Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.146
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124317, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692102

RESUMO

Nitroxyl (HNO), the single-electron reduction product of nitric oxide (NO), has attracted great interest in the treatment of congestive heart failure in clinical trials. In this paper, we describe the first coumarin-based compound N-hydroxy-2-oxo-2H-chromene-6-sulfonamide (CD1) as a dualfunctional HNO donor, which can release both an HNO signaling molecule and a fluorescent reporter. Under physiological conditions (pH 7.4 and 37 °C), the CD1 HNO donor can readily decompose with a half-life of ∼90 min. The corresponding stoichiometry HNO from the CD1 donor was confirmed using both Vitamin B12 and phosphine compound traps. In addition to HNO releasing, specifically, the degradation product 2-oxo-2H-chromene-6-sulfinate (CS1) was generated as a fluorescent marker during the decomposition. Therefore, the HNO amount released in situ can be accurately monitored through fluorescence generation. As compared to the CD1 donor, the fluorescence intensity increased by about 4.9-fold. The concentration limit of detection of HNO releasing was determined to be ∼0.13 µM according to the fluorescence generation of CS1 at physiological conditions. Moreover, the bioimaging of the CD1 donor was demonstrated in the cell culture of HeLa cells, where the intracellular fluorescence signals were observed, inferring the site of HNO release. Finally, we anticipate that this novel coumarin-based CD1 donor opens a new platform for exploring the biology of HNO.


Assuntos
Cumarínicos , Corantes Fluorescentes , Óxidos de Nitrogênio , Cumarínicos/química , Humanos , Corantes Fluorescentes/química , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/análise , Espectrometria de Fluorescência , Células HeLa
2.
Chemosphere ; 355: 141809, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38548080

RESUMO

This study presents a novel approach that integrates ozone-driven chemical oxidation to convert NO into soluble NO2, followed by the simultaneous absorption of NO2 and SO2 into a CaCO3-based slurry using the redox catalyst potassium iodide (KI). Using cyclic voltammetry, we demonstrate the redox properties of the I2/2I- couple, which facilitates NO2 reduction into soluble NO2- and catalyst regeneration through sulfite (SO32-)-driven reduction, thus establishing a closed catalytic cycle within the components of flue gas. In lab-scale wet-scrubbing tests, we explore the effect of various operational parameters (i.e., KI concentration, pH, and SO2 concentration), with a 15 h stability test demonstrating >60% NOx and >99% SO2 removal efficiency when the pH is controlled between 7.5 and 8.5. A successful pilot-scale implementation conducted at an inlet flow rate of 1000 m3 h-1 further confirmed the reproducibility of the proposed redox-catalytic cycle. Our study offers a cost-effective, sustainable, and scalable solution for effectively mitigating NOx and SO2 emissions at low temperatures.


Assuntos
Óxidos de Nitrogênio , Dióxido de Enxofre , Óxidos de Nitrogênio/química , Dióxido de Enxofre/química , Dióxido de Nitrogênio , Iodeto de Potássio , Reprodutibilidade dos Testes , Oxirredução
3.
Nitric Oxide ; 145: 49-56, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38364967

RESUMO

The precise release and characterization of nitroxyl (HNO) gas signaling molecule remain a challenge due to its short lifetime to date. To solve this issue, an azobenzene-based HNO donor (Azo-D1) was proposed as a colorimetric and fluorometric chemosensor for HNO releasing, to release both HNO and an azobenzene fluorescent reporter together. Specifically, the Azo-D1 has an HNO release half-life of ∼68 min under physiological conditions. The characteristic color change from the original orange to the yellow color indicated the decomposition of the donor molecule. In addition, the stoichiometry release of HNO was qualitatively and quantitatively verified through the classical phosphine compound trap. As compared with the donor molecule by itself, the decomposed product demonstrates a maximum fluorescence emission at 424 nm, where the increase of fluorescence intensity by 6.8 times can be applied to infer the real-time concentration of HNO. Moreover, cellular imaging can also be achieved using this Azo-D1 HNO donor through photoexcitation at 405 and 488 nm, where the real-time monitoring of HNO release was achieved without consuming the HNO source. Finally, the Azo-D1 HNO donor would open a new platform in the exploration of the biochemistry and the biology of HNO.


Assuntos
Colorimetria , Óxidos de Nitrogênio , Óxidos de Nitrogênio/química , Compostos Azo
4.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338825

RESUMO

Highly resistant to reduction nitroxides open new opportunities for structural studies of biological macromolecules in their native environment inside living cells and for functional imaging of pH and thiols, enzymatic activity and redox status in living animals. 3,4-Disubstituted nitroxides of 2,2,5,5-tetraethylpyrrolidine and pyrroline series with a functional group for binding to biomolecules and a polar moiety for higher solubility in water and for more rigid attachment via additional coordination to polar sites were designed and synthesized. The EPR spectra, lipophilicities, kinetics of the reduction in ascorbate-containing systems and the decay rates in liver homogenates were measured. The EPR spectra of all 3,4-disubstituted pyrrolidine nitroxides showed additional large splitting on methylene hydrogens of the ethyl groups, while the spectra of similar pyrroline nitroxides were represented with a simple triplet with narrow lines and hyperfine structure of the nitrogen manifolds resolved in oxygen-free conditions. Both pyrrolidine and pyrroline nitroxides demonstrated low rates of reduction with ascorbate, pyrrolidines being a bit more stable than similar pyrrolines. The decay of positively charged nitroxides in the rat liver homogenate was faster than that of neutral and negatively charged radicals, with lipophilicity, rate of reduction with ascorbate and the ring type playing minor role. The EPR spectra of N,N-dimethyl-3,4-bis-(aminomethyl)-2,2,5,5-tetraethylpyrrolidine-1-oxyl showed dependence on pH with pKa = 3, ΔaN = 0.055 mT and ΔaH = 0.075 mT.


Assuntos
Óxidos de Nitrogênio , Pirróis , Pirrolidinas , Ratos , Animais , Marcadores de Spin , Óxidos de Nitrogênio/química , Oxirredução , Pirrolidinas/química , Ácido Ascórbico , Espectroscopia de Ressonância de Spin Eletrônica , Óxidos N-Cíclicos/química
5.
Nitric Oxide ; 143: 9-15, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096947

RESUMO

This study explores the antiarrhythmic and hypotensive potential of pyridyl-substituted nitronyl nitroxides derivatives, uncovering the crucial role of a single carbon moiety of the pyridine cycle alongside radical and charged oxygen centers of the imidazoline fragment. Notably, the introduction of fluorine atoms diminished the antiarrhythmic effect, while the most potent derivatives featured the nitronyl nitroxide pattern positioned at the third site of the pyridine cycle. Gender-dependent responses were observed in lead compounds LCF3 and LMe, with LMe inducing temporary bradycardia and hypotension specifically in female rats, and LCF3 causing significant blood pressure reduction followed by rebound in females compared to milder effects in males. Mechanistic insights point towards ß1 adrenoceptor blockade as an underlying mechanism, supported by experiments on isolated rat atria. This research underscores the interplay between structure, cardiovascular effects and gender-specific responses, offering insights for therapeutic strategies for treating free radical-associated cardiovascular disorders.


Assuntos
Anti-Hipertensivos , Óxidos de Nitrogênio , Masculino , Ratos , Feminino , Animais , Óxidos de Nitrogênio/química , Radicais Livres , Piridinas
6.
Mol Biol (Mosk) ; 57(6): 925-937, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38062950

RESUMO

Experimental data were summarized to assume that dinitrosyl iron complexes (DNICs) with thiol-containing ligands are an endogenous "working form" of the nitric oxide (NO) system in living organisms. DNICs can function as donors of both neutral NO molecules, which are responsible for positive regulatory effects of the NO system on various physiological and biochemical processes in humans and animals, and nitrosonium cations (NO^(+)), which are responsible mostly for negative cytotoxic activity of the system. Special attention is paid to the finding that DNICs, especially in combination with dithiocarbamate derivatives, suppress SARS-CoV-2 infection in Syrian hamsters.


Assuntos
Óxido Nítrico , Compostos de Sulfidrila , Humanos , Animais , Compostos de Sulfidrila/química , Óxidos de Nitrogênio/química , Ferro/química , Ligantes
7.
Bioconjug Chem ; 34(12): 2358-2365, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051144

RESUMO

Aldehydes are attractive bioorthogonal coupling partners. The ease of manipulation of aldehydes and their orthogonality to other classes of bioorthogonal reactions have inspired the exploration of chemistries, which generate irreversible conjugates. Similarly, nitrones have been shown to be potent 1,3-dipoles in bioorthogonal reactions when paired with strained alkynes. Here, we combine the reactivity of nitrones with the simplicity of aldehydes using an N-allylglyoxylamide, in a cascade reaction with an N-alkylhydroxylamine to produce a bicyclic isoxazolidine. The reaction is found to be catalyzed by 5-methoxyanthranilic acid and proceeds at pH 7 with favorable kinetics. Using the HaloTag7 protein bearing an N-alkylhydroxylamine, we show the reaction to be bioorthogonal in a complex cell lysate and to proceed well at the surface of a HEK293 cell. Furthermore, the reaction is compatible with a typical strain-promoted alkyne-azide click reaction. The characteristics of this reaction suggest it will be a useful addition to the pallet of bioorthogonal reactions that have revolutionized chemical biology.


Assuntos
Óxidos de Nitrogênio , Proteínas , Humanos , Células HEK293 , Proteínas/química , Óxidos de Nitrogênio/química , Alcinos/química , Aldeídos , Azidas/química , Reação de Cicloadição
8.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139065

RESUMO

Dinitrosyl iron complexes (DNICs) are important physiological derivatives of nitric oxide. These complexes have a wide range of biological activities, with antioxidant and antiradical ones being of particular interest and importance. We studied the interaction between DNICs associated with the dipeptide L-carnosine or serum albumin and prooxidants under conditions mimicking oxidative stress. The ligands of these DNICs were histidine residues of carnosine or His39 and Cys34 in bovine serum albumin. Carnosine-bound DNICs reduced the level of piperazine free radicals in the reaction system containing tert-butyl hydroperoxide (t-BOOH), bivalent iron ions, a nitroxyl anion donor (Angeli's salt), and HEPES buffer. The ability of carnosine DNICs to intercept organic free radicals produced from t-BOOH decay could lead to this effect. In addition, carnosine DNICs reacted with the superoxide anion radical (O2•-) formed in the xanthine/xanthine oxidase enzymatic system. They also reduced the oxoferryl form of the heme group formed in the reaction of myoglobin with t-BOOH. DNICs associated with serum albumin were found to be rapidly destroyed in a model system containing metmyoglobin and t-BOOH. At the same time, these protein DNICs inhibited the t-BOOH-induced oxidative degradation of coenzymes Q9 and Q10 in rat myocardial homogenate. The possible mechanisms of the antioxidant and antiradical action of the DNICs studied and their role in the metabolism of reactive oxygen and nitrogen species are discussed.


Assuntos
Antioxidantes , Carnosina , Ratos , Animais , Antioxidantes/farmacologia , Histidina , Carnosina/farmacologia , Óxidos de Nitrogênio/química , Ferro/metabolismo , Óxido Nítrico/metabolismo , Radicais Livres , Superóxidos/metabolismo , Oxigênio , Albumina Sérica
9.
ACS Chem Biol ; 18(12): 2524-2534, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38012810

RESUMO

Bacillithiol (BSH) replaces glutathione (GSH) as the most prominent low-molecular-weight thiol in many low G + C gram-positive bacteria. BSH plays roles in metal binding, protein/enzyme regulation, detoxification, redox buffering, and bacterial virulence. Given the small amounts of BSH isolated from natural sources and relatively lengthy chemical syntheses, the reactions of BSH with pertinent reactive oxygen, nitrogen, and sulfur species remain largely unexplored. We prepared BSH and exposed it to nitroxyl (HNO), a reactive nitrogen species that influences bacterial sulfur metabolism. The profile of this reaction was distinct from HNO oxidation of GSH, which yielded mixtures of disulfide and sulfinamide. The reaction of BSH and HNO (generated from Angeli's salt) gives only sulfinamide products, including a newly proposed cyclic sulfinamide. Treatment of a glucosamine-cysteine conjugate, which lacks the malic acid group, with HNO forms disulfide, implicating the malic acid group in sulfinamide formation. This finding supports a mechanism involving the formation of an N-hydroxysulfenamide intermediate that dehydrates to a sulfenium ion that can be trapped by water or internally trapped by an amide nitrogen to give the cyclic sulfinamide. The biological relevance of BSH reactivity toward HNO is provided through in vivo experiments demonstrating that Bacillus subtilis exposed to HNO shows a growth phenotype, and a strain unable to produce BSH shows hypersensitivity toward HNO in minimal medium cultures. Thiol analysis of HNO-exposed cultures shows an overall decrease in reduced BSH levels, which is not accompanied by increased levels of BSSB, supporting a model involving the formation of an oxidized sulfinamide derivative, identified in vivo by high-pressure liquid chromatography/mass spectrometry. Collectively, these findings reveal the unique chemistry and biology of HNO with BSH in bacteria that produce this biothiol.


Assuntos
Cisteína , Óxidos de Nitrogênio , Cisteína/química , Óxidos de Nitrogênio/química , Compostos de Sulfidrila/química , Glucosamina , Glutationa/química , Enxofre , Dissulfetos , Nitrogênio
10.
Environ Sci Technol ; 57(48): 20326-20338, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37955373

RESUMO

Synchronous control of volatile organic compounds (VOCs) and nitrogen oxides (NOx) is of great importance for ozone and PM2.5 pollution control. Balancing VOC oxidation and the NH3-SCR reaction is the key to achieving the simultaneous removal of these two pollutants. In this work, a vertically oriented Mn2Cu1Al1Ox nanosheet is grown in situ on the surface of Cu-SSZ-13 to synthesize a core-shell bifunctional catalyst (Cu-SSZ-13@Mn2Cu1Al1Ox) with multiple active sites. The optimized Cu-SSZ-13@Mn2Cu1Al1Ox catalyst delivered excellent performance for the simultaneous removal of VOCs and NOx with both 100% conversion at 300 °C in the presence of 5% water vapor. Physicochemical characterization and density functional theory (DFT) calculations revealed that Cu-SSZ-13@Mn2Cu1Al1Ox possesses more surface acidity and oxygen vacancies. The charge transfer between the core and shell is the intrinsic reason for the improved activity for both VOC and NOx removal. The molecular orbital theory is used to explain the different adsorption energies due to the different bonding modes between the core-shell and mixed individual catalysts. This work provides a novel strategy for designing efficient catalysts for the simultaneous removal of VOCs and NOx or other multiple pollutants.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Compostos Orgânicos Voláteis , Amônia/química , Óxidos de Nitrogênio/química , Poluentes Atmosféricos/análise , Oxirredução , Catálise
11.
ACS Chem Biol ; 18(11): 2430-2438, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37852229

RESUMO

The reactions of nitrones with cyclooctadiynes were studied to establish the relative rates of sequential reactions and to determine the limits and scope of this bioorthogonal chemistry. We have established the second-order rate constants for the consecutive additions of a variety of nitrones onto diyne and studied the structure-activity relationships via Hammett plots. Results show that the addition of the second nitrone to the monointermediate occurs significantly faster than the first, with both reactions being faster than analogous reactions with azides. Computational chemistry supports these observations. The rate of second addition increases with electron-deficient nitrones, as demonstrated by a large rho value of 2.08, suggesting that the reaction rate can be controlled by nitrone selectivity. To further investigate the kinetic parameters of the reaction, dinitrone monomers containing cyclic and diaryl-nitrones were designed for use in oligomerization applications. Oligomerization was used as a probe to test the limits of the reactivity and attempt to isolate monocycloaddition products. The oligomer formed from a cyclic nitrone reacts faster, and detailed MALDI mass spectrometry analysis shows that monoaddition products exist only transiently and are not isolatable. These studies inform on the scope and limits of this chemistry in a variety of applications. We successfully demonstrated bacterial cell wall labeling using heterogeneous dual cycloadditions involving nitrone and azide dipoles, where the nitrone was the faster reacting partner on the bacterial cell surface.


Assuntos
Alcinos , Óxidos de Nitrogênio , Alcinos/química , Reação de Cicloadição , Óxidos de Nitrogênio/química , Relação Estrutura-Atividade , Azidas/química
12.
Environ Sci Technol ; 57(42): 16121-16130, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37842921

RESUMO

Ammonia-mediated selective catalytic reduction (NH3-SCR) is currently the key approach to abate nitrogen oxides (NOx) emitted from heavy-duty lean-burn vehicles. The state-of-art NH3-SCR catalysts, namely, copper ion-exchanged chabazite (Cu-CHA) zeolites, perform rather poorly at low temperatures (below 200 °C) and are thus incapable of eliminating effectively NOx emissions under cold-start conditions. Here, we demonstrate a significant promotion of low-temperature NOx reduction by reinforcing the dynamic motion of zeolite-confined Cu sites during NH3-SCR. Combining complex impedance-based in situ spectroscopy (IS) and extended density-functional tight-binding molecular dynamics simulation, we revealed an environment- and temperature-dependent nature of the dynamic Cu motion within the zeolite lattice. Further coupling in situ IS with infrared spectroscopy allows us to unravel the critical role of monovalent Cu in the overall Cu mobility at a molecular level. Based on these mechanistic understandings, we elicit a boost of NOx reduction below 200 °C by reinforcing the dynamic Cu motion in various Cu-zeolites (Cu-CHA, Cu-ZSM-5, Cu-Beta, etc.) via facile postsynthesis treatments, either in a reductive mixture at low temperatures (below 250 °C) or in a nonoxidative atmosphere at high temperatures (above 450 °C).


Assuntos
Zeolitas , Zeolitas/química , Cobre , Amônia/química , Óxidos de Nitrogênio/química , Temperatura , Catálise
13.
Int J Mol Sci ; 24(14)2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37511257

RESUMO

Site-directed spin labeling followed by investigation using Electron Paramagnetic Resonance spectroscopy is a rapidly expanding powerful biophysical technique to study structure, local dynamics and functions of biomolecules using pulsed EPR techniques and nitroxides are the most widely used spin labels. Modern trends of this method include measurements directly inside a living cell, as well as measurements without deep freezing (below 70 K), which provide information that is more consistent with the behavior of the molecules under study in natural conditions. Such studies require nitroxides, which are resistant to the action of biogenic reductants and have high spin relaxation (dephasing) times, Tm. (1R(S),5R(S),7R(S),8R(S))-1,8-bis(hydroxymethyl)-6-azadispiro[4.1.4.2]tridecane-6-oxyl is a unique nitroxide that combines these features. We have developed a convenient method for the synthesis of this radical and studied the ways of its functionalization. Promising spin labels have been obtained, the parameters of their spin relaxation T1 and Tm have been measured, and the kinetics of reduction with ascorbate have been studied.


Assuntos
Óxidos de Nitrogênio , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Óxidos de Nitrogênio/química
14.
Trends Biochem Sci ; 48(9): 748-750, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37331830

RESUMO

Nitroxyl (HNO), a one-electron reduced and protonated congener of nitric oxide (•NO), was recently discovered in Arabidopsis thaliana. Due to its distinct chemical properties, we believe HNO must be further studied to determine how many physiological processes it impacts.


Assuntos
Arabidopsis , Óxido Nítrico , Óxidos de Nitrogênio/química , Biologia
15.
Anal Sci ; 39(10): 1771-1775, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37378820

RESUMO

Nitroxyl radical compounds oxidize hydroxy groups and some amino groups upon application of an electric potential. The resulting anodic current depends on the concentration of these functional groups in solution. Thus, it is possible to quantify compounds containing these functional groups by electrochemical methods. Cyclic voltammetry has been used to evaluate the catalytic activity of nitroxyl radicals, and the ability of such radicals to sense biological and other compounds. In this study, we evaluated a method for quantifying compounds using constant-potential electrolysis (amperometry) of nitroxyl radicals for application in flow injection analysis and high-performance liquid chromatography as an electrochemical detector. When amperometry was performed using 2,2,6,6-tetramethylpiperidine 1-oxyl, a common nitroxyl radical compound, little change was observed even with 100 mM glucose due to its low reactivity in neutral aqueous solutions. In contrast, 2-azaadamantane N-oxyl and nortropine N-oxyl, which are highly active nitroxyl radicals, showed a concentration-dependent response in neutral aqueous solution. Responses of 33.8 and 125.9 µA, respectively, were observed. By recognition of hydroxy and amino groups, we have succeeded in the electrochemical detection of some drugs by amperometry. Streptomycin, an aminoglycoside antibiotic, was quantifiable in the range of 30-1000 µM.


Assuntos
Antibacterianos , Óxidos de Nitrogênio , Cromatografia Líquida de Alta Pressão/métodos , Óxidos de Nitrogênio/química , Óxidos N-Cíclicos/química
16.
Nitric Oxide ; 136-137: 24-32, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37217001

RESUMO

Developing functional nitroxyl (HNO) donors play a significant role in the further exploration of endogenous HNO in biochemistry and pharmacology. In this work, two novel Piloty's acids (SBD-D1 and SBD-D2) were proposed by incorporating benzoxadiazole-based fluorophores, in order to achieve the dual-function of releasing both HNO and a fluorophore in situ. Under physiological conditions, both SBD-D1 and SBD-D2 efficiently donated HNO (t1/2 = 10.96 and 8.18 min, respectively). The stoichiometric generation of HNO was determined by both Vitamin B12 and phosphine compound trap. Interestingly, due to the different substitution groups on the aromatic ring, SBD-D1 with the chlorine showed no fluorescence emission, but SBD-D2 was strongly fluorescent due to the presence of the dimethylamine group. Specifically, the fluorescent signal would decrease during the release process of HNO. Moreover, theoretical calculations were performed to understand the emission difference. A strong radiation derived from benzoxadiazole with dimethylamine group due to the large transition dipole moment (∼4.3 Debye), while the presence of intramolecular charge transfer process in the donor with chlorine group caused a small transition dipole moment (<0.1 Debye). Finally, these studies would contribute to the future design and application of novel functional HNO donors for the exploration of HNO biochemistry and pharmacology.


Assuntos
Cloro , Óxidos de Nitrogênio , Óxidos de Nitrogênio/química , Ácidos Hidroxâmicos/química , Corantes Fluorescentes
17.
Environ Sci Pollut Res Int ; 30(24): 65482-65499, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37081369

RESUMO

Selective catalytic reduction (SCR) has been one of the most efficient and widely used technologies to remove nitrogen oxides (NOx). SCR research has developed rapidly in recent years, which can be reflected by the dramatic increase of related academic publications. Herein, based on the 10,627 documents from 2001 to 2020 in Web of Science, the global research landscape and hotspots in SCR are investigated based on a comprehensive bibliometric analysis. The results show that SCR research has developed positively; the annul number of articles increase sharply from 246 in 2001 to 1092 in 2020. People's Republic of China and Chinese Academy of Sciences are the most productive country and institution, respectively. The global collaboration is extensive and frequent, while People's Republic of China and USA have the most frequent research cooperation. Applied Catalysis B-Environmental is the leading publication source with 711 records. Five major research areas on SCR are identified and elaborated, including catalyst, reductant, deactivation, mechanism, and others. Zeolite is the most widely studied SCR catalyst, while copper, silver, platinum, and iron are the most popular metal elements in catalyst. Ammonia (NH3) is dominated among various SCR reductants, while hydrocarbon reductant has gained more attention. Sulfur dioxide (SO2) and vapor are the two most concerned factors leading to catalyst deactivation, and catalyst regeneration is also an important research topic. Density functional theory (DFT), in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and kinetics are the most widely used methods to conduct mechanism study. The studies on "low temperature," "atomic-scale insight," "elemental mercury," "situ DIRFTS investigation," "arsenic poisoning," "SPOA-34," "Cu-CHA catalyst," "TiO2 catalyst," and "Ce catalyst" have been the hotspots in recent years.


Assuntos
Óxidos de Nitrogênio , Substâncias Redutoras , Humanos , Oxirredução , Óxidos de Nitrogênio/química , Amônia/química , Catálise
18.
Dalton Trans ; 52(16): 5176-5191, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36970749

RESUMO

Nitrosyl ruthenium complexes are promising platforms for nitric oxide (NO) and nitroxyl (HNO) release, which exert their therapeutic application. In this context, we developed two polypyridinic compounds with the general formula cis-[Ru(NO)(bpy)2(L)]n+, where L is an imidazole derivative. These species were characterized by spectroscopic and electrochemical techniques, including XANES/EXAFS experiments, and further supported by DFT calculations. Interestingly, assays using selective probes evidenced that both complexes can release HNO on reaction with thiols. This finding was biologically validated by HIF-1α detection. The latter protein is related to angiogenesis and inflammation processes under hypoxic conditions, which is selectively destabilized by nitroxyl. These metal complexes also presented vasodilating properties using isolated rat aorta rings and demonstrated antioxidant properties in free radical scavenging experiments. Based on these results, the new nitrosyl ruthenium compounds showed promising characteristics as potential therapeutic agents for the treatment of cardiovascular conditions such as atherosclerosis, deserving further investigation.


Assuntos
Complexos de Coordenação , Rutênio , Animais , Ratos , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Rutênio/química , Compostos de Sulfidrila/química , Doenças Cardiovasculares
19.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901870

RESUMO

Nitric oxide (NO) is a gaseous molecule which plays a key role in wound healing. Previously, we identified the optimal conditions for wound healing strategies using NO donors and an air plasma generator. The aim of this study was to compare the wound healing effects of binuclear dinitrosyl iron complexes with glutathione (B-DNIC-GSH) and NO-containing gas flow (NO-CGF) at their optimal NO doses (0.04 mmol for B-DNIC-GSH and 1.0 mmol for NO-CGF per 1 cm2) in a rat full-thickness wound model over a 3-week period. Excised wound tissues were studied by light and transmission electron microscopy and immunohistochemical, morphometrical and statistical methods. Both treatments had an identical stimulating impact on wound healing, which indicated a higher dosage effectiveness of B-DNIC-GSH compared to the NO-CGF. B-DNIC-GSH spray application reduced inflammation and promoted fibroblast proliferation, angiogenesis and the growth of granulation tissue during the first 4 days after injury. However, prolonged NO spray effects were mild compared to NO-CGF. Future studies should determine the optimal B-DNIC-GSH solution course for a more effective wound healing stimulation.


Assuntos
Óxido Nítrico , Óxidos de Nitrogênio , Ratos , Animais , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Ferro/química , Cicatrização , Glutationa/química
20.
Environ Sci Technol ; 57(13): 5445-5452, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36942694

RESUMO

Although the selective catalytic reduction technology has been confirmed to be effective for nitrogen oxide (NOx) removal, green and sustainable NOx re-utilization under ambient conditions is still a great challenge. Herein, we develop an on-site system by coupling the continuous chemical absorption and photocatalytic reduction of NO in simulated flue gas (CNO = 500 ppm, GHSV = 18,000 h-1), which accomplishes an exceptional NO conversion into value-added ammonia with competitive conversion efficiency (89.05 ± 0.71%), ammonia production selectivity (95.58 ± 0.95%), and ammonia recovery efficiency (>90%) under ambient conditions. The anti-poisoning capacities, including the resistance against factors of H2O, SO2, and alkali/alkaline/heavy metals, are also achieved, which presents strong environmental practicability for treating NOx in flue gas. In addition, the critical roles of corresponding chemical absorption and catalytic reduction components are also revealed by in situ characterizations. The emerging strategy herein not only achieves a milestone efficiency for sustainable NO purification but also opens a new route for contaminant resourcing in the near future of carbon neutrality.


Assuntos
Amônia , Óxido Nítrico , Amônia/química , Oxirredução , Óxidos de Nitrogênio/química , Catálise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA