , Nanopartículas Metálicas , Pseudomonas aeruginosa , Óxido de Zinco , Óxido de Zinco/farmacologia , Pseudomonas aeruginosa/virologia , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Biofilmes/efeitos dos fármacos , Nanopartículas Metálicas/química , Química Verde , Bacteriófagos/fisiologia , Antibacterianos/farmacologia , Nanopartículas/química
4.
Biomolecules ; 14(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38927069

RESUMO

The management of gastrointestinal disease in animals represents a significant challenge in veterinary and zootechnic practice. Traditionally, acute symptoms have been treated with antibiotics and high doses of zinc oxide (ZnO). However, concerns have been raised regarding the potential for microbial resistance and ecological detriment due to the excessive application of this compound. These concerns highlight the urgency of minimizing the use of ZnO and exploring sustainable nutritional solutions. Hydrolysable tannins (HTs), which are known for their role in traditional medicine for acute gastrointestinal issues, have emerged as a promising alternative. This study examined the combined effect of food-grade HTs and subtherapeutic ZnO concentration on relevant biological functions of Caco-2 cells, a widely used model of the intestinal epithelial barrier. We found that, when used together, ZnO and HTs (ZnO/HTs) enhanced tissue repair and improved epithelial barrier function, normalizing the expression and functional organization of tight junction proteins. Finally, the ZnO/HTs combination strengthened enterocytes' defense against oxidative stress induced by inflammation stimuli. In conclusion, combining ZnO and HTs may offer a suitable and practical approach for decreasing ZnO levels in veterinary nutritional applications.


Assuntos
Enterócitos , Taninos Hidrolisáveis , Óxido de Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Células CACO-2 , Enterócitos/efeitos dos fármacos , Enterócitos/metabolismo , Humanos , Taninos Hidrolisáveis/farmacologia , Taninos Hidrolisáveis/química , Estresse Oxidativo/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo
5.
J Mater Chem B ; 12(25): 6164-6174, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38828762

RESUMO

Catalytic therapy based on nanozymes is promising for the treatment of bacterial infections. However, its therapeutic efficacy is usually restricted by the limited amount of hydrogen peroxide and the weak acidic environment in infected tissues. To solve these issues, we prepared polyvinyl alcohol (PVA)-polyacrylic acid (PAA)-iron oxide (Fe3O4)/polyvinyl alcohol (PVA)-zinc peroxide (ZnO2) double-layer electrospun nanofibers (PPF/PZ NFs). In this design, PVA serves as the carrier for ZnO2 nanoparticles (NPs), Fe3O4 NPs, and PAA. The double-layer structure of nanofibers can spatially separate the PAA and ZnO2 to avoid their reaction with each other during preparation and storage, while in the wet wound bed, PVA can dissolve and PAA can provide H+ ions to promote the generation of hydrogen peroxide and subsequent conversion to hydroxyl radicals for bacteria killing. In vitro experimental results demonstrated that PPF/PZ NFs can reduce the methicillin-resistant Staphylococcus aureus by 3.1 log (99.92%). Moreover, PPF/PZ NFs can efficiently treat the bacterial infection in a mouse wound model and promote wound healing with negligible toxicity to animals, indicating their potential use as "plug-and-play" antibacterial wound dressings. This work provides a novel strategy for the construction of double-layer electrospun nanofibers as catalytic wound dressings with hydrogen peroxide/acid self-supplying properties for the efficient treatment of bacterial infections.


Assuntos
Antibacterianos , Peróxido de Hidrogênio , Staphylococcus aureus Resistente à Meticilina , Nanofibras , Infecção dos Ferimentos , Óxido de Zinco , Nanofibras/química , Animais , Camundongos , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/farmacologia , Catálise , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/farmacologia , Infecção dos Ferimentos/tratamento farmacológico , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Álcool de Polivinil/química , Resinas Acrílicas/química , Resinas Acrílicas/farmacologia , Cicatrização/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Tamanho da Partícula
6.
J Mater Chem B ; 12(25): 6257-6274, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38845545

RESUMO

Despite enormous advancements in its management, cancer is the world's primary cause of mortality. Therefore, tremendous strides were made to produce intelligent theranostics with mitigated side effects and improved specificity and efficiency. Thus, we developed a pH-sensitive theranostic platform composed of dextran immobilized zinc oxide nanoparticles, loaded with doxorubicin and radiolabeled with the technetium-99m radionuclide (99mTc-labelled DOX-loaded ZnO@dextran). The platform measured 11.5 nm in diameter with -12 mV zeta potential, 88% DOX loading efficiency and 98.5% radiolabeling efficiency. It showed DOX release in a pH-responsive manner, releasing 93.1% cumulatively at pH 5 but just 7% at pH 7.4. It showed improved intracellular uptake, which resulted in a high growth suppressive effect against MCF-7 cancer cells as compared to the free DOX. It boasted a 4 times lower IC50 than DOX, indicating its significant anti-proliferative potential (0.14 and 0.55 µg ml-1, respectively). The in vitro biological evaluation revealed that its molecular mode of anti-proliferative action included downregulating Cdk-2, which provoked G1/S cell cycle arrest, and upregulating both the intracellular ROS level and caspase-3, which induced apoptosis and necrosis. The in vivo experiments in Ehrlich-ascites carcinoma bearing mice demonstrated that DOX-loaded ZnO@dextran showed a considerable 4-fold increase in anti-tumor efficacy compared to DOX. Moreover, by utilizing the diagnostic radionuclide (99mTc), the radiolabeled platform (99mTc-labelled DOX-loaded ZnO@dextran) was in vivo monitored in tumor-bearing mice, revealing high tumor accumulation (14% ID g-1 at 1 h p.i.) and reduced uptake in non-target organs with a 17.5 T/NT ratio at 1 h p.i. Hence, 99mTc-labelled DOX-loaded ZnO@dextran could be recommended as a rectified tumor-targeted theranostic platform.


Assuntos
Apoptose , Pontos de Checagem do Ciclo Celular , Proliferação de Células , Doxorrubicina , Nanomedicina Teranóstica , Óxido de Zinco , Doxorrubicina/farmacologia , Doxorrubicina/química , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Humanos , Animais , Apoptose/efeitos dos fármacos , Camundongos , Concentração de Íons de Hidrogênio , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células MCF-7 , Nanopartículas/química , Distribuição Tecidual , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Dextranos/química , Portadores de Fármacos/química , Tecnécio/química , Tamanho da Partícula
7.
Food Microbiol ; 122: 104559, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38839223

RESUMO

Listeria monocytogenes is a concerning foodborne pathogen incriminated in soft cheese and meat-related outbreaks, highlighting the significance of applying alternative techniques to control its growth in food. In the current study, eco-friendly zinc oxide nanoparticles (ZnO-NPs) were synthesized using Rosmarinus officinalis, Punica granatum, and Origanum marjoram extracts individually. The antimicrobial efficacy of the prepared ZnO-NPs against L. monocytogenes was assessed using the agar well diffusion technique. Data indicated that ZnO-NPs prepared using Origanum marjoram were the most effective; therefore, they were used for the preparation of gelatin-based bionanocomposite coatings. Furthermore, the antimicrobial efficacy of the prepared gelatin-based bionanocomposite coatings containing eco-friendly ZnO-NPs was evaluated against L. monocytogenes in Talaga cheese (an Egyptian soft cheese) and camel meat during refrigerated storage at 4 ± 1 oC. Talaga cheese and camel meat were inoculated with L. monocytogenes, then coated with gelatin (G), gelatin with ZnO-NPs 1% (G/ZnO-NPs 1%), and gelatin with ZnO-NPs 2% (G/ZnO-NPs 2%). Microbiological examination showed that the G/ZnO-NPs 2% coating reduced L. monocytogenes count in the coated Talaga cheese and camel meat by 2.76 ± 0.19 and 2.36 ± 0.51 log CFU/g, respectively, by the end of the storage period. Moreover, G/ZnO-NPs coatings controlled pH changes, reduced water losses, and improved the sensory characteristics of Talaga cheese and camel meat, thereby extending their shelf life. The obtained results from this study indicate that the application of gelatin/ZnO-NPs 2% bionanocomposite coating could be used in the food industry to control L. monocytogenes growth, improve quality, and extend the shelf life of Talaga cheese and camel meat.


Assuntos
Camelus , Queijo , Armazenamento de Alimentos , Gelatina , Listeria monocytogenes , Nanocompostos , Óxido de Zinco , Listeria monocytogenes/efeitos dos fármacos , Listeria monocytogenes/crescimento & desenvolvimento , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Queijo/microbiologia , Gelatina/química , Gelatina/farmacologia , Animais , Nanocompostos/química , Conservação de Alimentos/métodos , Carne/microbiologia , Microbiologia de Alimentos , Nanopartículas/química , Antibacterianos/farmacologia , Antibacterianos/química , Punica granatum/química , Contaminação de Alimentos/prevenção & controle , Contaminação de Alimentos/análise , Rosmarinus/química , Refrigeração , Extratos Vegetais/farmacologia , Extratos Vegetais/química
8.
Sci Rep ; 14(1): 13470, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866790

RESUMO

The growing interest in using plant extracts for the biogenic synthesis of zinc oxide nanoparticles (ZnO NPs) stems from their facile, eco-friendly, and biologically safe approach instead of chemical routes. For the first time, ZnO NPs were successfully biosynthesized using Rhus coriaria fruit aqueous extract as a reducing and capping agent. Characterization revealed that the biosynthesized ZnO NPs possessed a maximum absorbance of approximately 359 nm and closely resembled the hexagonal ZnO wurtzite crystalline structure, with an average crystalline size of 16.69 nm. The transmission electron microscope (TEM) showed the presence of spherical and hexagonal morphologies, with an average grain size of 20.51 ± 3.90 nm. Moreover, the elemental composition of the synthesized ZnO NPs was assessed via energy-dispersive X-ray spectrometry (EDX), and the presence of phytocompounds on their surface was subsequently verified through FT-IR analysis. The ζ-potential of ZnO NPs was recorded at - 19.9 ± 0.1663 mV. Regarding anti-cancer properties, ZnO NPs were found to possess potent anti-tumor effects on MCF-7 and MDA-MB-231 breast cancer cells. Their efficacy was dose-dependent, with IC50 values ranging from 35.04-44.86 µg/mL for MCF-7 and 55.54-63.71 µg/mL for MDA-MB-231 cells. Mechanistic studies in MDA-MB-231 cells revealed apoptosis induction, validated by DAPI staining, confocal microscopy, and Annexin V/PI staining, showing apoptosis by 12.59% and 81.57% at ½ IC50 and IC50 values, respectively. Additionally, ZnO NPs were observed to provoke S-phase arrest and inhibit colony-forming and metastatic potential by modulating apoptosis and metastasis-related genes. This study unravels new insights into how ZnO NPs provoke cancer cell death and inhibit metastasis, revealing new prospects in cancer nanotechnology.


Assuntos
Química Verde , Nanopartículas Metálicas , Extratos Vegetais , Rhus , Neoplasias de Mama Triplo Negativas , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/metabolismo , Rhus/química , Química Verde/métodos , Nanopartículas Metálicas/química , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Células MCF-7 , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos
9.
BMC Infect Dis ; 24(1): 593, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886629

RESUMO

BACKGROUND: Acinetobacter baumannii resistant strains lead to increased mortality, treatment costs, and an increase in the length of hospitalization. Nowadays, nanoparticles are considered a substitute for antibiotics. This study aimed to determine the MIC of Silver (Ag) and Zinc Oxide (ZnO) Nanoparticles (NPs) on Biofilm-Producing Acinetobacter baumannii and determine the relationship between MIC and frequency of efflux pump genes in cutaneous specimens in Shiraz, Southwest Iran in 2021-2022. METHODS: In this study, specimens were collected from April 2021 to June 2022 at Namazi and Faqihi Hospitals in Shiraz. Investigation of biofilm production in multidrug resistance (MDR) isolates was done by the microtiter plate method. Synthesized nanoparticles were characterized by UV-vis spectrum, X-ray diffraction (XRD), and electron microscopy. The MIC of AgNPs and ZnONPs for isolates was done using the method described in the CLSI guideline (2018). The antibacterial effect of MIC of NPs on inanimate objects was done by colony counts. The prevalence of efflux pump genes (adeR, adeC, adeA, abeM, adeK, adeI) was also investigated by PCR technique. RESULTS: The highest ceftriaxone resistance (68%) and lowest colistin resistance (7%) were identified. 57% of isolates were MDR. In addition, 71.9% could produce biofilm and 28.1% of isolates could not produce biofilm. The average size of AgNPs and ZnONPs in the present study is 48 and < 70 nm, respectively. The nanoparticles were spherical. The MIC and the MBC of the ZnONPs were in the range of 125 to 250 µg/mL respectively. Also, for AgNPs, the MIC and the MBC were in the range of 62.5 to 250 µg/ml, respectively. AbeM gene had the highest frequency and the AdeK gene had the lowest frequency. Statistical analysis showed that there is a relationship between the frequency of adeA, adeC, and adeM genes with the MIC of AgNPs and ZnONPs. CONCLUSION: According to the results of the present study, inanimate objects such as scalpels in contact with AgNPs (6000 µg/ml for 240 min) or ZnONPs (5000 µg/ml for 120 min) can be free of biofilm producing Acinetobacter baumannii  with efflux pump genes.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Antibacterianos , Biofilmes , Farmacorresistência Bacteriana Múltipla , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Prata , Óxido de Zinco , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/genética , Biofilmes/efeitos dos fármacos , Irã (Geográfico) , Antibacterianos/farmacologia , Prata/farmacologia , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Humanos , Infecções por Acinetobacter/microbiologia , Nanopartículas Metálicas/química , Adulto , Masculino , Feminino , Pessoa de Meia-Idade , Adolescente , Adulto Jovem , Criança , Idoso , Pré-Escolar , Nanopartículas/química
10.
Int J Mol Sci ; 25(11)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38892267

RESUMO

Food safety and quality are major concerns in the food industry. Despite numerous studies, polyethylene remains one of the most used materials for packaging due to industry reluctance to invest in new technologies and equipment. Therefore, modifications to the current materials are easier to implement than adopting whole new solutions. Antibacterial activity can be induced in low-density polyethylene films only by adding antimicrobial agents. ZnO nanoparticles are well known for their strong antimicrobial activity, coupled with low toxicity and UV shielding capability. These characteristics recommend ZnO for the food industry. By incorporating such safe and dependable antimicrobial agents in the polyethylene matrix, we have obtained composite films able to inhibit microorganisms' growth that can be used as packaging materials. Here we report the obtaining of highly homogenous composite films with up to 5% ZnO by a melt mixing process at 150 °C for 10 min. The composite films present good transparency in the visible domain, permitting consumers to visualize the food, but have good UV barrier properties. The composite films exhibit good antimicrobial and antibiofilm activity from the lowest ZnO composition (1%), against both Gram-positive and Gram-negative bacterial strains. The homogenous dispersion of ZnO nanoparticles into the polyethylene matrix was assessed by Fourier transform infrared microscopy and scanning electron microscopy. The optimal mechanical barrier properties were obtained for composition with 3% ZnO. The thermal analysis indicates that the addition of ZnO nanoparticles has increased thermal stability by more than 100 °C. The UV-Vis spectra indicate a low transmittance in the UV domain, lower than 5%, making the films suitable for blocking photo-oxidation processes. The obtained films proved to be efficient packaging films, successfully preserving plum (Rome) tomatoes for up to 14 days.


Assuntos
Embalagem de Alimentos , Polietileno , Solanum lycopersicum , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Embalagem de Alimentos/métodos , Polietileno/química , Solanum lycopersicum/microbiologia , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Biofilmes/efeitos dos fármacos
11.
ACS Appl Mater Interfaces ; 16(24): 30847-30859, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38853353

RESUMO

Antibacterial formulations based on zinc oxide nanoparticles (ZnO NPs) are widely used for antibiotic replacement in veterinary medicine and animal nutrition. However, the undesired environmental impact of ZnO NPs triggers a search for alternative, environmentally safer solutions. Here, we show that Zn2+ in its ionic form is a more eco-friendly antibacterial, and its biocidal action rivals that of ZnO NPs (<100 nm size), with a minimal biocidal concentration being 41(82) µg mL-1 vs 5 µg mL-1 of ZnO NPs, as determined for 103(106) CFU mL-1 E. coli. We demonstrate that the biocidal activity of Zn2+ ions is primarily associated with their uptake by E. coli and spontaneous in vivo transformation into insoluble ZnO nanocomposites at an internal bacterial pH of 7.7. Formed in vivo nanocomposite then damages E. coli membrane and intracellular components from the inside, by forming insoluble biocomposites, whose formation can also trigger ZnO characteristic reactions damaging the cells (e.g., by generation of high-potential reactive oxygen species). Our study defines a special route in which Zn2+ metal ions induce the death of bacterial cells, which might be common to other metal ions capable of forming semiconductor oxides and insoluble hydroxides at a slightly alkaline intracellular pH of some bacteria.


Assuntos
Antibacterianos , Escherichia coli , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Zinco/química , Zinco/farmacologia , Íons/química , Testes de Sensibilidade Microbiana , Espécies Reativas de Oxigênio/metabolismo , Concentração de Íons de Hidrogênio , Nanocompostos/química
12.
Sci Rep ; 14(1): 14045, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890495

RESUMO

A composite of Zinc oxide loaded with 5-weight % silver decorated on carbon nanotubes (Ag-loaded ZnO: CNT) was synthesized using a simple refluxed chemical method. The influence of deviation in the weight % of carbon nanotube loading on photocatalytic dye degradation (methylene blue and rose bengal) and antibiotic (antimicrobial and antifungal) performance was investigated in this study. The light capture ability of Ag-loaded ZnO:CNT in the visible region was higher in photocatalytic activity than that of Ag-loaded ZnO and ZnO:CNT. The bandgap of the Ag-loaded ZnO: CNT was tuned owing to the surface plasmon resonance effect. The photocatalytic degradation investigations were optimized by varying the wt% in CNTs, pH of dye solution, concentration of the dye solution, and amount of catalytic dose. Around 100% photocatalytic efficiency in 2 min against MB dye was observed for Ag doped ZnO with 10 wt% CNT composite at pH 9, at a rate constant 1.48 min-1. Bipolaris sorokiniana fungus was first time tested against a composite material, which demonstrated optimum fungal inhibition efficiency of 48%. They were also tested against the bacterial strains Staphylococcus aureus, Bacillus cerius, Proteus vulgaris, and Salmonella typhimurium, which showed promising antibacterial activity compared to commercially available drugs. The composite of Ag doped ZnO with 5 wt% CNT has shown competitive zone inhibition efficacy of 21.66 ± 0.57, 15.66 ± 0.57, 13.66 ± 0.57 against bacterial strains Bacillus cerius, Proteus vulgaris, and Salmonella typhimurium which were tested for the first time against Ag-loaded ZnO:CNT.


Assuntos
Antibacterianos , Antifúngicos , Nanotubos de Carbono , Prata , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Prata/química , Prata/farmacologia , Nanotubos de Carbono/química , Antibacterianos/farmacologia , Antibacterianos/química , Catálise , Antifúngicos/farmacologia , Antifúngicos/química , Staphylococcus aureus/efeitos dos fármacos , Azul de Metileno/química , Azul de Metileno/farmacologia , Corantes/química , Corantes/farmacologia , Rosa Bengala/química , Rosa Bengala/farmacologia , Testes de Sensibilidade Microbiana , Salmonella typhimurium/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Fotólise , Processos Fotoquímicos
13.
BMC Oral Health ; 24(1): 715, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38907185

RESUMO

BACKGROUND: Dental pathogens play a crucial role in oral health issues, including tooth decay, gum disease, and oral infections, and recent research suggests a link between these pathogens and oral cancer initiation and progression. Innovative therapeutic approaches are needed due to antibiotic resistance concerns and treatment limitations. METHODS: We synthesized and analyzed piperine-coated zinc oxide nanoparticles (ZnO-PIP NPs) using UV spectroscopy, SEM, XRD, FTIR, and EDAX. Antioxidant and antimicrobial effectiveness were evaluated through DPPH, ABTS, and MIC assays, while the anticancer properties were assessed on KB oral squamous carcinoma cells. RESULTS: ZnO-PIP NPs exhibited significant antioxidant activity and a MIC of 50 µg/mL against dental pathogens, indicating strong antimicrobial properties. Interaction analysis revealed high binding affinity with dental pathogens. ZnO-PIP NPs showed dose-dependent anticancer activity on KB cells, upregulating apoptotic genes BCL2, BAX, and P53. CONCLUSIONS: This approach offers a multifaceted solution to combatting both oral infections and cancer, showcasing their potential for significant advancement in oral healthcare. It is essential to acknowledge potential limitations and challenges associated with the use of ZnO NPs in clinical applications. These may include concerns regarding nanoparticle toxicity, biocompatibility, and long-term safety. Further research and rigorous testing are warranted to address these issues and ensure the safe and effective translation of ZnO-PIP NPs into clinical practice.


Assuntos
Alcaloides , Apoptose , Benzodioxóis , Biofilmes , Neoplasias Bucais , Piperidinas , Alcamidas Poli-Insaturadas , Proteínas Proto-Oncogênicas c-bcl-2 , Proteína Supressora de Tumor p53 , Óxido de Zinco , Proteína X Associada a bcl-2 , Óxido de Zinco/farmacologia , Humanos , Piperidinas/farmacologia , Apoptose/efeitos dos fármacos , Alcaloides/farmacologia , Benzodioxóis/farmacologia , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Proteína X Associada a bcl-2/metabolismo , Proteína X Associada a bcl-2/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Nanopartículas , Antioxidantes/farmacologia , Testes de Sensibilidade Microbiana , Nanopartículas Metálicas/uso terapêutico , Antineoplásicos/farmacologia , Microscopia Eletrônica de Varredura , Difração de Raios X , Linhagem Celular Tumoral , Células KB
14.
ACS Infect Dis ; 10(6): 1914-1934, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38831663

RESUMO

Rationally designed multitargeted drugs, known as network therapeutics/multimodal drugs, have emerged as versatile therapeutic solutions to combat drug-resistant microbes. Here, we report novel mechanistic insights into cellular and molecular targets of ZnO quantum dots (QDs) against Candida albicans, a representative of fungal pathogens. Stable, monodispersed 4-6 nm ZnO QDs were synthesized using a wet chemical route, which exhibited dose-dependent inhibition on the growth dynamics of Candida. Treatment with 200 µg/mL ZnO QDs revealed an aberrant morphology and a disrupted cellular ultrastructure in electron microscopy and led to a 23% reduction in ergosterol content and a 53% increase in intracellular reactive oxygen species. Significant increase in steady-state fluorescence polarization and fluorescence lifetime decay of membrane probe 1,6-diphenyl-1,3,5-hexatriene (DPH) in treated cells, respectively, implied reduction in membrane fluidity and enhanced microviscosity. The observed reduction in passive diffusion of fluorescent Rhodamine 6G across the membrane validated the intricate relationship between ergosterol, membrane fluidity, and microviscosity. An inverse relationship existing between ergosterol biosynthetic genes, ERG11 and ERG3 in treated cells, related well with displayed higher susceptibilities. Furthermore, treated cells exhibited impaired functionality and downregulation of ABC drug efflux pumps. Multiple cellular targets of ZnO QDs in Candida were validated by in silico molecular docking. Thus, targeting ERG11, ERG3, and ABC drug efflux pumps might emerge as a versatile, nano-ZnO-based strategy in fungal therapeutics to address the challenges of drug resistance.


Assuntos
Antifúngicos , Candida albicans , Ergosterol , Pontos Quânticos , Óxido de Zinco , Pontos Quânticos/química , Candida albicans/efeitos dos fármacos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antifúngicos/farmacologia , Antifúngicos/química , Espécies Reativas de Oxigênio/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular
15.
Sci Rep ; 14(1): 13459, 2024 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-38862646

RESUMO

Although, different plant species were utilized for the fabrication of polymorphic, hexagonal, spherical, and nanoflower ZnO NPs with various diameters, few studies succeeded in synthesizing small diameter ZnO nanorods from plant extract at ambient temperature. This work sought to pioneer the ZnO NPs fabrication from the aqueous extract of a Mediterranean salt marsh plant species Limoniastrum monopetalum (L.) Boiss. and assess the role of temperature in the fabrication process. Various techniques have been used to evaluate the quality and physicochemical characteristics of ZnO NPs. Ultraviolet-visible spectroscopy (UV-VIS) was used as the primary test for formation confirmation. TEM analysis confirmed the formation of two different shapes of ZnO NPs, nano-rods and near hexagonal NPs at varying reaction temperatures. The nano-rods were about 25.3 and 297.9 nm in diameter and in length, respectively while hexagonal NPs were about 29.3 nm. The UV-VIS absorption spectra of the two forms of ZnO NPs produced were 370 and 365 nm for nano-rods and hexagonal NPs, respectively. FT-IR analysis showed Zn-O stretching at 642 cm-1 and XRD confirmed the crystalline structure of the produced ZnO NPs. Thermogravimetric analysis; TGA was also used to confirm the thermal stability of ZnO NPs. The anti-tumor activities of the two prepared ZnO NPs forms were investigated by the MTT assay, which revealed an effective dose-dependent cytotoxic effect on A-431 cell lines. Both forms displayed considerable antioxidant potential, particularly the rod-shaped ZnO NPs, with an IC50 of 148.43 µg mL-1. The rod-shaped ZnO NPs were superior candidates for destroying skin cancer, with IC50 of 93.88 ± 1 µg mL-1 ZnO NPs. Thus, rod-shaped ZnO NPs are promising, highly biocompatible candidate for biological and biomedical applications. Furthermore, both shapes of phyto-synthesized NPs demonstrated effective antimicrobial activity against various pathogens. The outcomes highlight the potential of phyto-synthesized ZnO NPs as an eco-friendly alternative for water and wastewater disinfection.


Assuntos
Nanopartículas Metálicas , Extratos Vegetais , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Nanopartículas Metálicas/química , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Química Verde/métodos , Linhagem Celular Tumoral , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Sci Rep ; 14(1): 13091, 2024 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-38849601

RESUMO

The aim of current study was to prepared zinc oxide nanofertilzers by ecofriendly friendly, economically feasible, free of chemical contamination and safe for biological use. The study focused on crude extract of Withania coagulans as reducing agent for the green synthesis of ZnO nano-particles. Biosynthesized ZnO NPs were characterized by UV-Vis spectroscopy, XRD, FTIR and GC-MS analysis. However, zinc oxide as green Nano fertilizer was used to analyze responses induced by different doses of ZnO NPs [0, 25, 50,100, 200 mg/l and Zn acetate (100 mg/l)] in Triticum aestivum (wheat). The stimulatory and inhibitory effects of foliar application of ZnO NPs were studied on wheat (Triticum aestivum) with aspect of biomass accumulation, morphological attributes, biochemical parameters and anatomical modifications. Wheat plant showed significant (p < 0.01) enhancement of growth parameters upon exposure to ZnO NPs at specific concentrations. In addition, wheat plant showed significant increase in biochemical attributes, chlorophyll content, carotenoids, carbohydrate and protein contents. Antioxidant enzyme (POD, SOD, CAT) and total flavonoid content also confirmed nurturing impact on wheat plant. Increased stem, leaf and root anatomical parameters, all showed ZnO NPs mitigating capacity when applied to wheat. According to the current research, ZnO NPs application on wheat might be used to increase growth, yield, and Zn biofortification in wheat plants.


Assuntos
Fertilizantes , Oxirredução , Triticum , Óxido de Zinco , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/efeitos dos fármacos , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Clorofila/metabolismo , Antioxidantes/metabolismo , Carotenoides/metabolismo , Nanopartículas Metálicas/química , Raízes de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento
17.
AAPS PharmSciTech ; 25(5): 130, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844611

RESUMO

Naringenin (NRG) inhibits the fungal 17ß-hydroxysteroid dehydrogenase accountable for ergosterol synthesis in Candida albicans (C. albicans), a causative agent for cutaneous candidiasis. In present research, NRG was complexed with ZnO nanomaterial (NRG-Zn2+) to synthesize NRG-Zn2+ nanocomposites. The particle size and ζ-potential of NRG-Zn2+ nanocomposites were respectively estimated to be 180.33 ± 1.22-nm and - 3.92 ± 0.35-mV. In silico data predicted the greater affinity of NRG-Zn2+ nanocomposite for 14α-demethylase and ceramide in comparison to NRG alone. Later, NRG-Zn2+ nanocomposites solution was transformed in to naringenin-zinc oxide nanocomposites loaded chitosan gel (NRG-Zn-CS-Gel) with viscosity and firmness of 854806.7 ± 52386.43 cP and 698.27 ± 10.35 g, respectively. The ex-vivo skin permeation demonstrated 70.49 ± 5.22% skin retention, significantly greater (P < 0.05) than 44.48 ± 3.06% of naringenin loaded chitosan gel (NRG-CS-Gel) and 31.24 ± 3.28% of naringenin solution (NRG Solution). NRG-Zn-CS-Gel demonstrated 6.71 ± 0.84% permeation of NRG with a flux value of 0.046 ± 0.01-µg/cm2/h. The MIC50 of NRG-Zn-CS-Gel against C. albicans was estimated to be 0.156-µg/mL with FICI (fractional inhibitory concentration index) of 0.018 that consequently exhibited synergistic efficacy. Further, NRG-Zn-CS-Gel demonstrated superior antifungal efficacy in C. albicans induced cutaneous candidiasis infection in Balb/c mice. The fungal burden in NRG-Zn-CS-Gel treated group was 109 ± 25 CFU/mL, significantly lower (P < 0.05) than positive control (2260 ± 446 CFU/mL), naringenin loaded chitosan gel (NRG-CS-Gel; 928 ± 127 CFU/mL) and chitosan gel (CS-Gel; 2116 ± 186 CFU/mL) treated mice. Further, histopathology examination and cytokine profiling of TNF-α, IL-1ß and IL-10 revealed the healing of skin and inflammation associated with cutaneous candidiasis infection. In conclusion, NRG-Zn-CS-Gel may be a potential candidate for translating in to a clinical viable topical nanotherapeutic.


Assuntos
Antifúngicos , Candida albicans , Quitosana , Flavanonas , Géis , Camundongos Endogâmicos BALB C , Nanocompostos , Óxido de Zinco , Animais , Flavanonas/administração & dosagem , Flavanonas/farmacologia , Camundongos , Candida albicans/efeitos dos fármacos , Quitosana/química , Quitosana/administração & dosagem , Nanocompostos/química , Nanocompostos/administração & dosagem , Antifúngicos/administração & dosagem , Antifúngicos/farmacologia , Antifúngicos/farmacocinética , Óxido de Zinco/administração & dosagem , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Sistemas de Liberação de Medicamentos/métodos , Pele/metabolismo , Pele/efeitos dos fármacos , Pele/microbiologia , Candidíase/tratamento farmacológico , Polímeros/química , Absorção Cutânea/efeitos dos fármacos , Tamanho da Partícula , Administração Cutânea
18.
Luminescence ; 39(6): e4799, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38858760

RESUMO

In this study, tellurium-doped and undoped metal oxide nanoparticles (NPs) (ZnO, Mn3O4, SnO2) are compared, and a practical method for their synthesis is presented. Nanocomposites were created using the coprecipitation process, and comparisons between the three material categories under study were made using a range of characterization methods. The produced materials were subjected to structural, morphological, elemental composition, and functional group analyses using XRD, FESEM in combination with EDS, and FTIR. The optical characteristics in terms of cutoff wavelength were evaluated using UV-visible spectroscopy. Catalyzing the breakdown of methylene blue (MB) dye, the isolated nanocomposites demonstrated very consistent behavior when utilized as catalysts. Regarding both doped and undoped ZnO NPs, the maximum percentage of degradation was found to be 98% when exposed to solar Escherichia coli and Staphylococcus aureus, which stand for gram-positive and gram-negative bacteria, respectively, and were chosen as model strains for both groups using the disk diffusion technique in the context of in vitro antibacterial testing. Doped and undoped ZnO NPs exhibited greater antibacterial efficacy, with significant inhibition zones measuring 31.5 and 37.8 mm, compared with other metal oxide NPs.


Assuntos
Antibacterianos , Escherichia coli , Nanopartículas Metálicas , Testes de Sensibilidade Microbiana , Staphylococcus aureus , Telúrio , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Telúrio/química , Telúrio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Catálise , Nanopartículas Metálicas/química , Escherichia coli/efeitos dos fármacos , Processos Fotoquímicos , Azul de Metileno/química , Azul de Metileno/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Manganês/química , Manganês/farmacologia , Estanho/química , Estanho/farmacologia , Tamanho da Partícula , Óxidos/química , Óxidos/farmacologia
19.
ACS Appl Bio Mater ; 7(6): 3731-3745, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38842103

RESUMO

Photosensitizing agents have received increased attention from the medical community, owing to their higher photothermal efficiency, induction of hyperthermia, and sustained delivery of bioactive molecules to their targets. Micro/nanorobots can be used as ideal photosensitizing agents by utilizing various physical stimuli for the targeted killing of pathogens (e.g., bacteria) and cancer cells. Herein, we report sunflower-pollen-inspired spiky zinc oxide (s-ZnO)-based nanorobots that effectively kill bacteria and cancer cells under near-infrared (NIR) light irradiation. The as-fabricated s-ZnO was modified with a catechol-containing photothermal agent, polydopamine (PDA), to improve its NIR-responsive properties, followed by the addition of antimicrobial (e.g., tetracycline/TCN) and anticancer (e.g., doxorubicin/DOX) drugs. The fabricated s-ZnO/PDA@Drug nanobots exhibited unique locomotory behavior with an average speed ranging from 13 to 14 µm/s under 2.0 W/cm2 NIR light irradiation. Moreover, the s-ZnO/PDA@TCN nanobots exhibited superior antibacterial activity against E. coli and S. epidermidis under NIR irradiation. The s-ZnO/PDA@DOX nanobots also displayed sufficient reactive oxygen species (ROS) amplification in B16F10 melanoma cells and induced apoptosis under NIR light, indicating their therapeutic efficacy. We hope the sunflower pollen-inspired s-ZnO nanorobots have tremendous potential in biomedical engineering from the phototherapy perspective, with the hope to reduce pathogen infections.


Assuntos
Antibacterianos , Antineoplásicos , Materiais Biocompatíveis , Ensaios de Seleção de Medicamentos Antitumorais , Helianthus , Tamanho da Partícula , Fármacos Fotossensibilizantes , Óxido de Zinco , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Helianthus/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Teste de Materiais , Testes de Sensibilidade Microbiana , Pólen/química , Escherichia coli/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Indóis/química , Indóis/farmacologia , Animais , Camundongos , Doxorrubicina/farmacologia , Doxorrubicina/química , Raios Infravermelhos
20.
J Nanobiotechnology ; 22(1): 312, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38840221

RESUMO

Zinc oxide nanoparticles (ZNPs) are widely used in sunscreens and nanomedicines, and it was recently confirmed that ZNPs can penetrate stratum corneum into deep epidermis. Therefore, it is necessary to determine the impact of ZNPs on epidermis. In this study, ZNPs were applied to mouse skin at a relatively low concentration for one week. As a result, desmosomes in epidermal tissues were depolymerized, epidermal mechanical strain resistance was reduced, and the levels of desmosomal cadherins were decreased in cell membrane lysates and increased in cytoplasmic lysates. This finding suggested that ZNPs promote desmosomal cadherin endocytosis, which causes desmosome depolymerization. In further studies, ZNPs were proved to decrease mammalian target of rapamycin complex 1 (mTORC1) activity, activate transcription factor EB (TFEB), upregulate biogenesis of lysosome-related organelle complex 1 subunit 3 (BLOC1S3) and consequently promote desmosomal cadherin endocytosis. In addition, the key role of mTORC1 in ZNP-induced decrease in mechanical strain resistance was determined both in vitro and in vivo. It can be concluded that ZNPs reduce epidermal mechanical strain resistance by promoting desmosomal cadherin endocytosis via the mTORC1-TFEB-BLOC1S3 axis. This study helps elucidate the biological effects of ZNPs and suggests that ZNPs increase the risk of epidermal fragmentation.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Caderinas , Endocitose , Epiderme , Alvo Mecanístico do Complexo 1 de Rapamicina , Óxido de Zinco , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Endocitose/efeitos dos fármacos , Camundongos , Caderinas/metabolismo , Epiderme/metabolismo , Epiderme/efeitos dos fármacos , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Desmossomos/metabolismo , Nanopartículas/química , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA