Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.979
Filtrar
1.
Sci Rep ; 14(1): 15460, 2024 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-38965287

RESUMO

The gut microbiota plays a crucial role in neural development and progression of neural disorders like Parkinson's disease (PD). Probiotics have been suggested to impact neurodegenerative diseases via gut-brain axis. This study aims to investigate the therapeutic potential of Lacticaseibacillus rhamnosus E9, a high exopolysaccharide producer, on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP)-induced mouse model of PD. C57BL/6 mice subjected to MPTP were fed L. rhamnosus E9 for fifteen days and sacrificed after the last administration. Motor functions were determined by open-field, catalepsy, and wire-hanging tests. The ileum and the brain tissues were collected for ELISA, qPCR, and immunohistochemistry analyses. The cecum content was obtained for microbiota analysis. E9 supplementation alleviated MPTP-induced motor dysfunctions accompanied by decreased levels of striatal TH and dopamine. E9 also reduced the level of ROS in the striatum and decreased the DAT expression while increasing the DR1. Furthermore, E9 improved intestinal integrity by enhancing ZO-1 and Occludin levels and reversed the dysbiosis of the gut microbiota induced by MPTP. In conclusion, E9 supplementation improved the MPTP-induced motor deficits and neural damage as well as intestinal barrier by modulating the gut microbiota in PD mice. These findings suggest that E9 supplementation holds therapeutic potential in managing PD through the gut-brain axis.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Modelos Animais de Doenças , Microbioma Gastrointestinal , Lacticaseibacillus rhamnosus , Camundongos Endogâmicos C57BL , Probióticos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Lacticaseibacillus rhamnosus/fisiologia , Masculino , Probióticos/farmacologia , Probióticos/administração & dosagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/microbiologia , Corpo Estriado/metabolismo , Intoxicação por MPTP/microbiologia , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/efeitos dos fármacos , Dopamina/metabolismo
2.
Sci Rep ; 14(1): 15107, 2024 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956066

RESUMO

Ferroptosis is an iron-dependent cell death form characterized by reactive oxygen species (ROS) overgeneration and lipid peroxidation. Myricetin, a flavonoid that exists in numerous plants, exhibits potent antioxidant capacity. Given that iron accumulation and ROS-provoked dopaminergic neuron death are the two main pathological hallmarks of Parkinson's disease (PD), we aimed to investigate whether myricetin decreases neuronal death through suppressing ferroptosis. The PD models were established by intraperitoneally injecting 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) into rats and by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+), respectively. Ferroptosis was identified by assessing the levels of Fe2+, ROS, malondialdehyde (MDA), and glutathione (GSH). The results demonstrated that myricetin treatment effectively mitigated MPTP-triggered motor impairment, dopamine neuronal death, and α-synuclein (α-Syn) accumulation in PD models. Myricetin also alleviated MPTP-induced ferroptosis, as evidenced by decreased levels of Fe2+, ROS, and MDA and increased levels of GSH in the substantia nigra (SN) and serum in PD models. All these changes were reversed by erastin, a ferroptosis activator. In vitro, myricetin treatment restored SH-SY5Y cell viability and alleviated MPP+-induced SH-SY5Y cell ferroptosis. Mechanistically, myricetin accelerated nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and subsequent glutathione peroxidase 4 (Gpx4) expression in MPP+-treated SH-SY5Y cells, two critical inhibitors of ferroptosis. Collectively, these data demonstrate that myricetin may be a potential agent for decreasing dopaminergic neuron death by inhibiting ferroptosis in PD.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos , Ferroptose , Flavonoides , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Animais , Flavonoides/farmacologia , Ratos , Masculino , Espécies Reativas de Oxigênio/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Linhagem Celular Tumoral , Ferro/metabolismo , alfa-Sinucleína/metabolismo , Ratos Sprague-Dawley , Glutationa/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo
3.
Brain Behav ; 14(7): e3605, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38956819

RESUMO

BACKGROUND: High-frequency repeated transcranial magnetic stimulation (rTMS) stimulating the primary motor cortex (M1) is an alternative, adjunctive therapy for improving the motor symptoms of Parkinson's disease (PD). However, whether the high frequency of rTMS positively correlates to the improvement of motor symptoms of PD is still undecided. By controlling for other parameters, a disease animal model may be useful to compare the neuroprotective effects of different high frequencies of rTMS. OBJECTIVE: The current exploratory study was designed to compare the protective effects of four common high frequencies of rTMS (5, 10, 15, and 20 Hz) and iTBS (a special form of high-frequency rTMS) and explore the optimal high-frequency rTMS on an animal PD model. METHODS: Following high frequencies of rTMS application (twice a week for 5 weeks) in a MPTP/probenecid-induced chronic PD model, the effects of the five protocols on motor behavior as well as dopaminergic neuron degeneration levels were identified. The underlying molecular mechanisms were further explored. RESULTS: We found that all the high frequencies of rTMS had protective effects on the motor functions of PD models to varying degrees. Among them, the 10, 15, and 20 Hz rTMS interventions induced comparable preservation of motor function through the protection of nigrostriatal dopamine neurons. The enhancement of brain-derived neurotrophic factor (BDNF), dopamine transporter (DAT), and vesicular monoamine transporter 2 (VMAT-2) and the suppression of TNF-α and IL-1ß in the nigrostriatum were involved in the process. The efficacy of iTBS was inferior to that of the above three protocols. The effect of 5 Hz rTMS protocol was weakest. CONCLUSIONS: Combined with the results of the present study and the possible side effects induced by rTMS, we concluded that 10 Hz might be the optimal stimulation frequency for preserving the motor functions of PD models using rTMS treatment.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos , Probenecid , Estimulação Magnética Transcraniana , Animais , Estimulação Magnética Transcraniana/métodos , Camundongos , Masculino , Probenecid/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Córtex Motor/metabolismo , Córtex Motor/fisiopatologia , Neurônios Dopaminérgicos/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Interleucina-1beta/metabolismo , Substância Negra/metabolismo , Corpo Estriado/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/metabolismo , Intoxicação por MPTP/terapia , Intoxicação por MPTP/prevenção & controle , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/fisiopatologia , Atividade Motora/fisiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
4.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 876-884, 2024 May 20.
Artigo em Chinês | MEDLINE | ID: mdl-38862445

RESUMO

OBJECTIVE: To investigate the mechanisms that mediate the neuroprotective effect of the intestinal microbial metabolite sodium butyrate (NaB) in a mouse model of Parkinson's disease (PD) via the gut-brain axis. METHODS: Thirty-nine 7-week-old male C57BL/6J mice were randomized equally into control group, PD model group, and NaB treatment group. In the latter two groups, PD models were established by intraperitoneal injection of 30 mg/kg 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) once daily for 5 consecutive days, and normal saline was injected in the control group. After modeling, the mice received daily gavage of NaB (300 mg/kg) or an equal volume of saline for 14 days. Behavioral tests were carried out to assess the changes in motor function of the mice, and Western blotting was performed to detect the expressions of tyrosine hydroxylase (TH) and α-synuclein (α-syn) in the striatum and nuclear factor-κB (NF-κB), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), and the tight junction proteins ZO-1, Occludin, and Claudinin the colon. HE staining was used to observe inflammatory cell infiltration in the colon of the mice. RNA sequencing analysis was performed to identify the differentially expressed genes in mouse colon tissues, and their expressions were verified using qRT-PCR and Western blotting. RESULTS: The mouse models of PD with NaB treatment showed significantly increased movement speed and pulling strength of the limbs with obviously upregulated expressions of TH, Occludin, and Claudin and downregulated expressions of α-syn, NF-κB, TNF-α, and IL-6 (all P < 0.05). HE staining showed that NaB treatment significantly ameliorated inflammatory cell infiltration in the colon of the PD mice. RNA sequencing suggested that Bmal1 gene probably mediated the neuroprotective effect of NaB in PD mice (P < 0.05). CONCLUSION: NaB can improve motor dysfunction, reduce dopaminergic neuron loss in the striatum, and ameliorate colonic inflammation in PD mice possibly through a mechanism involving Bmal1.


Assuntos
Ácido Butírico , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores , Doença de Parkinson , Animais , Camundongos , Ácido Butírico/farmacologia , Ácido Butírico/uso terapêutico , Masculino , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , NF-kappa B/metabolismo , Interleucina-6/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Tirosina 3-Mono-Oxigenase/genética , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Corpo Estriado/metabolismo , Ocludina/metabolismo , Ocludina/genética , Eixo Encéfalo-Intestino
5.
Brain Res Bull ; 214: 110989, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825252

RESUMO

Parkinson's disease (PD) is a chronic neurodegenerative disease with unclear pathogenesis that involves neuroinflammation and intestinal microbial dysbiosis. Intercellular adhesion molecule-1 (ICAM-1), an inflammatory marker, participates in neuroinflammation during dopaminergic neuronal damage. However, the explicit mechanisms of action of ICAM-1 in PD have not been elucidated. We established a subacute PD mouse model by the intraperitoneal injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and observed motor symptoms and gastrointestinal dysfunction in mice. Immunofluorescence was used to examine the survival of dopaminergic neurons, expression of microglial and astrocyte markers, and intestinal tight junction-associated proteins. Then, we use 16 S rRNA sequencing to identify alterations in the microbiota. Our findings revealed that ICAM-1-specific antibody (Ab) treatment relieved behavioural defects, gastrointestinal dysfunction, and dopaminergic neuronal death in MPTP-induced PD mice. Further mechanistic investigations indicated that ICAM-1Ab might suppress neuroinflammation by inhibiting the activation of astrocytes and microglia in the substantia nigra and relieving colon barrier impairment and intestinal inflammation. Furthermore, 16 S rRNA sequencing revealed that the relative abundances of bacterial Firmicutes, Clostridia, and Lachnospiraceae were elevated in the PD mice. However, ICAM-1Ab treatment ameliorated the MPTP-induced disorders in the intestinal microbiota. Collectively, we concluded that the suppressing ICAM-1 might lead to the a significant decrease of inflammation and restore the gut microbial community, thus ameliorating the damage of DA neurons.


Assuntos
Neurônios Dopaminérgicos , Molécula 1 de Adesão Intercelular , Camundongos Endogâmicos C57BL , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Masculino , Modelos Animais de Doenças , Doenças Neuroinflamatórias/metabolismo , Microbioma Gastrointestinal/fisiologia , Microbioma Gastrointestinal/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Inflamação/metabolismo , Substância Negra/metabolismo , Substância Negra/efeitos dos fármacos , Substância Negra/patologia , Microglia/metabolismo , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Transtornos Parkinsonianos/metabolismo , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/patologia
6.
Acta Neuropathol Commun ; 12(1): 79, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773545

RESUMO

Neurodegenerative diseases have common underlying pathological mechanisms including progressive neuronal dysfunction, axonal and dendritic retraction, and mitochondrial dysfunction resulting in neuronal death. The retina is often affected in common neurodegenerative diseases such as Parkinson's and Alzheimer's disease. Studies have demonstrated that the retina in patients with Parkinson's disease undergoes changes that parallel the dysfunction in the brain. These changes classically include decreased levels of dopamine, accumulation of alpha-synuclein in the brain and retina, and death of dopaminergic nigral neurons and retinal amacrine cells leading to gross neuronal loss. Exploring this disease's retinal phenotype and vision-related symptoms is an important window for elucidating its pathophysiology and progression, and identifying novel ways to diagnose and treat Parkinson's disease. 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is commonly used to model Parkinson's disease in animal models. MPTP is a neurotoxin converted to its toxic form by astrocytes, transported to neurons through the dopamine transporter, where it causes mitochondrial Complex I inhibition and neuron degeneration. Systemic administration of MPTP induces retinal changes in different animal models. In this study, we assessed the effects of MPTP on the retina directly via intravitreal injection in mice (5 mg/mL and 50 mg/mL to 7, 14 and 21 days post-injection). MPTP treatment induced the reduction of retinal ganglion cells-a sensitive neuron in the retina-at all time points investigated. This occurred without a concomitant loss of dopaminergic amacrine cells or neuroinflammation at any of the time points or concentrations tested. The observed neurodegeneration which initially affected retinal ganglion cells indicated that this method of MPTP administration could yield a fast and straightforward model of retinal ganglion cell neurodegeneration. To assess whether this model could be amenable to neuroprotection, mice were treated orally with nicotinamide (a nicotinamide adenine dinucleotide precursor) which has been demonstrated to be neuroprotective in several retinal ganglion cell injury models. Nicotinamide was strongly protective following intravitreal MPTP administration, further supporting intravitreal MPTP use as a model of retinal ganglion cell injury. As such, this model could be utilized for testing neuroprotective treatments in the context of Parkinson's disease and retinal ganglion cell injury.


Assuntos
Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores , Niacinamida , Células Ganglionares da Retina , Animais , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Células Ganglionares da Retina/metabolismo , Niacinamida/farmacologia , Niacinamida/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Masculino , Camundongos , Administração Oral , Injeções Intravítreas , Modelos Animais de Doenças , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/tratamento farmacológico , Intoxicação por MPTP/patologia , Intoxicação por MPTP/metabolismo , Intoxicação por MPTP/tratamento farmacológico
7.
Exp Cell Res ; 439(1): 114088, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38744409

RESUMO

Neuroinflammation mediated by microglia plays an important role in the etiology of Parkinson's disease (PD). Rho family GTPase 3 (RND3) exerts anti-inflammatory effects and may act as a potential new inducer of neuroprotective phenotypes in microglia. However, whether RND3 can be used to regulate microglia activation or reduce neuroinflammation in PD remains elusive. The study investigated the microglia modulating effects and potential anti-inflammatory effects of RND3 in vivo and in vitro, using animal models of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD and cell models of BV-2 cells stimulated by LPS plus IFN-γ with or without RND3-overexpression. The results showed that RND3 was highly expressed in the MPTP-induced PD mouse model and BV-2 cells treated with LPS and IFN-γ. In vivo experiments confirmed that RND3 overexpression could modulate microglia phenotype and ameliorate MPTP-induced neuroinflammation through inhibiting activation of the NLRP3 inflammasome in substantia nigra pars compacta (SNpc). In vitro study showed that RND3 overexpression could attenuate the production of pro-inflammatory factors in BV2 cells stimulated by LPS and IFN-γ. Mechanistically, RND3 reduced the activation of the NLRP3 inflammasome upon LPS and IFN-γ stimulation. Taken together, these findings suggest that RND3 modulates microglial polarization and alleviates neuroinflammation in Parkinson's disease by suppressing NLRP3 inflammasome activation.


Assuntos
Inflamassomos , Camundongos Endogâmicos C57BL , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Doença de Parkinson , Proteínas rho de Ligação ao GTP , Animais , Microglia/metabolismo , Microglia/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Camundongos , Inflamassomos/metabolismo , Masculino , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Lipopolissacarídeos/farmacologia , Modelos Animais de Doenças , Polaridade Celular , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Inflamação/metabolismo , Inflamação/patologia , Inflamação/genética , Interferon gama/metabolismo
8.
Neuroscience ; 549: 65-75, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38750924

RESUMO

Recent evidence has supported a pathogenic role for neuroinflammation in Parkinson's disease (PD). Inflammatory response has been associated with symptoms and subtypes of PD. However, it is unclear whether immune changes are involved in the initial pathogenesis of PD, leading to the non-motor symptoms (NMS) observed in its prodromal stage. The current study aimed to characterize the behavioral and cognitive changes in a toxin-induced model of prodromal PD-like syndrome. We also sought to investigate the role of neuroinflammation in prodromal PD-related NMS. Male mice were subjected to bilateral intranasal infusion with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or saline (control group), followed by comprehensive behavioral, pathological and neurochemical analysis. Intranasal MPTP infusion was able to cause the loss of dopaminergic neurons in the substantia nigra (SN). In parallel, it induced impairment in olfactory discrimination and social memory consolidation, compulsive and anxiety-like behaviors, but did not influence motor performance. Iba-1 and GFAP expressions were increased in the SN, suggesting an activated state of microglia and astrocytes. Consistent with this, MPTP mice had increased levels of IL-10 and IL-17A, and decreased levels of BDNF and TrkA mRNA in the SN. The striatum showed increased IL-17A, BDNF, and NFG levels compared to control mice. In conclusion, neuroinflammation may play an important role in the early stage of experimental PD-like syndrome, leading to cognitive and behavioral changes. Our results also indicate that intranasal administration of MPTP may represent a valuable mouse model for prodromal PD.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Sintomas Prodrômicos , Substância Negra , Animais , Masculino , Substância Negra/metabolismo , Substância Negra/patologia , Substância Negra/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Doenças Neuroinflamatórias/patologia , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Camundongos , Microglia/metabolismo , Microglia/patologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ansiedade/etiologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
9.
Org Lett ; 26(22): 4672-4677, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38787765

RESUMO

Picrachinentins A-F (1-6, respectively), six novel cyclopeptide alkaloid-type burpitides (CPABs), were isolated and fully elucidated from the EtOH extract of the stems and leaves of Picrasma chinensis. Structurally, compounds 1-6 have a 14-membered paracyclophane ring system that was closed through an ether bond between the ß-hydroxy amino acid and tyrosine and modified with a 4,5-methylenedioxybenzoyloxy (MDBz, 3 and 5) or hexanoyl (Hexa, 1, 2, 4, and 6) group at the N-terminus. Interestingly, this is the first report on the isolation and characterization of CPABs from plants of the Simaroubaceae family. In addition, all compounds showed a neuroprotective effect against H2O2-damaged SH-SY5Y cells. Compound 1 was further investigated for its neuroprotective activities using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease animal model, and it dramatically improved MPTP-impaired motor behavioral performance. Biochemical analysis revealed compound 1 restored the tyrosine hydroxylase expression in the striatum of the MPTP-damaged mouse brain, which demonstrates its protective effect on dopaminergic neurons.


Assuntos
Alcaloides , Fármacos Neuroprotetores , Peptídeos Cíclicos , Picrasma , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Animais , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/isolamento & purificação , Camundongos , Picrasma/química , Alcaloides/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Estrutura Molecular , Humanos , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/antagonistas & inibidores , Folhas de Planta/química , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
10.
Mol Biol Rep ; 51(1): 669, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38787465

RESUMO

BACKGROUND: The loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) is a major pathological hallmark of Parkinson's disease (PD). Orexin B (OXB) has been reported to promote the growth of DA neurons. However, the roles of OXB in the degeneration of DA neurons still remained not fully clear. METHODS: An in vivo PD model was constructed by administrating 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in mice. Pole test was performed to investigate the motor function of mice and the number of DA neurons was detected by immunofluorescence (IF). A PD cell model was established by treating SH-SY5Y cells with 1-methyl-4-phenylpyridinium (MPP+). OXB was added to the culture medium 2 h after MPP + treatment. Microscopic analysis was carried out to investigate the function of OXB in the cell model of PD 24 h after MPP + challenge. RNA-Seq analysis of the PD cell model was performed to explore the possible mechanisms. Western blot was used to detect the phosphorylation levels of extracellular signal-regulated kinase (ERK). RESULTS: OXB significantly decreased the DA neurons death caused by MPTP, alleviated MPP+-induced neurotoxicity in SH-SY5Y cells, and robustly enhanced the weight and motor ability of PD mice. Besides, RNA-Seq analysis demonstrated that the mitogen-activated protein kinase (MAPK) pathway was involved in the pathology of PD. Furthermore, MPP + led to increased levels of phosphorylation of ERK (p-ERK), OXB treatment significantly decreased the levels of p-ERK in MPP+-treated SH-SY5Y cells. CONCLUSIONS: This study demonstrated that OXB exerts a neuroprotective role associated with reduced ERK phosphorylation in the PD model. This suggests that OXB may have therapeutic potential for treatment of PD.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Neurônios Dopaminérgicos , MAP Quinases Reguladas por Sinal Extracelular , Orexinas , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Animais , Camundongos , Fosforilação/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Orexinas/metabolismo , Orexinas/farmacologia , Humanos , Masculino , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , 1-Metil-4-fenilpiridínio/toxicidade , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos
11.
Mar Drugs ; 22(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786584

RESUMO

Parkinson's disease (PD) is a prevalent neurodegenerative disorder, and accumulating evidence suggests a link between dysbiosis of the gut microbiota and the onset and progression of PD. In our previous investigations, we discovered that intraperitoneal administration of glucuronomannan oligosaccharides (GMn) derived from Saccharina japonica exhibited neuroprotective effects in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. However, the complicated preparation process, difficulties in isolation, and remarkably low yield have constrained further exploration of GMn. In this study, we optimized the degradation conditions in the preparation process of GMn through orthogonal experiments. Subsequently, an MPTP-induced PD model was established, followed by oral administration of GMn. Through a stepwise optimization, we successfully increased the yield of GMn, separated from crude fucoidan, from 1~2/10,000 to 4~8/1000 and indicated the effects on the amelioration of MPTP-induced motor deficits, preservation of dopamine neurons, and elevation in striatal neurotransmitter levels. Importantly, GMn mitigated gut microbiota dysbiosis induced by MPTP in mice. In particular, GM2 significantly reduced the levels of Akkermansia, Verrucomicrobiota, and Lactobacillus, while promoting the abundance of Roseburia and Prevotella compared to the model group. These findings suggest that GM2 can potentially suppress PD by modulating the gut microbiota, providing a foundation for the development of a novel and effective anti-PD marine drug.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Oligossacarídeos , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Oligossacarídeos/farmacologia , Masculino , Fármacos Neuroprotetores/farmacologia , Disbiose/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Manose/farmacologia , Manose/química , Manose/análogos & derivados , Glucuronatos/farmacologia
12.
Ecotoxicol Environ Saf ; 279: 116446, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38772138

RESUMO

The discovery of MPTP, an industrial chemical and contaminant of illicit narcotics, which causes parkinsonism in humans, non-human primates and rodents, has led to environmental pollutants exposure being convicted as key candidate in Parkinson's disease (PD) pathogenesis. Though MPTP-induced mitochondrial dysfunction and neuroinflammation are mainly responsible for the causative issue of MPTP neurotoxicity, the underlying mechanism involved remains unclear. Here, we reveal a novel signaling mechanism of CDK5-USP30-MAVS regulating MPTP/MPP+ induced PD. MPP+ (the toxic metabolite of MPTP) treatment not only led to the increased protein levels of USP30 but also to mitophagy inhibition, mitochondrial dysfunction, and MAVS-mediated inflammation in BV2 microglial cells. Both mitophagy stimulation (Urolithin A administration) and USP30 knockdown relieved MAVS-mediated inflammation via restoring mitophagy and mitochondrial function in MPP+-induced cell model. Notably, MPTP/MPP+-induced CDK5 activation regulated USP30 phosphorylation at serine 216 to stabilize USP30. Moreover, CDK5-USP30 pathway promoted MAVS-mediated inflammation in MPTP/MPP+-induced PD model. Inhibition of CDK5 not only had a protective effect on MPP+-induced cell model of PD via suppressing the upregulation of USP30 and the activation of MAVS inflammation pathway in vitro, but also prevented neurodegeneration in vivo and alleviated movement impairment in MPTP mouse model of PD. Overall, our study reveal that CDK5 blocks mitophagy through phosphorylating USP30 and activates MAVS inflammation pathway in MPTP/MPP+-induced PD model, which suggests that CDK5-USP30-MAVS signaling pathway represents a valuable treatment strategy for PD induced by environmental neurotoxic pollutants in relation to MPTP.


Assuntos
Quinase 5 Dependente de Ciclina , Inflamação , Mitofagia , Transdução de Sinais , Animais , Masculino , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular , Quinase 5 Dependente de Ciclina/metabolismo , Modelos Animais de Doenças , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitofagia/efeitos dos fármacos , Doença de Parkinson
13.
J Chem Neuroanat ; 138: 102424, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38670441

RESUMO

Neuroinflammation associated with microglial activation plays a role in the development of Parkinson's disease (PD). The upregulation of interferon regulatory factor 8 (IRF8) in microglia following peripheral nerve injury has been observed to induce microglial activation. This suggests the potential therapeutic significance of IRF8 in PD. This research aims to explore the effects of IRF8 on the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model and lipopolysaccharide (LPS)-induced neuroinflammation, along with its underlying mechanisms. The study examines the differential expression of IRF8 and its effects on neuropathological changes using a PD mouse model and a PD model established from BV2 cells in vitro. IRF8 was found to be prominently expressed in the substantia nigra pars compacta (SNpc) region of PD mice and LPS-stimulated BV2 cells, while the expression of tyrosine hydroxylase (TH) and dopamine (DA) content in the SNpc region of PD mice was notably reduced. MPTP treatment and LPS stimulation intensified microglial activation, inflammation, and activation of the AMPK/mTOR signaling pathway in vivo and in vitro, respectively. Upon IRF8 silencing in the PD mouse and cell models, the knockdown of IRF8 ameliorated MPTP-induced behavioral deficits, increased the counts of TH and Nissl-positive neurons and DA content, reduced the number of Iba-1-positive microglia, and reduced the content of inflammatory factors, possibly by inhibiting the AMPK/mTOR signaling pathway. Similar outcomes were observed in the PD cell model. In conclusion, the suppression of IRF8 alleviates neuroinflammation through regulating microglial activation in PD models in vivo and in vitro by the AMPK/mTOR signaling pathway.


Assuntos
Fatores Reguladores de Interferon , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias , Doença de Parkinson , Animais , Microglia/metabolismo , Camundongos , Fatores Reguladores de Interferon/metabolismo , Fatores Reguladores de Interferon/genética , Masculino , Doenças Neuroinflamatórias/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Lipopolissacarídeos , Serina-Treonina Quinases TOR/metabolismo , Técnicas de Silenciamento de Genes , Transdução de Sinais/fisiologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia
14.
Psychogeriatrics ; 24(4): 752-764, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38664198

RESUMO

BACKGROUND: Parkinson's disease (PD) is a prevailing neurodegenerative disorder increasingly affecting the elderly population. The involvement of microRNAs (miRNAs) in PD has been confirmed. We sought to explore the molecular mechanism of miR-20a-5p in PD. METHODS: Lipopolysaccharide (LPS)-induced BV2 cell model and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP-HCl)-induced PD mouse model were established. miR-20a-5p, inducible nitric oxide synthase (iNOS), interleukin (IL)-6, tumour necrosis factor (TNF)-α, transforming growth factor (TGF)-ß1, and IL-10 expression in BV2 cells was examined by reverse transcription - quantitative polymerase chain reaction. Cell viability was assessed by MTT assay. The apoptotic rate and levels of Bcl-2, Bax, cleaved caspase-3, and signal transducer and activator of transmission (STAT)3 were examined by flow cytometry and Western blot. Bioinformatics software predicted the potential binding sites of miR-20a-5p and STAT3. Dual-luciferase experiment verified the binding relationship. Iba1-positive and tyrosine hydroxylase (TH)-positive cell numbers in substantia nigra pars compacta were detected by immunohistochemistry. The effect of miR-20a-5p on motor function in MPTP-induced PD mice was detected by Rota-rod test, Pole test, Traction test and Beam-crossing task. RESULTS: miR-20a-5p was under-expressed in LPS-induced BV2 cells. Overexpression of miR-20a-5p increased the viability of LPS-induced BV2 cells and reduced apoptosis rates. Moreover, overexpression of miR-20a-5p reduced cleaved caspase-3, Bax, iNOS, IL-6, and TNF-α and increased Bcl-2 and TGF-ß1, and IL-10. miR-20a-5p targeted STAT3. STAT3 overexpression partially reversed miR-20a-5p overexpression-mediated effects on LPS-induced BV2 cell viability, apoptosis, and inflammatory responses. miR-20a-5p overexpression inhibited MPTP-induced STAT3 and α-synuclein levels, microglia activation, and inflammatory response, and reduced the loss of TH-positive cells in mice. miR-20a-5p overexpression ameliorated MPTP-induced dyskinesia in PD model mice. CONCLUSION: miR-20a-5p alleviates neuronal damage and suppresses inflammation by targeting STAT3 in PD.


Assuntos
Modelos Animais de Doenças , Lipopolissacarídeos , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Camundongos , Lipopolissacarídeos/farmacologia , Inflamação/patologia , Inflamação/genética , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Neurônios/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Doença de Parkinson/genética , Doença de Parkinson/patologia , Doença de Parkinson/metabolismo , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Microglia/patologia , Substância Negra/patologia , Substância Negra/metabolismo , Substância Negra/efeitos dos fármacos
15.
Gene Ther ; 31(5-6): 324-334, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38627469

RESUMO

Glial cell line-derived neurotrophic factor (GDNF) protects dopaminergic neurons in various models of Parkinson's disease (PD). Cell-based GDNF gene delivery mitigates neurodegeneration and improves both motor and non-motor functions in PD mice. As PD is a chronic condition, this study aims to investigate the long-lasting benefits of hematopoietic stem cell (HSC)-based macrophage/microglia-mediated CNS GDNF (MMC-GDNF) delivery in an MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mouse model. The results indicate that GDNF treatment effectively ameliorated MPTP-induced motor deficits for up to 12 months, which coincided with the protection of nigral dopaminergic neurons and their striatal terminals. Also, the HSC-derived macrophages/microglia were recruited selectively to the neurodegenerative areas of the substantia nigra. The therapeutic benefits appear to involve two mechanisms: (1) macrophage/microglia release of GDNF-containing exosomes, which are transferred to target neurons, and (2) direct release of GDNF by macrophage/microglia, which diffuses to target neurons. Furthermore, the study found that plasma GDNF levels were significantly increased from baseline and remained stable over time, potentially serving as a convenient biomarker for future clinical trials. Notably, no weight loss, altered food intake, cerebellar pathology, or other adverse effects were observed. Overall, this study provides compelling evidence for the long-term therapeutic efficacy and safety of HSC-based MMC-GDNF delivery in the treatment of PD.


Assuntos
Fator Neurotrófico Derivado de Linhagem de Célula Glial , Macrófagos , Microglia , Doença de Parkinson , Animais , Masculino , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Exossomos/metabolismo , Terapia Genética/métodos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/farmacologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial/uso terapêutico , Transplante de Células-Tronco Hematopoéticas/métodos , Células-Tronco Hematopoéticas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doença de Parkinson/terapia , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
16.
Environ Toxicol ; 39(7): 4022-4034, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38622810

RESUMO

Mitochondrial dysfunction, a common cellular hallmark in both familial and sporadic forms of Parkinson's disease (PD), is assumed to play a significant role in pathologic development and progression of the disease. Teaghrelin, a unique bioactive compound in some oolong tea varieties, has been demonstrated to protect SH-SY5Y cells against 1-methyl-4-phenylpyridinium induced neurotoxicity by binding to the ghrelin receptor to activate the AMPK/SIRT1/PGC-1α pathway. In this study, an animal model was established using a neurotoxin, 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP), a byproduct of a prohibited drug, to evaluate the oral efficacy of teaghrelin on PD by monitoring motor dysfunction of mice in open field, pole, and bean walking tests. The results showed that MPTP-induced motor dysfunction of mice was significantly attenuated by teaghrelin supplementation. Tyrosine hydroxylase and dopamine transporter protein were found reduced in the striatum and midbrain of MPTP-treated mice, and significantly mitigated by teaghrelin supplementation. Furthermore, teaghrelin administration enhanced mitophagy and mitochondria biogenesis, which maintained cell homeostasis and prevented the accumulation of αSyn and apoptosis-related proteins. It seemed that teaghrelin protected dopaminergic neurons in MPTP-treated mice by increasing PINK1/Parkin-mediated mitophagy and AMPK/SIRT1/PGC-1α-mediated mitochondria biogenesis, highlighting its potential therapeutic role in maintaining dopaminergic neurons function in PD. Mitochondrial dysfunction, a common cellular hallmark in both familial and sporadic forms of Parkinson's disease (PD), is assumed to play a significant role in pathologic development and progression of the disease. Teaghrelin, a unique bioactive compound in some oolong tea varieties, has been demonstrated to protect SH-SY5Y cells against 1-methyl-4-phenylpyridinium induced neurotoxicity by binding to the ghrelin receptor to activate the AMPK/SIRT1/PGC-1α pathway. In this study, an animal model was established using a neurotoxin, 1-methyl-4phenyl-1,2,3,6-tetrahydropyridine (MPTP), a byproduct of a prohibited drug, to evaluate the oral efficacy of teaghrelin on PD by monitoring motor dysfunction of mice in open field, pole, and bean walking tests. The results showed that MPTP-induced motor dysfunction of mice was significantly attenuated by teaghrelin supplementation. Tyrosine hydroxylase and dopamine transporter protein were found reduced in the striatum and midbrain of MPTP-treated mice, and significantly mitigated by teaghrelin supplementation. Furthermore, teaghrelin administration enhanced mitophagy and mitochondria biogenesis, which maintained cell homeostasis and prevented the accumulation of αSyn and apoptosis-related proteins. It seemed that teaghrelin protected dopaminergic neurons in MPTP-treated mice by increasing PINK1/Parkin-mediated mitophagy and AMPK/SIRT1/PGC-1α-mediated mitochondria biogenesis, highlighting its potential therapeutic role in maintaining dopaminergic neurons function in PD.


Assuntos
Proteínas Quinases Ativadas por AMP , Neurônios Dopaminérgicos , Grelina , Camundongos Endogâmicos C57BL , Mitofagia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas Quinases , Sirtuína 1 , Ubiquitina-Proteína Ligases , Animais , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Sirtuína 1/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Proteínas Quinases/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/patologia , Grelina/farmacologia , Masculino , Mitofagia/efeitos dos fármacos , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Modelos Animais de Doenças , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Fármacos Neuroprotetores/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Biogênese de Organelas , Doença de Parkinson/tratamento farmacológico , Intoxicação por MPTP/tratamento farmacológico , Intoxicação por MPTP/patologia
17.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 107-112, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678615

RESUMO

Parkinson's disease (PD) is defined as a progressive neurodegenerative disease in middle-aged and elderly people. The therapeutic effect of ω-3 PUFAs in several neurodegenerative diseases has been well recognized. Nevertheless, whether nutrition supplementing ω-3 PUFAs exerts a neuroprotective role in PD remains elusive. Bioinformatics revealed 2D chemical structural formula of three components. Mice received indicated treatment with saline, MPTP or ω-3 PUFAs according to grouping. Behavioral function of mice was measured through motor tests such as rearing, akinesia, and rotarod tests. OFT test measured anxiety-like behaviors of mice. Western blotting and TUNEL staining measured dopaminergic fibers and neurons of mice. Western blotting measured inflammation and apoptosis-related protein levels in mouse tissue. FACS measured iTreg cell proportion in colon and brain tissues of mice. ω-3 PUFAs repaired MPTP-stimulated motor function damage in PD mice. ω-3 PUFAs mitigated MPTP-stimulated comorbid anxiety in PD mice. ω-3 PUFAs relieved MPTP-stimulated deficits of dopaminergic fibers and neurons in PD mice. ω-3 PUFAs repressed MPTP-stimulated inflammation and apoptosis pathway activation in PD mice. ω-3 PUFAs repaired MPTP-stimulated immune function damage in PD mice. ω-3 PUFAs exert a protective role in PD mice through alleviating motor function impairment and neuroinflammation by increasing intestinal inducible Treg cells, which may provide a new direction for seeking targeted therapy plans for PD in humans.


Assuntos
Modelos Animais de Doenças , Ácidos Graxos Ômega-3 , Camundongos Endogâmicos C57BL , Doença de Parkinson , Linfócitos T Reguladores , Animais , Ácidos Graxos Ômega-3/farmacologia , Ácidos Graxos Ômega-3/uso terapêutico , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/metabolismo , Camundongos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Masculino , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Apoptose/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Intestinos/efeitos dos fármacos , Intestinos/patologia , Comportamento Animal/efeitos dos fármacos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Inflamação/patologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo
18.
Mol Biol Rep ; 51(1): 593, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683404

RESUMO

BACKGROUND: Parkinson's disease (PD) is a common central nervous system neurodegenerative disease. Neuroinflammation is one of the significant neuropathological hallmarks. As a traditional Chinese medicine, Safranal exerts anti-inflammatory effects in various diseases, however, whether it plays a similar effect on PD is still unclear. The study was to investigate the effects and mechanism of Safranal on PD. METHODS: The PD mouse model was established by 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine MPTP firstly. Next, the degree of muscle stiffness, neuromuscular function, motor retardation and motor coordination ability were examined by observing and testing mouse movement behavior. Immunofluorescence staining was used to observe the expression of tyrosine hydroxylase (TH). The dopamine (DA) content of the striatum was detected by High-performance liquid chromatography (HPLC). The expression of TH and NLRP3 inflammasome-related markers NLRP3, IL-1ß, and Capase-1 were detected by Real-time Polymerase Chain Reaction (qRT-PCR) and western blotting (WB) respectively. RESULTS: Through behavioral testing, Parkinson's mouse showed a higher muscle stiffness and neuromuscular tension, a more motor retardation and activity disorders, together with a worse motor coordination compared with sham group. Simultaneously, DA content and TH expression in the striatum were decreased. However, after using Safranal treatment, the above pathological symptoms of Parkinson's mouse all improved compared with Safranal untreated group, the DA content and TH expression were also increased to varying degrees. Surprisingly, it observed a suppression of NLRP3 inflammation in the striatum of Parkinson's mouse. CONCLUSIONS: Safranal played a neuroprotective effect on the Parkinson's disease and its mechanism was related to the inhibition of NLRP3 inflammasome activation.


Assuntos
Cicloexenos , Modelos Animais de Doenças , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Fármacos Neuroprotetores , Doença de Parkinson , Terpenos , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Terpenos/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Masculino , Cicloexenos/farmacologia , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Dopamina/metabolismo , Corpo Estriado/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Interleucina-1beta/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Caspase 1/metabolismo
19.
Free Radic Biol Med ; 218: 190-204, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38574977

RESUMO

Dysfunction of the Na+/K+-ATPase (NKA) has been documented in various neurodegenerative diseases, yet the specific role of NKAα1 in Parkinson's disease (PD) remains incompletely understood. In this investigation, we utilized NKAα1 haploinsufficiency (NKAα1+/-) mice to probe the influence of NKAα1 on dopaminergic (DA) neurodegeneration induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Our findings reveal that NKAα1+/- mice displayed a heightened loss of DA neurons and more pronounced motor dysfunction compared to the control group when exposed to MPTP. Intriguingly, this phenomenon coincided with the activation of ferroptosis and impaired mitophagy both in vivo and in vitro. To scrutinize the role and underlying mechanism of NKAα1 in PD, we employed DR-Ab, an antibody targeting the DR-region of the NKA α subunit. Our study demonstrates that the administration of DR-Ab effectively reinstated the membrane abundance of NKAα1, thereby mitigating MPTP-induced DA neuron loss and subsequent improvement in behavioral deficit. Mechanistically, DR-Ab heightened the formation of the surface NKAα1/SLC7A11 complex, inhibiting SLC7A11-dependent ferroptosis. Moreover, DR-Ab disrupted the cytosolic interaction between NKAα1 and Parkin, facilitating the translocation of Parkin to mitochondria and enhancing the process of mitophagy. In conclusion, this study establishes NKAα1 as a key regulator of ferroptosis and mitophagy, identifying its DR-region as a promising therapeutic target for PD.


Assuntos
Neurônios Dopaminérgicos , Ferroptose , Mitofagia , Doença de Parkinson , ATPase Trocadora de Sódio-Potássio , Animais , Mitofagia/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Camundongos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/genética , Doença de Parkinson/tratamento farmacológico , Humanos , Masculino , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mitocôndrias/efeitos dos fármacos , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Haploinsuficiência , Camundongos Knockout
20.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 100-106, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38678620

RESUMO

Nervonic acid (NA) is a primary long-chain fatty acid and has been confirmed to have neuroprotective effects in neurologic diseases. Oxidative stress and neuronal damage are the main causes of Parkinson's disease (PD). This study mainly explored whether NA is involved in regulating oxidative stress and apoptosis in MPTP-induced mouse model and MPP-induced cell model. Through behavior tests, we proved that MPTP-induced motor dysfunction in mice was recovered by NA treatment. NA can reduce MPTP-induced neuronal damage, manifested by elevated levels of TH and dopamine, as well as decreased levels of α-syn. In the in vitro model, we observed from CCK8 assay and flow cytometry that the induction of MPP markedly suppressed cell activity and enhanced cell apoptosis, but these functions were all reversed by NA. Furthermore, NA administration reversed the increase in ROS production and MDA levels induced by MPTP or MPP, as well as the decrease in SOD levels, suggesting the antioxidant properties of NA in PD. Meanwhile, we confirmed that NA can regulate oxidative stress and neuronal damage by activating the MEK/ERK pathway. Overall, we concluded that NA could alleviate MPTP-induced PD via MEK/ERK pathway.


Assuntos
Sistema de Sinalização das MAP Quinases , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Animais , Masculino , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos Monoinsaturados/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA