Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 910
Filtrar
1.
Eur J Endocrinol ; 191(3): 288-299, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39219353

RESUMO

BACKGROUND: Adrenal-origin and peripheral tissue-transformed 11-oxygenated androgens are recognized as significant androgens. However, our current understanding of the synthesis of 11-oxygenated androgens, including the organs and cell types involved, remains limited. METHODS: We performed comprehensive analyses on an extensive dataset of normal human tissues, which included bulk RNA data from 30 tissues, single-cell RNA sequencing (scRNA) data from 16 tissues and proteomics data from 29 tissues, to characterize the expression profiles of enzyme-encoding genes. To validate the findings, immunohistochemical and liquid chromatography-tandem mass spectrometry (LC-MS/MS) techniques were employed. RESULTS: Our investigation revealed that the gene expression levels of the enzymes HSD11B2 and AKR1C3 were notably elevated in the kidney and intestines. Intriguingly, within these organs, we observed an increasing trend in enzyme expression with age in women, while a decreasing trend was apparent in men. scRNA analysis revealed that HSD11B2 was predominantly expressed in collecting duct principal cells in the kidney, while AKR1C3 was primarily expressed in the proximal tubules. Intriguingly, nearly all epithelial cells in the intestine expressed these key enzymes. Further analysis using LC-MS/MS revealed that the kidney exhibited the highest levels of 11-ketoandrostenedione (11KA4) and 11-ketotestosterone (11KT) among the seven tissues examined, and substantial synthesis of 11KA4 and 11KT was also observed in the intestine. Finally, we developed the TransMap website (http://gxmujyzmolab.cn:16245/TransMap/) to provide comprehensive visualization of all currently available transcriptome data. CONCLUSION: This study offers an overarching perspective on tracing the synthesis of 11-oxygenated androgens in peripheral tissues, thereby providing valuable insights into the potential role of these androgens in humans.


Assuntos
Membro C3 da Família 1 de alfa-Ceto Redutase , Androgênios , Espectrometria de Massas em Tandem , Humanos , Cromatografia Líquida , Masculino , Membro C3 da Família 1 de alfa-Ceto Redutase/metabolismo , Membro C3 da Família 1 de alfa-Ceto Redutase/genética , Feminino , Androgênios/biossíntese , Androgênios/metabolismo , Rim/metabolismo , Rim/enzimologia , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Adulto , Pessoa de Meia-Idade , Expressão Gênica , Espectrometria de Massa com Cromatografia Líquida
2.
J Exp Biol ; 227(16)2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39092490

RESUMO

Stress-induced increases in cortisol can stimulate or inhibit brain cell proliferation, but the mechanisms behind these opposing effects are unknown. We tested the hypothesis that 11ß-hydroxysteroid dehydrogenase type 2 (Hsd11b2), a glucocorticoid-inactivating enzyme expressed in neurogenic regions of the adult zebrafish brain, mitigates cortisol-induced changes to brain cell proliferation, using one of three stress regimes: a single 1 min air exposure (acute stress), two air exposures spaced 24 h apart (repeat acute stress) or social subordination (chronic stress). Plasma cortisol was significantly elevated 15 min after air exposure and recovered within 24 h after acute and repeat acute stress, whereas subordinate fish exhibited significant and sustained elevations relative to dominant fish for 24 h. Following acute stress, brain hsd11b2 transcript abundance was elevated up to 6 h after a single air exposure but was unchanged by repeat acute stress or social subordination. A sustained increase in brain Hsd11b2 protein levels occurred after acute stress, but not after repeat or chronic stress. Following acute and repeat acute stress, brain pcna transcript abundance (a marker of cell proliferation) exhibited a prolonged elevation, but was unaffected by social subordination. Interestingly, the number of telencephalic BrdU+ cells increased in fish after a single air exposure but was unchanged by repeat acute stress. Following acute and repeat acute stress, fish expressed lower brain glucocorticoid and mineralocorticoid receptor (gr and mr) transcript abundance while subordinate fish exhibited no changes. Taken together, these results demonstrate stressor-specific regulation of Hsd11b2 in the zebrafish brain that could modulate rates of cortisol catabolism contributing to observed differences in brain cell proliferation.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Encéfalo , Proliferação de Células , Hidrocortisona , Estresse Fisiológico , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Peixe-Zebra/fisiologia , Hidrocortisona/farmacologia , Hidrocortisona/metabolismo , Proliferação de Células/efeitos dos fármacos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Encéfalo/metabolismo , Masculino , Proteínas de Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Feminino
3.
SAR QSAR Environ Res ; 35(7): 641-663, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39139138

RESUMO

Resveratrol is converted to various metabolites by gut microbiota. Human and rat liver 11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) are critical for glucocorticoid activation, while 11ß-HSD2 in the kidney does the opposite reaction. It is still uncertain whether resveratrol and its analogues selectively inhibit 11ß-HSD1. In this study, the inhibitory strength, mode of action, structure-activity relationship (SAR), and docking analysis of resveratrol analogues on human, rat, and mouse 11ß-HSD1 and 11ß-HSD2 were performed. The inhibitory strength of these chemicals on human 11ß-HSD1 was dihydropinosylvin (6.91 µM) > lunularin (45.44 µM) > pinostilbene (46.82 µM) > resveratrol (171.1 µM) > pinosylvin (193.8 µM) > others. The inhibitory strength of inhibiting rat 11ß-HSD1 was pinostilbene (9.67 µM) > lunularin (17.39 µM) > dihydropinosylvin (19.83 µM) > dihydroresveratrol (23.07 µM) > dihydroxystilbene (27.84 µM) > others and dihydropinosylvin (85.09 µM) and pinostilbene (>100 µM) inhibited mouse 11ß-HSD1. All chemicals did not inhibit human, rat, and mouse 11ß-HSD2. It was found that dihydropinosylvin, lunularin, and pinostilbene were competitive inhibitors of human 11ß-HSD1 and that pinostilbene, lunularin, dihydropinosylvin, dihydropinosylvin and dihydroxystilbene were mixed inhibitors of rat 11ß-HSD1. Docking analysis showed that they bind to the steroid-binding site of human and rat 11ß-HSD1. In conclusion, resveratrol and its analogues can selectively inhibit human and rat 11ß-HSD1, and mouse 11ß-HSD1 is insensitive to the inhibition of resveratrol analogues.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Simulação de Acoplamento Molecular , Resveratrol , Estilbenos , Resveratrol/análogos & derivados , Resveratrol/farmacologia , Resveratrol/química , Animais , Humanos , Ratos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Camundongos , Estilbenos/química , Estilbenos/farmacologia , Simulação de Dinâmica Molecular , Relação Estrutura-Atividade , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Relação Quantitativa Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química
4.
Domest Anim Endocrinol ; 89: 106875, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39116532

RESUMO

The activity of the enzyme 11ß-hydroxysteroid dehydrogenase type II (11ß-HSD type II), which can be estimated by the combined measurement of cortisol and cortisone, is gaining importance as a marker for the assessment of stress in pigs. The aim of this study was to investigate the activity of this enzyme and the salivary concentrations of cortisol and cortisone in pigs during pregnancy, farrowing and lactation and to compare it with other stress-related biomarkers such as Chromogranin A (CgA), S100A12 and alpha-amylase. Salivary cortisone concentrations and 11ß-HSD type II activity decreased after farrowing, while cortisol concentrations increased. Enzyme activity did not show significant correlations with any of the other stress-related biomarkers measured in this study. Overall, the results of this report indicate a different regulation of 11ß-HSD type II activity and of cortisol and cortisone during pregnancy and lactation, which should be considered when evaluating these analytes in saliva during these periods.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Cortisona , Hidrocortisona , Lactação , Saliva , Animais , Feminino , Cortisona/metabolismo , Cortisona/análise , Hidrocortisona/metabolismo , Hidrocortisona/análise , Lactação/fisiologia , Gravidez , Saliva/química , Saliva/enzimologia , Suínos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Prenhez/metabolismo , Biomarcadores/análise
5.
J Steroid Biochem Mol Biol ; 244: 106610, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39214289

RESUMO

Cell culture experiments can support characterization of enzymatic activities in healthy and tumorous human tissues. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) enables simultaneous measurement of several steroids from a single sample, facilitating analysis of molecular pathways involved in steroid biosynthesis. We developed a reliable but fast method for quantification of cortisol, cortisone and aldosterone in cell culture supernatant. Validation, including investigation of matrix-matched calibration, was performed for two different cell types. Utility of the method was demonstrated in the study of 11ß-hydroxysteroid dehydrogenase type 2 (HSD11B2) activity under conditions of glucocorticoid and mineralocorticoid excess in different cell types. Aldosterone, cortisol and cortisone were extracted by liquid-liquid extraction (LLE) with methyl tert-butyl ether from 1 mL of cell culture supernatant. Steroids were separated on a Kinetex biphenyl column (50 ×2.1 mm, 2.6 µm) with gradient elution of water and methanol containing 2 mM ammonium format and analysed in multiple reaction monitoring mode after positive electrospray ionization. Application of the method included cell culture experiments with two different primary cell types, human coronary artery smooth muscle cells (HCSMC) and human coronary artery endothelial cells (EC). Cells were treated with different concentrations of cortisol, aldosterone and mifepristone, a glucocorticoid receptor antagonist and quantitative PCR was performed. The method exhibits high precision (CV ≤ 6 %) and accuracy (deviation from nominal concentration ≤ 6 %) for concentrations above the limit of quantification (LoQ) which is 0.11, 0.56 and 0.69 nmol/L for aldosterone, cortisone and cortisol, respectively. Calibration curves did not differ when prepared in media or solvent. The method enabled us to confirm activity of HSD11B2 and concentration dependent conversion of cortisol to cortisone in HCSMC (median conversion ratio at 140 nM cortisol = 1.46 %). In contrast we did not observe any HSD11B2 activity in EC. Neither addition of high aldosterone, nor addition of 1 µM mifepristone had impact on glucocorticoid concentrations. Quantitative PCR revealed expression of HSD11B1 and HSD11B2 in HCSMC but not in EC. We present a fast and reliable method for quantification of cortisol, cortisone and aldosterone in cell culture supernatants. The method enabled us to study HSD11B2 activity in two different cell types and will support future experiments investigating mechanisms of target organ damage in conditions of glucocorticoid and mineralocorticoid excess.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Aldosterona , Cortisona , Hidrocortisona , Espectrometria de Massas em Tandem , Humanos , Cortisona/metabolismo , Cortisona/análise , Hidrocortisona/metabolismo , Aldosterona/metabolismo , Espectrometria de Massas em Tandem/métodos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Cromatografia Líquida/métodos , Cultura Primária de Células , Células Cultivadas , Espectrometria de Massa com Cromatografia Líquida
6.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-39000561

RESUMO

Pseudohyperaldosteronism (PHA) is characterized by hypertension, hypokalemia, and a decrease in plasma renin and aldosterone levels. It can be caused by several causes, but the most frequent is due to excess intake of licorice. The effect is mediated by the active metabolite of licorice, glycyrrhetinic acid (GA), which acts by blocking the 11-hydroxysteroid dehydrogenase type 2 and binding to the mineralocorticoid receptor (MR) as an agonist. The management of licorice-induced PHA depends on several individual factors, such as age, gender, comorbidities, duration and amount of licorice intake, and metabolism. The clinical picture usually reverts upon licorice withdrawal, but sometimes mineralocorticoid-like effects can be critical and persist for several weeks, requiring treatment with MR blockers and potassium supplements. Through this case series of licorice-induced PHA, we aim to increase awareness about exogenous PHA, and the possible risk associated with excess intake of licorice. An accurate history is mandatory in patients with hypertension and hypokalemia to avoid unnecessary testing. GA is a component of several products, such as candies, breath fresheners, beverages, tobacco, cosmetics, and laxatives. In recent years, the mechanisms of action of licorice and its active compounds have been better elucidated, suggesting its benefits in several clinical settings. Nevertheless, licorice should still be consumed with caution, considering that licorice-induced PHA is still an underestimated condition, and its intake should be avoided in patients with increased risk of licorice toxicity due to concomitant comorbidities or interfering drugs.


Assuntos
Ácido Glicirretínico , Glycyrrhiza , Hiperaldosteronismo , Humanos , Glycyrrhiza/efeitos adversos , Feminino , Masculino , Pessoa de Meia-Idade , Ácido Glicirretínico/farmacologia , Adulto , Hipopotassemia/induzido quimicamente , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Idoso , Hipertensão , Aldosterona/metabolismo , Aldosterona/sangue , Renina/sangue , Renina/metabolismo
7.
J Steroid Biochem Mol Biol ; 243: 106568, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38866188

RESUMO

The mineralocorticoid receptor (MR, NR3C2) mediates ion and water homeostasis in epithelial cells of the distal nephron and other tissues. Aldosterone, the prototypical mineralocorticoid, regulates electrolyte and fluid balance. Cortisol binds to MR with equal affinity to aldosterone, but many MR-expressing tissues inactivate cortisol to cortisone via 11ß-hydroxysteroid dehydrogenase type 2 (HSD11B2). Dysregulated MR activation contributes to direct cardiovascular tissue insults. Besides aldosterone and cortisol, a variety of MR agonists and/or HSD11B2 inhibitors are putative players in the pathophysiology of low-renin hypertension (LRH), and cardiovascular and metabolic pathology. We developed an in vitro human MR (hMR) model, to facilitate screening for MR agonists, antagonists, and HSD11B2 inhibitors. The CV1 monkey kidney cells were transduced with lentivirus to stably express hMR and an MR-responsive gaussia luciferase gene. Clonal populations of MR-expressing cells (CV1-MRluc) were further transduced to express HSD11B2 (CV1-MRluc-HSD11B2). CV1-MRluc and CV1-MRluc-HSD11B2 cells were treated with aldosterone, cortisol, 11-deoxycorticosterone (DOC), 18-hydroxycorticosterone (18OHB), 18-hydroxycortisol (18OHF), 18-oxocortisol (18oxoF), progesterone, or 17-hydroxyprogesterone (17OHP). In CV1-MRLuc cells, aldosterone and DOC displayed similar potency (EC50: 0.45 nM and 0.30 nM) and maximal response (31- and 23-fold increase from baseline) on hMR; 18oxoF and 18OHB displayed lower potency (19.6 nM and 56.0 nM, respectively) but similar maximal hMR activation (25- and 27-fold increase, respectively); cortisol and corticosterone exhibited higher maximal responses (73- and 52-fold, respectively); 18OHF showed no MR activation. Progesterone and 17OHP inhibited aldosterone-mediated MR activation. In the MRluc-HSD11B2 model, the EC50 of cortisol for MR activation increased from 20 nM (CV1-MRLuc) to ∼2000 nM, while the EC50 for aldosterone remained unchanged. The addition of 18ß-glycyrrhetinic acid (18ß-GA), a HSD11B2 inhibitor, restored the potency of cortisol back to ∼70 nM in CV1-hMRLuc-HSD11B2 cells. Together, these two cell models will facilitate the discovery of novel MR-modulators, informing MR-mediated pathophysiology mechanisms and drug development efforts.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Aldosterona , Antagonistas de Receptores de Mineralocorticoides , Receptores de Mineralocorticoides , Receptores de Mineralocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/agonistas , Humanos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/antagonistas & inibidores , Aldosterona/metabolismo , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Animais , Hidrocortisona/metabolismo , Hidrocortisona/farmacologia , Linhagem Celular
8.
Mol Cell Endocrinol ; 592: 112323, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38936597

RESUMO

Mineralocorticoids play a key role in hydromineral balance by regulating sodium retention and potassium wasting. Through favoring sodium, mineralocorticoids can cause hypertension from fluid overload under conditions of hyperaldosteronism, such as aldosterone-secreting tumors. An often-overlooked mechanism by which aldosterone functions to increase sodium is through stimulation of salt appetite. To drive sodium intake, aldosterone targets neurons in the hindbrain which uniquely express 11ß-hydroxysteroid dehydrogenase type 2 (HSD2). This enzyme is a necessary precondition for aldosterone-sensing cells as it metabolizes glucocorticoids - preventing their activation of the mineralocorticoid receptor. In this review, we will consider the role of hindbrain HSD2 neurons in regulating sodium appetite by discussing HSD2 expression in the brain, regulation of hindbrain HSD2 neuron activity, and the circuitry mediating the effects of these aldosterone-sensitive neurons. Reducing the activity of hindbrain HSD2 neurons may be a viable strategy to reduce sodium intake and cardiovascular risk, particularly for conditions of hyperaldosteronism.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Aldosterona , Apetite , Neurônios , Rombencéfalo , Rombencéfalo/metabolismo , Animais , Aldosterona/metabolismo , Neurônios/metabolismo , Humanos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Sódio/metabolismo
9.
Ecotoxicol Environ Saf ; 279: 116485, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38788564

RESUMO

OBJECTIVE: To investigate the effects of excessive light exposure during gestation on intrauterine development and early growth of neonates in rats. METHODS: Pregnant rats were randomly allocated to three groups: the constant light exposure group, non-light exposure group and control group. Blood samples were collected from the tail vein to analyze melatonin and cortisol levels. Weight, daily food and water consumption were recorded. Uterine weight, placental weight and placental diameter were measured on gestational day 19. Natural birth and neonate growth were also monitored. The expression of NR1D1(nuclear receptor subfamily 1 group D member 1) in offspring's SCN (suprachiasmatic nuclei), liver and adipose tissue was measured. Expression of NR1D1, MT1(melatonin 1 A receptor) and 11ß-HSD2 (placental 11ß-hydroxysteroid dehydrogenase type 2) in placenta was also measured. Finally, the expression of MT1 and 11ß-HSD2 in NR1D1 siRNA transfected JEG-3 cells was evaluated. RESULTS: There were no significant differences in maternal weight gain, pregnancy duration, uterine weight, placental body weight, placental diameter, fetal number among three groups. There were no significant differences in weights or lengths of offspring at birth. Compared to other two groups, constant light exposure group showed significantly more rapid growth of offspring in 21st day post-birth. The expression of NR1D1 in SCN, liver and adipose tissues of offspring was not significantly different among three groups. The maternal serum melatonin and cortisol levels of the constant light exposure group were lower and higher than other two groups, respectively. The expressions of NR1D1, MT1 and 11ß-HSD2 were all decreased in placenta of the constant light exposure group. The expression of MT1 and 11ß-HSD2 in JEG-3 cells were decreased after NR1D1 siRNA transfection. CONCLUSION: Excessive light exposure during pregnancy results in elevated cortisol and reduced melatonin exposure to fetuses in uterus, potentially contributing to an accelerated early growth of offspring in rats.


Assuntos
Luz , Melatonina , Placenta , Animais , Feminino , Gravidez , Ratos , Placenta/efeitos da radiação , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Desenvolvimento Fetal/efeitos da radiação , Ratos Sprague-Dawley , Hidrocortisona/sangue , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Efeitos Tardios da Exposição Pré-Natal , Receptor MT1 de Melatonina/metabolismo , Animais Recém-Nascidos , Exposição Materna , Masculino
10.
FASEB J ; 38(11): e23714, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38814727

RESUMO

Preeclampsia (PE) is a complex human-specific complication frequently associated with placental pathology. The local renin-angiotensin system (RAS) in the human placenta, which plays a crucial role in regulating placental function, has been extensively documented. Glucocorticoids (GCs) are a class of steroid hormones. PE cases often have abnormalities in GCs levels and placental GCs barrier. Despite extensive speculation, there is currently no robust evidence indicating that GCs regulate placental RAS. This study aims to investigate these potential relationships. Plasma and placental samples were collected from both normal and PE pregnancies. The levels of angiotensin-converting enzyme (ACE), angiotensin II (Ang II), cortisol, and 11ß-hydroxysteroid dehydrogenases (11ßHSD) were analyzed. In PE placentas, cortisol, ACE, and Ang II levels were elevated, while 11ßHSD2 expression was reduced. Interestingly, a positive correlation was observed between ACE and cortisol levels in the placenta. A significant inverse correlation was found between the methylation statuses within the 11ßHSD2 gene promoter and its expression, meanwhile, 11ßHSD2 expression was negatively correlated with cortisol and ACE levels. In vitro experiments using placental trophoblast cells confirmed that active GCs can stimulate ACE transcription and expression through the GR pathway. Furthermore, 11ßHSD2 knockdown could enhance this activating effect. An in vivo study using a rat model of intrauterine GCs overexposure during mid-to-late gestation suggested that excess GCs in utero lead to increased ACE and Ang II levels in the placenta. Collectively, this study provides the first evidence of the relationships between 11ßHSD2 expression, GCs barrier, ACE, and Ang II levels in the placenta. It not only contributes to understanding the pathological features of the placental GCs barrier and RAS under PE conditions, also provides important information for revealing the pathological mechanism of PE.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Angiotensina II , Metilação de DNA , Peptidil Dipeptidase A , Placenta , Pré-Eclâmpsia , Gravidez , Feminino , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/patologia , Humanos , Angiotensina II/metabolismo , Placenta/metabolismo , Animais , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Ratos , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/genética , Adulto , Regulação para Baixo , Sistema Renina-Angiotensina/genética , Sistema Renina-Angiotensina/fisiologia , Hidrocortisona/metabolismo , Ratos Sprague-Dawley
11.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791098

RESUMO

The similarity of the clinical picture of metabolic syndrome and hypercortisolemia supports the hypothesis that obesity may be associated with impaired expression of genes related to cortisol action and metabolism in adipose tissue. The expression of genes encoding the glucocorticoid receptor alpha (GR), cortisol metabolizing enzymes (HSD11B1, HSD11B2, H6PDH), and adipokines, as well as selected microRNAs, was measured by real-time PCR in adipose tissue from 75 patients with obesity, 19 patients following metabolic surgery, and 25 normal-weight subjects. Cortisol levels were analyzed by LC-MS/MS in 30 pairs of tissues. The mRNA levels of all genes studied were significantly (p < 0.05) decreased in the visceral adipose tissue (VAT) of patients with obesity and normalized by weight loss. In the subcutaneous adipose tissue (SAT), GR and HSD11B2 were affected by this phenomenon. Negative correlations were observed between the mRNA levels of the investigated genes and selected miRNAs (hsa-miR-142-3p, hsa-miR-561, and hsa-miR-579). However, the observed changes did not translate into differences in tissue cortisol concentrations, although levels of this hormone in the SAT of patients with obesity correlated negatively with mRNA levels for adiponectin. In conclusion, although the expression of genes related to cortisol action and metabolism in adipose tissue is altered in obesity and miRNAs may be involved in this process, these changes do not affect tissue cortisol concentrations.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Hidrocortisona , MicroRNAs , Obesidade , Receptores de Glucocorticoides , Humanos , Hidrocortisona/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Obesidade/metabolismo , Obesidade/genética , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Tecido Adiposo/metabolismo , Gordura Intra-Abdominal/metabolismo , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Desidrogenases de Carboidrato
12.
J Steroid Biochem Mol Biol ; 241: 106521, 2024 07.
Artigo em Inglês | MEDLINE | ID: mdl-38631601

RESUMO

Increased cortisol levels in the preovulatory follicular fluid suggests a role of glucocorticoid in human ovulation. However, the mechanisms through which cortisol regulates the ovulatory process remain poorly understood. In this study, we examined the upregulation of f5 mRNA by glucocorticoid and its receptor (Gr) in the preovulatory follicles of zebrafish. Our findings demonstrate a significant increase in 11ß-hydroxysteroid dehydrogenase type 2 (hsd11b2), a cortisol response gene, in preovulatory follicles. Additionally, hydrocortisone exerts a dose- and time-dependent upregulation of f5 mRNA in these follicles. Importantly, this stimulatory effect is Gr-dependent, as it was completely abolished in gr-/- mutants. Furthermore, site-directed mutagenesis identified a glucocorticoid response element (GRE) in the promoter of zebrafish f5. Interestingly, successive incubation of hydrocortisone and the native ovulation-inducing steroid, progestin (17α,20ß-dihydroxy-4-pregnen-3-one, DHP), further enhanced f5 expression in preovulatory follicles. Overall, our results indicate that the dramatic increase of f5 expression in preovulatory follicles is partially attributable to the regulation of glucocorticoid and Gr.


Assuntos
Glucocorticoides , Hidrocortisona , Folículo Ovariano , Receptores de Glucocorticoides , Regulação para Cima , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Folículo Ovariano/metabolismo , Folículo Ovariano/efeitos dos fármacos , Feminino , Glucocorticoides/farmacologia , Regulação para Cima/efeitos dos fármacos , Receptores de Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Hidrocortisona/farmacologia , Hidrocortisona/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Ovulação/efeitos dos fármacos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Regiões Promotoras Genéticas
13.
Eur J Endocrinol ; 190(5): 347-353, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38652803

RESUMO

BACKGROUND AND OBJECTIVE: Apparent mineralocorticoid excess (AME) syndrome is an ultra-rare autosomal-recessive tubulopathy, caused by mutations in HSD11B2, leading to excessive activation of the kidney mineralocorticoid receptor, and characterized by early-onset low-renin hypertension, hypokalemia, and risk of chronic kidney disease (CKD). To date, most reports included few patients, and none described patients from Israel. We aimed to describe AME patients from Israel and to review the relevant literature. DESIGN: Retrospective cohort study. METHODS: Clinical, laboratory, and molecular data from patients' records were collected. RESULTS: Five patients presented at early childhood with normal estimated glomerular filtration rate (eGFR), while 2 patients presented during late childhood with CKD. Molecular analysis revealed 2 novel homozygous mutations in HSD11B2. All patients presented with severe hypertension and hypokalemia. While all patients developed nephrocalcinosis, only 1 showed hypercalciuria. All individuals were managed with potassium supplements, mineralocorticoid receptor antagonists, and various antihypertensive medications. One patient survived cardiac arrest secondary to severe hyperkalemia. At last follow-up, those 5 patients who presented early exhibited normal eGFR and near-normal blood pressure, but 2 have hypertension complications. The 2 patients who presented with CKD progressed to end-stage kidney disease (ESKD) necessitating dialysis and kidney transplantation. CONCLUSIONS: In this 11-year follow-up report of 2 Israeli families with AME, patients who presented early maintained long-term normal kidney function, while those who presented late progressed to ESKD. Nevertheless, despite early diagnosis and management, AME is commonly associated with serious complications of the disease or its treatment.


Assuntos
Síndrome de Excesso Aparente de Minerolocorticoides , Humanos , Israel/epidemiologia , Masculino , Feminino , Síndrome de Excesso Aparente de Minerolocorticoides/genética , Síndrome de Excesso Aparente de Minerolocorticoides/diagnóstico , Estudos Retrospectivos , Criança , Pré-Escolar , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Adolescente , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/terapia , Mutação , Hipertensão/epidemiologia , Hipopotassemia , Adulto
14.
Psychoneuroendocrinology ; 166: 107060, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38677195

RESUMO

BACKGROUND: The placenta acts as a buffer to regulate the degree of fetal exposure to maternal cortisol through the 11-Beta Hydroxysteroid Dehydrogenase isoenzyme type 2 (11-ß HSD2) enzyme. We conducted a systematic review and meta-analysis to assess the effect of prenatal psychological distress (PPD) on placental 11-ß HSD2 gene expression and explore the related mechanistic pathways involved in fetal neurodevelopment. METHODS: We searched PubMed, Embase, Scopus, APA PsycInfo®, and ProQuest Dissertations for observational studies assessing the association between PPD and 11-ß HSD2 expression in human placentas. Adjusted regression coefficients (ß) and corresponding 95% confidence intervals (CIs) were pooled based on three contextual PPD exposure groups: prenatal depression, anxiety symptoms, and perceived stress. RESULTS: Of 3159 retrieved records, sixteen longitudinal studies involving 1869 participants across seven countries were included. Overall, exposure to PPD disorders showed weak negative associations with the placental 11-ß HSD2 gene expression as follows: prenatal depression (ß -0.01, 95% CI 0.05-0.02, I2=0%), anxiety symptoms (ß -0.02, 95% CI 0.06-0.01, I2=0%), and perceived stress (ß -0.01 95% CI 0.06-0.04, I2=62.8%). Third-trimester PPD exposure was more frequently associated with lower placental 11-ß HSD2 levels. PPD and placental 11-ß HSD2 were associated with changes in cortisol reactivity and the development of adverse health outcomes in mothers and children. Female-offspring were more vulnerable to PPD exposures. CONCLUSION: The study presents evidence of a modest role of prenatal psychological distress in regulating placental 11-ß HSD2 gene expression. Future prospective cohorts utilizing larger sample sizes or advanced statistical methods to enhance the detection of small effect sizes should be planned. Additionally, controlling for key predictors such as the mother's ethnicity, trimester of PPD exposure, mode of delivery, and infant sex is crucial for valid exploration of PPD effects on fetal programming.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Placenta , Complicações na Gravidez , Angústia Psicológica , Estresse Psicológico , Humanos , Gravidez , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Feminino , Placenta/metabolismo , Estresse Psicológico/metabolismo , Estresse Psicológico/genética , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Complicações na Gravidez/psicologia , Depressão/genética , Depressão/metabolismo , Expressão Gênica/genética , Ansiedade/genética , Ansiedade/metabolismo , Hidrocortisona/metabolismo , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/metabolismo
15.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38473937

RESUMO

Prenatal alcohol exposure (PAE) and prenatal stress (PS) are highly prevalent conditions known to affect fetal programming of the hypothalamic-pituitary-adrenal (HPA) axis. The objectives of this study were to assess the effect of light PAE, PS, and PAE-PS interaction on fetal HPA axis activity assessed via placental and umbilical cord blood biomarkers. Participants of the ENRICH-2 cohort were recruited during the second trimester and classified into the PAE and unexposed control groups. PS was assessed by the Perceived Stress Scale. Placental tissue was collected promptly after delivery; gene and protein analysis for 11ß-HSD1, 11ß-HSD2, and pCRH were conducted by qPCR and ELISA, respectively. Umbilical cord blood was analyzed for cortisone and cortisol. Pearson correlation and multivariable linear regression examined the association of PAE and PS with HPA axis biomarkers. Mean alcohol consumption in the PAE group was ~2 drinks/week. Higher PS was observed in the PAE group (p < 0.01). In multivariable modeling, PS was associated with pCRH gene expression (ß = 0.006, p < 0.01), while PAE was associated with 11ß-HSD2 protein expression (ß = 0.56, p < 0.01). A significant alcohol-by-stress interaction was observed with respect to 11ß-HSD2 protein expression (p < 0.01). Results indicate that PAE and PS may independently and in combination affect fetal programming of the HPA axis.


Assuntos
Doenças Fetais , Efeitos Tardios da Exposição Pré-Natal , Testes Psicológicos , Autorrelato , Humanos , Gravidez , Feminino , Placenta/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Estresse Psicológico/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Desenvolvimento Fetal , Biomarcadores/metabolismo
16.
Int J Gynaecol Obstet ; 164(1): 40-46, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37318113

RESUMO

The relationship between events occurring during intrauterine development and later-life predisposition to long-term disease, has been described. The fetus responds to excess intrauterine exposure to high levels of corticosteroids, modifying their physiological development and stopping their growth. Fetal exposure to elevated levels of either endogenous (alterations in fetal hypothalamic-pituitary-adrenal axis) or synthetic corticosteroids, is one model of early-life adversity; to developing adult disease. At the molecular level, there are transcriptional changes in metabolic and growth pathways. Epigenetic mechanisms participate in transgenerational inheritance, not genomic. Exposures that change 11ß-hydroxysteroid dehydrogenase type 2 enzyme methylation status in the placenta can result in transcriptional repression of the gene, causing the fetus to be exposed to higher levels of cortisol. More precise diagnosis and management of antenatal corticosteroids for preterm birth, would potentially decrease the risk of long-term adverse outcomes. More studies are needed to understand the potential roles of factors to alter fetal corticosteroid exposure. Long-term infant follow-up is required to determine whether methylation changes in placenta may represent useful biomarkers of later disease risk. This review, summarize recent advances in the programming of fetal effects of corticosteroid exposure, the role of corticosteroids in epigenetic gene regulation of placental 11ß-hydroxysteroid dehydrogenase type 2 enzyme expression and transgenerational effects.


Assuntos
Placenta , Nascimento Prematuro , Adulto , Gravidez , Feminino , Recém-Nascido , Humanos , Placenta/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/farmacologia , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Nascimento Prematuro/induzido quimicamente , Feto , Glucocorticoides/efeitos adversos , Epigênese Genética , Desenvolvimento Fetal/fisiologia
17.
J Intern Med ; 295(1): 20-37, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37941106

RESUMO

11-beta-hydroxysteroid dehydrogenases (11ß-HSDs) catalyse the conversion of active 11-hydroxy glucocorticoids (cortisol, corticosterone) and their inert 11-keto forms (cortisone, 11-dehydrocorticosterone). They were first reported in the body and brain 70 years ago, but only recently have they become of interest. 11ß-HSD2 is a dehydrogenase, potently inactivating glucocorticoids. In the kidney, 11ß-HSD2 generates the aldosterone-specificity of intrinsically non-selective mineralocorticoid receptors. 11ß-HSD2 also protects the developing foetal brain and body from premature glucocorticoid exposure, which otherwise engenders the programming of neuropsychiatric and cardio-metabolic disease risks. In the adult CNS, 11ß-HSD2 is confined to a part of the brain stem where it generates aldosterone-specific central control of salt appetite and perhaps blood pressure. 11ß-HSD1 is a reductase, amplifying active glucocorticoid levels within brain cells, notably in the cortex, hippocampus and amygdala, paralleling its metabolic functions in peripheral tissues. 11ß-HSD1 is elevated in the ageing rodent and, less certainly, human forebrain. Transgenic models show this rise contributes to age-related cognitive decline, at least in mice. 11ß-HSD1 inhibition robustly improves memory in healthy and pathological ageing rodent models and is showing initial promising results in phase II studies of healthy elderly people. Larger trials are needed to confirm and clarify the magnitude of effect and define target populations. The next decade will be crucial in determining how this tale ends - in new treatments or disappointment.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Glucocorticoides , Humanos , Camundongos , Animais , Idoso , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Aldosterona , Encéfalo/metabolismo
18.
Food Chem Toxicol ; 184: 114415, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141941

RESUMO

Chalcones from licorice and its related plants have many pharmacological effects. However, the effects of chalcones on the activity of human and rat 11ß-hydroxysteroid dehydrogenase 2 (11ß-HSD2), and associated side effects remain unclear. The inhibition of 11 chalcones on human and rat 11ß-HSD2 were evaluated in microsomes and a 3D-quantitative structure-activity relationship (3D-QSAR) was analyzed. Screening revealed that bavachalcone, echinatin, isobavachalcone, isobavachromene, isoliquiritigenin, licochalcone A, and licochalcone B significantly inhibited human 11ß-HSD2 with IC50 values ranging from 15.62 (licochalcone A) to 38.33 (echinatin) µM. Screening showed that the above chemicals and 4-hydroxychalcone significantly inhibited rat 11ß-HSD2 with IC50 values ranging from 6.82 (isobavachalcone) to 72.26 (4-hydroxychalcone) µM. These chalcones acted as noncompetitive/mixed inhibitors for both enzymes. Comparative analysis revealed that inhibition of 11ß-HSD2 depended on the species. Most chemicals bind to the NAD+ binding site or both the NAD+ and substrate binding sites. Bivariate correlation analysis showed that lipophilicity and molecular weight determine inhibitory strength. Through our 3D-QSAR models, we identified that the hydrophobic region, hydrophobic aliphatic groups, and hydrogen bond acceptors are pivotal factors in inhibiting 11ß-HSD2. In conclusion, many chalcones inhibit human and rat 11ß-HSD2, possibly causing side effects and there is structure-dependent and species-dependent inhibition on 11ß-HSD2.


Assuntos
Chalconas , Ratos , Humanos , Animais , Chalconas/farmacologia , 11-beta-Hidroxiesteroide Desidrogenases/metabolismo , Relação Quantitativa Estrutura-Atividade , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , NAD/metabolismo
19.
Methods Enzymol ; 689: 167-200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802570

RESUMO

11ß-Hydroxysteroid dehydrogenase type 2 (11ß-HSD2) converts active 11ß-hydroxyglucocorticoids to their inactive 11-keto forms, fine-tuning the activation of mineralocorticoid and glucocorticoid receptors. 11ß-HSD2 is expressed in mineralocorticoid target tissues such as renal distal tubules and cortical collecting ducts, and distal colon, but also in placenta where it acts as a barrier to reduce the amount of maternal glucocorticoids that reach the fetus. Disruption of 11ß-HSD2 activity by genetic defects or inhibitors causes the syndrome of apparent mineralocorticoid excess (AME), characterized by hypernatremia, hypokalemia and hypertension. Secondary hypertension due to 11ß-HSD2 inhibition has been observed upon consumption of excessive amounts of licorice and in patients treated with the azole fungicides posaconazole and itraconazole. Furthermore, inhibition of 11ß-HSD2 during pregnancy with elevated exposure of the fetus to cortisol can cause neurological complications with a lower intelligence quotient, higher odds of attention deficit and hyperactivity disorder as well as metabolic reprogramming with an increased risk of cardio-metabolic disease in adulthood. This chapter describes in vitro methods for the determination of 11ß-HSD2 activity that can be applied to identify inhibitors that may cause secondary hypertension and characterize the enzyme's activity in disease models. The included decision tree and the list of methods with their advantages and disadvantages aim to enable the reader to select and apply an in vitro method suitable for the scientific question and the equipment available in the respective laboratory.


Assuntos
Hipertensão , Síndrome de Excesso Aparente de Minerolocorticoides , Humanos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/genética , Mineralocorticoides/metabolismo , Hipertensão/genética , Hipertensão/metabolismo , Hidrocortisona
20.
Pathol Res Pract ; 251: 154873, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820440

RESUMO

Glucocorticoids bind to glucocorticoid receptors (GR). In the peripheral tissues, active cortisol is produced from inactive cortisone by 11ß-hydroxysteroid dehydrogenase (HSD)1. 11ß-HSD2 is responsible for this reverse catalysis. Although GR and 11ß-HSDs have been reported to be involved in the malignant behavior of various cancer types, the concentration of glucocorticoids in cancer tissues has not been investigated. In this study, we measured glucocorticoids in serum and cancer tissues using liquid chromatography-tandem mass spectrometry and clarified, for the first time, the intratumoral "intracrine" production of cortisol by 11ß-HSD1/2 in endometrial cancer. Intratumoral cortisol levels were high in the high-malignancy type and the cancer proliferation marker Ki-67-high group, suggesting that cortisol greatly contributes to the malignant behavior of endometrial cancer. A low expression level of the metabolizing enzyme 11ß-HSD2 is more important than a high expression level of the synthase 11ß-HSD1 for intratumoral cortisol action. Intratumoral cortisol was positively related to the expression/activity of estrogen synthase aromatase, which involved GR expressed in fibroblastic stromal cells but not in cancer cells. Blockade of GR signaling by hormone therapy is expected to benefit patients with endometrial cancer.


Assuntos
Neoplasias do Endométrio , Hidrocortisona , Feminino , Humanos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Aromatase , Glucocorticoides , Hidrocortisona/metabolismo , Receptores de Glucocorticoides/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA