Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Membr Biol ; 251(5-6): 653-666, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30056551

RESUMO

The catalytic α-subunits of both the Na+,K+-ATPase and the gastric H+,K+-ATPase possess lysine-rich N-termini which project into the cytoplasm. Due to conflicting experimental results, it is currently unclear whether the N-termini play a role in ion pump function or regulation, and, if they do, by what mechanism. Comparison of the lysine frequencies of the N-termini of both proteins with those of all of their extramembrane domains showed that the N-terminal lysine frequencies are far higher than one would expect simply from exposure to the aqueous solvent. The lysine frequency was found to vary significantly between different vertebrate classes, but this is due predominantly to a change in N-terminal length. As evidenced by a comparison between fish and mammals, an evolutionary trend towards an increase of the length of the N-terminus of the H+,K+-ATPase on going from an ancestral fish to mammals could be identified. This evolutionary trend supports the hypothesis that the N-terminus is important in ion pump function or regulation. In placental mammals, one of the lysines is replaced by serine (Ser-27), which is a target for protein kinase C. In most other animal species, a lysine occupies this position and hence no protein kinase C target is present. Interaction with protein kinase C is thus not the primary role of the lysine-rich N-terminus. The disordered structure of the N-terminus may, via increased flexibility, facilitate interaction with another binding partner, e.g. the surrounding membrane, or help to stabilise particular enzyme conformations via the increased entropy it produces.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Lisina/química , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , ATPase Trocadora de Hidrogênio-Potássio/classificação , Modelos Moleculares , Conformação Proteica , Proteína Quinase C/química , Proteína Quinase C/classificação , Proteína Quinase C/metabolismo , Análise de Sequência de Proteína , ATPase Trocadora de Sódio-Potássio/classificação
2.
BMC Dev Biol ; 14: 11, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24552353

RESUMO

BACKGROUND: Flatfish metamorphosis is a hormone regulated post-embryonic developmental event that transforms a symmetric larva into an asymmetric juvenile. In altricial-gastric teleost fish, differentiation of the stomach takes place after the onset of first feeding, and during metamorphosis dramatic molecular and morphological modifications of the gastrointestinal (GI-) tract occur. Here we present the functional ontogeny of the developing GI-tract from an integrative perspective in the pleuronectiforme Atlantic halibut, and test the hypothesis that the multiple functions of the teleost stomach develop synchronously during metamorphosis. RESULTS: Onset of gastric function was determined with several approaches (anatomical, biochemical, molecular and in vivo observations). In vivo pH analysis in the GI-tract lumen combined with quantitative PCR (qPCR) of α and ß subunits of the gastric proton pump (H+/K+-ATPase) and pepsinogen A2 indicated that gastric proteolytic capacity is established during the climax of metamorphosis. Transcript abundance of ghrelin, a putative orexigenic signalling molecule produced in the developing stomach, correlated (p < 0.05) with the emergence of gastric proteolytic activity, suggesting that the stomach's role in appetite regulation occurs simultaneously with the establishment of proteolytic function. A 3D models series of the GI-tract development indicated a functional pyloric sphincter prior to first feeding. Observations of fed larvae in vivo confirmed that stomach reservoir function was established before metamorphosis, and was thus independent of this event. Mechanical breakdown of food and transportation of chyme through the GI-tract was observed in vivo and resulted from phasic and propagating contractions established well before metamorphosis. The number of contractions in the midgut decreased at metamorphic climax synchronously with establishment of the stomach's proteolytic capacity and its increased peristaltic activity. Putative osmoregulatory competence of the GI-tract, inferred by abundance of Na+/K+-ATPase α transcripts, was already established at the onset of exogenous feeding and was unmodified by metamorphosis. CONCLUSIONS: The functional specialization of the GI-tract was not exclusive to metamorphosis, and its osmoregulatory capacity and reservoir function were established before first feeding. Nonetheless, acid production and the proteolytic capacity of the stomach coincided with metamorphic climax, and also marked the onset of the stomach's involvement in appetite regulation via ghrelin.


Assuntos
Linguado/genética , Trato Gastrointestinal/metabolismo , Metamorfose Biológica/genética , Organogênese/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Proteínas de Peixes/genética , Linguado/crescimento & desenvolvimento , Linguado/fisiologia , Ácido Gástrico/metabolismo , Motilidade Gastrointestinal/fisiologia , Trato Gastrointestinal/crescimento & desenvolvimento , Trato Gastrointestinal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Grelina/genética , Concentração de Íons de Hidrogênio , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Dados de Sequência Molecular , Contração Muscular/fisiologia , Tamanho do Órgão , Filogenia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPase Trocadora de Sódio-Potássio/classificação , ATPase Trocadora de Sódio-Potássio/genética , Fatores de Tempo , Vertebrados/classificação , Vertebrados/genética
3.
PLoS One ; 8(12): e83348, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24376692

RESUMO

There is wide interest in understanding how genetic diversity is generated and maintained in parthenogenetic lineages, as it will help clarify the debate of the evolution and maintenance of sexual reproduction. There are three mechanisms that can be responsible for the generation of genetic diversity of parthenogenetic lineages: contagious parthenogenesis, repeated hybridization and microorganism infections (e.g. Wolbachia). Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, Anostraca) are a good model system to investigate evolutionary transitions between reproductive systems as they include sexual species and lineages of obligate parthenogenetic populations of different ploidy level, which often co-occur. Diploid parthenogenetic lineages produce occasional fully functional rare males, interspecific hybridization is known to occur, but the mechanisms of origin of asexual lineages are not completely understood. Here we sequenced and analysed fragments of one mitochondrial and two nuclear genes from an extensive set of populations of diploid parthenogenetic Artemia and sexual species from Central and East Asia to investigate the evolutionary origin of diploid parthenogenetic Artemia, and geographic origin of the parental taxa. Our results indicate that there are at least two, possibly three independent and recent maternal origins of parthenogenetic lineages, related to A. urmiana and Artemia sp. from Kazakhstan, but that the nuclear genes are very closely related in all the sexual species and parthenogegetic lineages except for A. sinica, who presumable took no part on the origin of diploid parthenogenetic strains. Our data cannot rule out either hybridization between any of the very closely related Asiatic sexual species or rare events of contagious parthenogenesis via rare males as the contributing mechanisms to the generation of genetic diversity in diploid parthenogenetic Artemia lineages.


Assuntos
Artemia/classificação , Evolução Biológica , Diploide , Variação Genética , Partenogênese/genética , Filogenia , Animais , Artemia/genética , Ásia , Núcleo Celular/genética , DNA Intergênico/classificação , DNA Intergênico/genética , Europa (Continente) , Feminino , Genes Mitocondriais , Masculino , Mitocôndrias/genética , Filogeografia , ATPase Trocadora de Sódio-Potássio/classificação , ATPase Trocadora de Sódio-Potássio/genética
4.
Mol Biol Rep ; 39(8): 7973-80, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22531934

RESUMO

Sodium pumps (EC 3.6.3.9, Na(+)-ATPase), which mediate excretion of Na(+) from the cell, play a crucial role in Na(+) homeostasis in eukaryotic cells. The objective of this study is to understand the Na(+) efflux system in a marine red alga. We identified a novel sodium pump gene, PyKPA2, from the marine red alga Porphyra yezoensis. The amino acid sequence of PyKPA2 shares 65 % identity with PyKPA1, a previously identified P. yezoensis sodium pump. Similar to PyKPA1, PyKPA2 contains conserved sequences for functions such as phosphorylation, ATP binding, and cation binding. Phylogenetic analysis revealed that the two genes cluster with sodium pumps from algae. Reverse-transcription polymerase chain reaction (RT-PCR) analysis showed that PyKPA1 is expressed preferentially in sporophytes, whereas PyKPA2 is expressed specifically in gametophytes. RT-PCR and quantitative real-time PCR analysis revealed that PyKPA1 and PyKPA2 transcripts were upregulated and downregulated, respectively, in gametophytes during exposure to alkali stress. In addition, transcription of both genes in gametophytes was also induced by cold stress. These results suggest that PyKPA1 and PyKPA2 play an important role in alkali and cold stress tolerance.


Assuntos
Porphyra/genética , ATPase Trocadora de Sódio-Potássio/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Filogenia , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/classificação , Estresse Fisiológico , Transcrição Gênica
5.
Biochim Biophys Acta ; 1798(10): 1841-53, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20650263

RESUMO

The K(+) and Na(+) concentrations in living cells are strictly regulated at almost constant concentrations, high for K(+) and low for Na(+). Because these concentrations correspond to influx-efflux steady states, K(+) and Na(+) effluxes and the transporters involved play a central role in the physiology of cells, especially in environments with high Na(+) concentrations where a high Na(+) influx may be the rule. In eukaryotic cells two P-type ATPases are crucial in these homeostatic processes, the Na,K-ATPase of animal cells and the H(+)-ATPase of fungi and plants. In fungi, a third P-type ATPase, the ENA ATPase, was discovered nineteen years ago. Although for many years it was considered to be exclusively a fungal enzyme, it is now known to be present in bryophytes and protozoa. Structurally, the ENA (from exitus natru: exit of sodium) ATPase is very similar to the sarco/endoplasmic reticulum Ca(2+) (SERCA) ATPase, and it probably exchanges Na(+) (or K(+)) for H(+). The same exchange is mediated by Na(+) (or K(+))/H(+) antiporters. However, in eukaryotic cells these antiporters are electroneutral and their function depends on a DeltapH across the plasma membrane. Therefore, the current notion is that the ENA ATPase is necessary at high external pH values, where the antiporters cannot mediate uphill Na(+) efflux. This occurs in some fungal environments and at some points of protozoa parasitic cycles, which makes the ENA ATPase a possible target for controlling fungal and protozoan parasites. Another technological application of the ENA ATPase is the improvement of salt tolerance in flowering plants.


Assuntos
Filogenia , Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Homologia de Sequência de Aminoácidos , ATPase Trocadora de Sódio-Potássio/classificação , ATPase Trocadora de Sódio-Potássio/genética
6.
Biol Psychiatry ; 65(11): 985-91, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19058785

RESUMO

BACKGROUND: The sodium- and potassium-activated adenosine triphosphatase (Na+, K+-ATPase) is a major plasma membrane transporter for sodium and potassium. We recently suggested that bipolar disorders (BD) may be associated with alterations in brain Na+, K+-ATPase. We further conjectured that the differences in Na+, K+-ATPase in BD patients could result partially from genetic variations in Na+, K+-ATPase alpha isoforms. METHODS: To test our hypothesis, we undertook a comprehensive study of 13 tagged single nucleotide polymorphisms (SNPs) across the three genes of the brain alpha isoforms of Na+, K+- ATPase (ATP1A1, ATP1A2, and ATP1A3, which encode the three alpha isoforms, alpha1, alpha2, and alpha3, respectively) identified using HapMap data and the Haploview algorithm. Altogether, 126 subjects diagnosed with BD from 118 families were genotyped (parents and affected siblings). Both individual SNPs and haplotypes were tested for association using family-based association tests as provided in the UNPHASED and PBAT set of programs. RESULTS: Significant nominal association with BD was observed for six single SNPs (alpha1: rs11805078; alpha2: rs2070704, rs1016732, rs2854248, and rs2295623; alpha3: rs919390) in the three genes of Na+, K+-ATPase alpha isoforms. Haplotype analysis of the alpha2 isoform (ATP1A2 gene) showed a significant association with two loci haplotypes with BD (rs2295623: rs2070704; global p value = .0198, following a permutation test). CONCLUSIONS: This study demonstrates for the first time that genetic variations in Na+, K+-ATPase are associated with BD, suggesting a role of this enzyme in the etiology of this disease.


Assuntos
Transtorno Bipolar/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único/genética , Isoformas de Proteínas/genética , ATPase Trocadora de Sódio-Potássio/genética , Análise Mutacional de DNA , Saúde da Família , Feminino , Frequência do Gene , Genótipo , Humanos , Masculino , ATPase Trocadora de Sódio-Potássio/classificação
7.
Arch Biochem Biophys ; 419(2): 190-7, 2003 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-14592462

RESUMO

Enterocyte has two different Na+-stimulated ATPases, the ouabain-sensitive Na+/K+ ATPase and a furosemide-inhibitable Na+ ATPase. To identify the polypeptide associated with the Na+-ATPase, 32Pi phosphorylation into basolateral membranes of enterocyte was investigated. Both, ouabain and furosemide induced Mg2+-dependent, vanadate-sensitive 32Pi incorporation into a 100kDa polypeptide. K(m) for Pi was 17.7+/-1.82 microM and 16.8+/-0.69 microM for ouabain-induced and furosemide-induced phosphorylation, respectively. K(m) for furosemide was 1.3+/-0.21 mM. Furosemide-induced 32Pi incorporation was sensitive to alkaline pH and hydroxylamine suggesting an acyl-phosphate bond. Na+ and K+ inhibited 32Pi incorporation induced by ouabain. In contrast, Na+ stimulated furosemide-induced phosphorylation with a K(m) of 16.5+/-5.59 mM while K+ had no effect. Purified Na+/K+ ATPase only presented ouabain-induced phosphoprotein, indicating that furosemide-induced phosphorylation is not related to this enzyme and appears to correspond to a new member of P-type ATPases associated with the second Na+ pump.


Assuntos
Membrana Celular/metabolismo , Enterócitos/metabolismo , Furosemida/farmacologia , Fosfoproteínas/metabolismo , ATPase Trocadora de Sódio-Potássio/classificação , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Enterócitos/química , Enterócitos/efeitos dos fármacos , Ativação Enzimática , Concentração de Íons de Hidrogênio , Intestino Delgado/química , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/metabolismo , Ouabaína/farmacologia , Fosfoproteínas/química , Fosforilação , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Suínos
8.
J Membr Biol ; 191(1): 13-24, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12532273

RESUMO

Here we show a complete list of the P-type ATPase genes in Caenorhabditis elegans and Drosophila melanogaster. A detailed comparison of the deduced amino-acid sequences in combination with phylogenetic and chromosomal analyses has revealed the following: (1) The diversity of this gene family has been achieved by two major evolutionary steps; the establishment of the major P-type ATPase subgroups with distinct substrate (ion) specificities in a common ancestor of vertebrate and invertebrate, followed by the evolution of multiple isoforms occurring independently in vertebrate and invertebrate phyla. (2) Pairs of genes that have intimate phylogenetic relationship are frequently found in proximity on the same chromosome. (3) Some of the Na,K- and H,K-ATPase isoforms in D. melanogaster and C. elegans lack motifs shown to be important for alpha/beta-subunit assembly, suggesting that such alpha- and beta-subunits might exist by themselves (lonely subunits). The mutation rates for these subunits are much faster than those for the subunits with recognizable assembly domains. (4) The lonely alpha-subunits also lack the major site for ouabain binding that apparently arose before the separation of vertebrates and invertebrates and thus well before the separation of vertebrate Na,K-ATPases and H,K-ATPases. These findings support the idea that a relaxation of functional constraints would increase the rate of evolution and provide clues for identifying the origins of inhibitor sensitivity, subunit assembly, and separation of Na,K- and H,K-ATPases.


Assuntos
Caenorhabditis elegans/genética , Drosophila melanogaster/genética , Evolução Molecular , Perfilação da Expressão Gênica/métodos , ATPase Trocadora de Hidrogênio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Caenorhabditis elegans/química , Caenorhabditis elegans/enzimologia , Análise Mutacional de DNA/métodos , Drosophila melanogaster/química , Drosophila melanogaster/enzimologia , ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/classificação , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Dados de Sequência Molecular , Fenótipo , Subunidades Proteicas , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/classificação , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Alinhamento de Sequência/métodos , Análise de Sequência de Proteína/métodos , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/classificação , ATPase Trocadora de Sódio-Potássio/metabolismo , Especificidade da Espécie
9.
J Bacteriol ; 184(2): 572-6, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-11751837

RESUMO

Gene vmrA, cloned from Vibrio parahaemolyticus, made Escherichia coli resistant to 4',6-diamino-2-phenylindol, tetraphenylphosphonium chloride, acriflavine, and ethidium bromide. VmrA belongs to the DinF branch of MATE family efflux transporters. VmrA catalyzed acriflavine efflux and showed Na(+)/drug transporter activity because the addition of tetraphenylphosphonium to Na(+)-loaded cells caused Na(+) efflux.


Assuntos
Antiporters/genética , Proteínas de Bactérias/genética , ATPase Trocadora de Sódio-Potássio/genética , Vibrio parahaemolyticus/genética , Acriflavina/metabolismo , Anti-Infecciosos Locais/metabolismo , Antiporters/classificação , Antiporters/metabolismo , Proteínas de Bactérias/classificação , Proteínas de Bactérias/metabolismo , Sequência de Bases , Clonagem Molecular/métodos , DNA Bacteriano , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Corantes Fluorescentes/metabolismo , Genes Bacterianos , Dados de Sequência Molecular , Análise de Sequência de DNA , ATPase Trocadora de Sódio-Potássio/classificação , ATPase Trocadora de Sódio-Potássio/metabolismo , Vibrio parahaemolyticus/efeitos dos fármacos , Vibrio parahaemolyticus/metabolismo
10.
Cell Mol Biol (Noisy-le-grand) ; 47(2): 325-33, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11355008

RESUMO

Molecular aspects of the diversity of P-type ATPases are explored in this review. From the substrate specificities among different ATPase molecules, the existence of isoforms within a single class of pump becomes evident and it is now recognized as a universal phenomenon. From the phylogenetic analyses using a vast collection of the deduced amino acid sequences for the P-type ATPase subunits, it also becomes evident that the divergence of substrate-specificity occurred early in the evolution and has been conserved ever since. Further extensive analyses identify a set of novel isoforms that retain an ancestral characteristic of the Na+/K+-(H+/K+-)ATPases in invertebrates.


Assuntos
ATPases Transportadoras de Cálcio/genética , Evolução Molecular , ATPase Trocadora de Hidrogênio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/genética , Sequência de Aminoácidos , Animais , ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/classificação , ATPases Transportadoras de Cálcio/metabolismo , Domínio Catalítico , ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/classificação , ATPase Trocadora de Hidrogênio-Potássio/metabolismo , Humanos , Isoenzimas/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Subunidades Proteicas , Alinhamento de Sequência , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/classificação , ATPase Trocadora de Sódio-Potássio/metabolismo
11.
Am J Physiol ; 268(5 Pt 2): F862-7, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-7771515

RESUMO

Adrenalectomy leads to the decline in the levels of renal Na-K-adenosinetriphosphatase (Na-K-ATPase) alpha- and beta-subunit protein and mRNA. Both alpha- and beta-mRNA, however, return to the control level within 1 h after corticosterone administration. Whether or not glucocorticoid acts directly on a specific segment of nephron to upregulate Na-K-ATPase has not been determined. Studies were undertaken in an attempt to elucidate this problem. Using primary cultures of renal proximal tubules, we found that 24-h treatment with dexamethasone augmented Na-K-ATPase activity and induced coordinate increase of alpha- and beta-protein and mRNA abundance dependent on the doses in the range of 10(-8) to 10(-6) M. We further demonstrated that 24-h incubation of dexamethasone (10(-7) M) enhanced Na-K-ATPase activity by 58 +/- 14%, alpha- and beta-protein abundance by 70 +/- 18 and 51 +/- 10%, and alpha- and beta-mRNA levels by 87 +/- 12 and 62 +/- 11%, respectively. The time course studies revealed that significant increase of Na-K-ATPase activity and alpha and beta-protein abundance was reached within 4 hr of dexamethasone treatment. Pretreatment of cultured proximal tubule cells with cycloheximide (20 micrograms/ml) completely inhibited dexamethasone-induced increase of Na-K-ATPase alpha- and beta-mRNA. Our results indicate that dexamethasone upregulates Na-K-ATPase in proximal tubule cells via pretranslational mechanisms, which may be mediated by proteins.


Assuntos
Glucocorticoides/farmacologia , Túbulos Renais Proximais/metabolismo , RNA Mensageiro/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Regulação para Cima , Animais , Células Cultivadas , Cicloeximida/farmacologia , Dexametasona/farmacologia , Túbulos Renais Proximais/citologia , Coelhos , ATPase Trocadora de Sódio-Potássio/classificação
12.
EMBO J ; 14(1): 58-67, 1995 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-7828596

RESUMO

The C-terminal 165 amino acids of the rat brain plasma membrane (PM) Ca(2+)-ATPase II containing the calmodulin binding auto-inhibitory domain was connected to the C-terminus of the ouabain sensitive chicken Na+,K(+)-ATPase alpha 1 subunit. Expression of this chimeric molecule in ouabain resistant mouse L cells was assured by the high-affinity binding of [3H]ouabain. In the presence of Ca2+/calmodulin, this chimeric molecule exhibited ouabain inhibitable Na+,K(+)-ATPase activity; the putative chimeric ATPase activity was absent in the absence of Ca2+/calmodulin and activated by Ca2+/calmodulin in a dose-dependent manner. Furthermore, this chimeric molecule could bind monoclonal IgG 5 specific to the chicken Na+,K(+)-ATPase alpha 1 subunit only in the presence of Ca2+/calmodulin, suggesting that the epitope for IgG 5 in this chimera is masked in the absence of Ca2+/calmodulin and uncovered in their presence. These results propose a direct interaction between the calmodulin binding auto-inhibitory domain of the PM Ca(2+)-ATPase and the specific regions of the Na+,K(+)-ATPase alpha 1 subunit that are structurally homologous to the PM Ca(2+)-ATPase. A comparison of the deduced amino acid sequences revealed several possible regions within the Na+,K(+)-ATPase that might interact with the auto-inhibitory domain of the PM Ca(2+)-ATPase.


Assuntos
Adenosina Trifosfatases/metabolismo , Encéfalo/enzimologia , Cálcio/metabolismo , Calmodulina/metabolismo , Membrana Celular/enzimologia , Adenosina Trifosfatases/classificação , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Cálcio/farmacologia , ATPases Transportadoras de Cálcio/classificação , ATPases Transportadoras de Cálcio/genética , ATPases Transportadoras de Cálcio/imunologia , ATPases Transportadoras de Cálcio/metabolismo , Calmodulina/farmacologia , Relação Dose-Resposta a Droga , Células L , Camundongos , Dados de Sequência Molecular , Ouabaína/metabolismo , Ouabaína/farmacologia , Testes de Precipitina , Ratos , Proteínas Recombinantes de Fusão/imunologia , Proteínas Recombinantes de Fusão/metabolismo , ATPase Trocadora de Sódio-Potássio/classificação , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/imunologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Relação Estrutura-Atividade
13.
FEBS Lett ; 349(1): 144-50, 1994 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-8045293

RESUMO

The cDNA for ATP1AL1--the fifth member of the human Na,K-/H,K-ATPase gene family--was cloned and sequenced. The deduced primary ATP1AL1 translation product is 1,039 amino acids in length and has Mr of 114,543. The encoded protein has all of the structural features common to known catalytic subunits of P-type membrane ion-transporting ATPases and is equally distant (63-64% of identity) from the Na,K-ATPase isoforms and the gastric H,K-ATPase. The ATP1AL1 encoded protein was proposed to represent a new separate group within the family of human potassium-dependent ion pumps.


Assuntos
Adenosina Trifosfatases/classificação , ATPase Trocadora de Hidrogênio-Potássio/genética , Família Multigênica/genética , ATPase Trocadora de Sódio-Potássio/genética , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Sequência de Bases , DNA Complementar/genética , ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/classificação , Humanos , Bombas de Íon/metabolismo , Rim/enzimologia , Dados de Sequência Molecular , Potássio/metabolismo , Homologia de Sequência de Aminoácidos , Pele/enzimologia , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/classificação , Distribuição Tecidual
14.
Chin J Physiol ; 37(1): 21-9, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7956509

RESUMO

We previously reported that butyrate slowed the downregulation of activities of differentiation marker enzymes for the proximal tubule during cellular proliferation. This work was designed to delineate whether butyrate also regulated activity of Na,K-ATPase, a basolateral membrane marker. We observed that Na,K-ATPase activity was decreased in cultured proximal tubule cells, which occurred before cell proliferation. When cultured proximal tubule cells approached confluency from day 4 to day 6, Na,K-ATPase activity was increased by 27%, but the increase was not seen in cultures under a lower plating density. Cultured proximal tubule cells under a large plating density also exhibited greater Na,K-ATPase activity than those under a small density. Na butyrate inhibited Na,K-ATPase activity throughout the course of primary culture and dependent on dose in the range 2-5 mM. At the confluent phase, 24-h treatment of butyrate (5mM) induced a 24% decrease in Na,K-ATPase activity, which is associated with coordinated decreases in both Na,K-ATPase alpha and beta subunit abundances and is mediated by coordinate decreases in both Na,K-ATPase alpha and beta mRNA levels. Moreover, Na butyrate, at a dose greater than 2 mM, inhibits proliferation of proximal tubular cells, but results in cell hypertrophy. Finally, the effect of butyrate on cell growth and Na,K-ATPase expression cannot be mimicked by other short chain fatty acids, such as acetate, hexanoate or octanoate.


Assuntos
Túbulos Renais Proximais/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Butiratos/farmacologia , Ácido Butírico , Contagem de Células , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Ácidos Graxos/farmacologia , Túbulos Renais Proximais/citologia , RNA Mensageiro/metabolismo , Coelhos , ATPase Trocadora de Sódio-Potássio/classificação , ATPase Trocadora de Sódio-Potássio/genética
15.
FEBS Lett ; 291(2): 189-91, 1991 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-1657642

RESUMO

The gene ENA1 was cloned by its ability to complement the Li+ sensitivity of a low Li(+)-efflux strain. The nucleotide sequence of the cloned DNA fragment showed that there are two almost identical genes in tandem, and predicts that they encode P-ATPases. Disruption of both genes originated a strain defective in Na+ and Li+ effluxes, and sensitive to Na+, to Li+ and to alkaline pH. By transformation with ENA1 the defective effluxes and tolerances were repaired.


Assuntos
Saccharomyces cerevisiae/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/fisiologia , Transporte Biológico Ativo , Concentração de Íons de Hidrogênio , Lítio/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiologia , Potássio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , ATPase Trocadora de Sódio-Potássio/classificação , Transformação Genética
16.
Biochim Biophys Acta ; 912(2): 244-53, 1987 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-3030434

RESUMO

cDNA complementary to mRNA coding for the beta subunit of dog renal (Na+ + K+)-ATPase has been cloned into lambda gt11 and the nucleotide sequence of the DNA has been determined. The amino acid sequence of the beta subunit polypeptide has also been deduced from the DNA. The mature form of the dog kidney beta subunit contains 302 amino acids with three potential asparagine-linked attachment sites for carbohydrate. The initiation methionine is removed during processing of the polypeptide to its mature form. Although the beta subunit is an integral membrane protein there is no signal sequence for the polypeptide, and hydropathy analysis predicts that the beta subunit polypeptide spans the cell membrane only once. Secondary structure predictions and a model for the structure of the beta subunit are proposed. DNA sequencing of the 5' non-coding region of the mRNA revealed a 200 bp inverted repeat from the coding region. Blot hybridization of a fragment of the beta subunit cDNA identified a single mRNA species of 2.7 kb in dog kidney and several rat tissues. RNA from rat liver was deficient in mRNA that hybridized to the dog kidney beta subunit cDNA, although mRNA that hybridized to an alpha subunit cDNA was detected. RNA from a human hepatoma cell line, HepG2, however, contained comparable levels of mRNA for both the alpha and the beta subunits.


Assuntos
Rim/enzimologia , ATPase Trocadora de Sódio-Potássio/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Cães , Código Genético , Humanos , Peso Molecular , Hibridização de Ácido Nucleico , Peptídeo Hidrolases/metabolismo , Ratos , ATPase Trocadora de Sódio-Potássio/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA