RESUMO
Familial hemiplegic migraine is an episodic neurological disorder characterized by transient sensory and motor symptoms and signs. Mutations of the ion pump α2-Na/K ATPase cause familial hemiplegic migraine, but the mechanisms by which α2-Na/K ATPase mutations lead to the migraine phenotype remain incompletely understood. Here, we show that mice in which α2-Na/K ATPase is conditionally deleted in astrocytes display episodic paralysis. Functional neuroimaging reveals that conditional α2-Na/K ATPase knockout triggers spontaneous cortical spreading depression events that are associated with EEG low voltage activity events, which correlate with transient motor impairment in these mice. Transcriptomic and metabolomic analyses show that α2-Na/K ATPase loss alters metabolic gene expression with consequent serine and glycine elevation in the brain. A serine- and glycine-free diet rescues the transient motor impairment in conditional α2-Na/K ATPase knockout mice. Together, our findings define a metabolic mechanism regulated by astrocytic α2-Na/K ATPase that triggers episodic motor paralysis in mice.
Assuntos
Astrócitos/metabolismo , Ataxia/genética , Metaboloma/genética , Enxaqueca com Aura/genética , ATPase Trocadora de Sódio-Potássio/genética , Transcriptoma , Animais , Astrócitos/patologia , Ataxia/metabolismo , Ataxia/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Neuroimagem Funcional , Glicina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Enxaqueca com Aura/metabolismo , Enxaqueca com Aura/patologia , Teste de Desempenho do Rota-Rod , Serina/metabolismo , ATPase Trocadora de Sódio-Potássio/deficiênciaRESUMO
Na+/K+-ATPase is a transmembrane ion pump that is essential for the maintenance of ion gradients and regulation of multiple cellular functions. Na+/K+-ATPase has been associated with nuclear factor kappa B (NFκB) signalling, a signal associated with lipopolysaccharides (LPSs)-induced immune response in connection with activated Toll-like receptor 4 (TLR4) signalling. However, the contribution of Na+/K+-ATPase to regulating inflammatory responses remains elusive. We report that mice haploinsufficient for the astrocyte-enriched α2Na+/K+-ATPase isoform (α2+/G301R mice) have a reduced proinflammatory response to LPS, accompanied by a reduced hypothermic reaction compared to wild type litter mates. Following intraperitoneal injection of LPS, gene expressions of Tnf-α, Il-1ß, and Il-6 was reduced in the hypothalamus and hippocampus from α2+/G301R mice compared to α2+/+ littermates. The α2+/G301R mice experienced increased expression of the gene encoding an antioxidant enzyme, NRF2, in hippocampal astrocytes. Our findings indicate that α2Na+/K+-ATPase haploinsufficiency negatively modulates LPS-induced immune responses, highlighting a rational pharmacological target for reducing LPS-induced inflammation.
Assuntos
Hipocampo/patologia , Hipotálamo/patologia , Lipopolissacarídeos/toxicidade , Enxaqueca com Aura/enzimologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Animais , Astrócitos/metabolismo , Células Cultivadas , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Técnicas de Introdução de Genes , Heterozigoto , Hipocampo/metabolismo , Hipotálamo/metabolismo , Hipotermia/induzido quimicamente , Hipotermia/enzimologia , Hipotermia/genética , Interleucina-1beta/biossíntese , Interleucina-1beta/sangue , Interleucina-1beta/genética , Interleucina-6/biossíntese , Interleucina-6/sangue , Interleucina-6/genética , Macrófagos/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Enxaqueca com Aura/genética , Mutação de Sentido Incorreto , Fator 2 Relacionado a NF-E2/biossíntese , Fator 2 Relacionado a NF-E2/genética , ATPase Trocadora de Sódio-Potássio/deficiência , ATPase Trocadora de Sódio-Potássio/genética , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genéticaRESUMO
The ATP1A2 coding α2 subunit of Na,K-ATPase, which is predominantly located in astrocytes, is a causative gene of familial hemiplegic migraine type 2 (FHM2). FHM2 model mice (Atp1a2tmCKwk/+ ) are susceptible to cortical spreading depression (CSD), which is profoundly related to migraine aura and headache. However, astrocytic properties during CSD have not been examined in FHM2 model mice. Using Atp1a2tmCKwk/+ crossed with transgenic mice expressing G-CaMP7 in cortical neurons and astrocytes (Atp1a2+/- ), we analyzed the changes in Ca2+ concentrations during CSD. The propagation speed of Ca2+ waves and the percentages of astrocytes with elevated Ca2+ concentrations in Atp1a2+/- were higher than those in wild-type mice. Increased percentages of astrocytes with elevated Ca2+ concentrations in Atp1a2+/- may contribute to FHM2 pathophysiology.
Assuntos
Astrócitos/metabolismo , Córtex Cerebral/patologia , Depressão Alastrante da Atividade Elétrica Cortical/genética , Enxaqueca com Aura/genética , ATPase Trocadora de Sódio-Potássio/deficiência , Animais , Cálcio/análise , Cálcio/metabolismo , Cátions Bivalentes/análise , Cátions Bivalentes/metabolismo , Córtex Cerebral/citologia , Modelos Animais de Doenças , Feminino , Heterozigoto , Humanos , Microscopia Intravital , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência por Excitação Multifotônica , Enxaqueca com Aura/patologia , Neurônios/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Técnicas EstereotáxicasRESUMO
Background Recent studies have highlighted a critical role for a group of natriuretic hormones, cardiotonic steroid (CTS), in mediating renal inflammation and fibrosis associated with volume expanded settings, such as chronic kidney disease. Immune cell adhesion is a critical step in the inflammatory response; however, little is currently understood about the potential regulatory role of CTS signaling in this setting. Herein, we tested the hypothesis that CTS signaling through Na+/K+-ATPase α-1 (NKA α-1) enhances immune cell recruitment and adhesion to renal epithelium that ultimately advance renal inflammation. Methods and Results We demonstrate that knockdown of the α-1 isoform of Na/K-ATPase causes a reduction in CTS-induced macrophage infiltration in renal tissue as well reduces the accumulation of immune cells in the peritoneal cavity in vivo. Next, using functional adhesion assay, we demonstrate that CTS-induced increases in the adhesion of macrophages to renal epithelial cells were significantly diminished after reduction of NKA α-1 in either macrophages or renal epithelial cells as well after inhibition of NKA α-1-Src signaling cascade with a specific peptide inhibitor, pNaKtide in vitro. Finally, CTS-induced expression of adhesion markers in both endothelial and immune cells was significantly inhibited in an NKA α-1-Src signaling dependent manner in vitro. Conclusions These findings suggest that CTS potentiates immune cell migration and adhesion to renal epithelium through an NKA α-1-dependent mechanism; our new findings suggest that pharmacological inhibition of this feed-forward loop may be useful in the treatment of renal inflammation associated with renal disease.
Assuntos
Bufanolídeos/farmacologia , Cardiotônicos/farmacologia , Adesão Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Túbulos Renais Proximais/efeitos dos fármacos , Macrófagos Peritoneais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Movimento Celular/efeitos dos fármacos , Técnicas de Cocultura , Células Endoteliais/enzimologia , Células Epiteliais/enzimologia , Humanos , Túbulos Renais Proximais/enzimologia , Células LLC-PK1 , Macrófagos Peritoneais/enzimologia , Macrófagos Peritoneais/imunologia , Camundongos Knockout , Ratos Endogâmicos Dahl , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/deficiência , ATPase Trocadora de Sódio-Potássio/genética , Suínos , Quinases da Família src/metabolismoRESUMO
Compromised Na+/K+-ATPase function is associated with the occurrence of spreading depolarization (SD). Mutations in ATP1A2, the gene encoding the α2 isoform of the Na+/K+-ATPase, were identified in patients with familial hemiplegic migraine type 2 (FHM2), a Mendelian model disease for SD. This suggests a distinct role for the α2 isoform in modulating SD susceptibility and raises questions about underlying mechanisms including the roles of other Na+/K+-ATPase α isoforms. Here, we investigated the effects of genetic ablation and pharmacological inhibition of α1, α2, and α3 on SD using heterozygous knock-out mice. We found that only α2 heterozygous mice displayed higher SD susceptibility when challenged with prolonged extracellular high potassium concentration ([K+]o), a pronounced post SD oligemia and higher SD speed in-vivo. By contrast, under physiological [K+]o, α2 heterozygous mice showed similar SD susceptibility compared to wild-type littermates. Deficiency of α3 resulted in increased resistance against electrically induced SD in-vivo, whereas α1 deficiency did not affect SD. The results support important roles of the α2 isoform in SD. Moreover, they suggest that specific experimental conditions can be necessary to reveal an inherent SD phenotype by driving a (meta-) stable system into decompensation, reminiscent of the episodic nature of SDs in various diseases.
Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Doenças Genéticas Inatas/enzimologia , Doenças Genéticas Inatas/genética , Enxaqueca com Aura/enzimologia , Enxaqueca com Aura/genética , ATPase Trocadora de Sódio-Potássio/deficiência , Animais , Modelos Animais de Doenças , Doenças Genéticas Inatas/patologia , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Camundongos Knockout , Mutação , ATPase Trocadora de Sódio-Potássio/metabolismoRESUMO
Previous studies have found decreased functional capacity of the sodium pump (Na+-K+-ATPase) alpha and beta subunits and recovery of Na+-K+-ATPase activity significantly decreased myocyte apoptosis in myocardial ischemia-reperfusion (I/R) injury. However, the potential role of the Na+-K+-ATPase α-2 subunit (ATP1A2) in cardiomyocyte anoxia-reoxygenation (A/R) injury has not been elucidated. Rat myocardial cells were subjected to siRNA transfection followed by A/R injury. Apoptosis and expression of endoplasmic reticulum (ER) stress proteins CHOP, GRP78, and caspase-12 were detected in 4 groups of cells: ATP1A2 siRNA + A/R, control siRNA + A/R, control, and A/R injury model. We found that apoptosis was significantly elevated in the ATP1A2 siRNA + A/R group as compared with control siRNA + A/R, control, and A/R injury model groups (p < 0.05, p < 0.01, and p < 0.05). Furthermore, expression of CHOP, GRP78, and caspase-12 were significantly elevated in the ATP1A2 siRNA + A/R group as compared with control siRNA + A/R, control, and A/R injury model groups (p < 0.05, p < 0.01, and p < 0.05). Our findings suggest that cardiomyocyte ATP1A2 is a target of A/R injury, and its cardioprotective function may be mediated via inhibiting the ER-stress-related apoptosis.
Assuntos
Apoptose , Estresse do Retículo Endoplasmático , Miócitos Cardíacos/patologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Apoptose/genética , Caspase 12/metabolismo , Regulação para Baixo/genética , Estresse do Retículo Endoplasmático/genética , Proteínas de Choque Térmico/metabolismo , Miócitos Cardíacos/metabolismo , RNA Interferente Pequeno/genética , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , ATPase Trocadora de Sódio-Potássio/deficiência , ATPase Trocadora de Sódio-Potássio/genética , Fator de Transcrição CHOP/metabolismoRESUMO
Despite their ubiquitous use in laboratory strains, naturally occurring loss-of-function mutations in genes encoding core metabolic enzymes are relatively rare in wild isolates of Saccharomyces cerevisiae Here, we identify a naturally occurring serine auxotrophy in a sake brewing strain from Japan. Through a cross with a honey wine (white tecc) brewing strain from Ethiopia, we map the minimal medium growth defect to SER1, which encodes 3-phosphoserine aminotransferase and is orthologous to the human disease gene, PSAT1 To investigate the impact of this polymorphism under conditions of abundant external nutrients, we examine growth in rich medium alone or with additional stresses, including the drugs caffeine and rapamycin and relatively high concentrations of copper, salt, and ethanol. Consistent with studies that found widespread effects of different auxotrophies on RNA expression patterns in rich media, we find that the SER1 loss-of-function allele dominates the quantitative trait locus (QTL) landscape under many of these conditions, with a notable exacerbation of the effect in the presence of rapamycin and caffeine. We also identify a major-effect QTL associated with growth on salt that maps to the gene encoding the sodium exporter, ENA6 We demonstrate that the salt phenotype is largely driven by variation in the ENA6 promoter, which harbors a deletion that removes binding sites for the Mig1 and Nrg1 transcriptional repressors. Thus, our results identify natural variation associated with both coding and regulatory regions of the genome that underlie strong growth phenotypes.
Assuntos
Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Polimorfismo Genético , Saccharomyces cerevisiae/genética , ATPase Trocadora de Sódio-Potássio/genética , Transaminases/genética , Bebidas Alcoólicas/análise , Cafeína/farmacologia , Cobre/farmacologia , Meios de Cultura/farmacologia , Etanol/farmacologia , Fermentação , Humanos , Anotação de Sequência Molecular , Regiões Promotoras Genéticas , Locos de Características Quantitativas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Sais/farmacologia , Sirolimo/farmacologia , ATPase Trocadora de Sódio-Potássio/deficiência , Transaminases/deficiênciaRESUMO
OBJECTIVE: Circulating levels of cardiotonic steroids (CTS) are elevated in various chronic inflammatory conditions, but the role of CTS in inflammation remains largely unknown. We have previously shown that the CTS ouabain stimulates proinflammatory responses in murine macrophages. In this study, we aim to explore the mechanism how CTS induce proinflammatory responses in primary murine and human macrophages. APPROACH AND RESULTS: Using both murine peritoneal macrophages and human monocyte-derived macrophages, we demonstrated that ouabain activated NF-κB (nuclear factor kappa-light-chain-enhancer of activated B cells), leading to proinflammatory cytokine (eg, MCP-1 [monocyte chemotactic protein 1], TNF-α [tumor necrosis factor-α], IL-1ß [interleukin-1ß], and IL-6) production. By applying siRNA techniques and murine peritoneal macrophages isolated from genetically modified mice, we showed that macrophages partially deficient in Na/K-ATPase, the receptor for CTS, or fully deficient in the scavenger receptor CD36 or TLR4 (Toll-like receptor) were resistant to ouabain-induced NF-κB activation, suggesting an indispensable role of these 3 receptors in this pathway. Mechanistically, this effect of ouabain was independent of the ion transport function of the Na/K-ATPase. Instead, ouabain stimulated a signaling complex, including Na/K-ATPase, CD36, and TLR4. Subsequently, TLR4 recruited MyD88 adaptor protein for NF-κB activation. Furthermore, intraperitoneal injection of ouabain into mice specifically recruited Ly6C+CCR2+ monocyte subtypes to the peritoneal cavities, indicating that the CTS ouabain triggers inflammation in vivo. CONCLUSIONS: CTS activate NF-κB leading to proinflammatory cytokine production in primary macrophages through a signaling complex, including CD36, TLR4, and Na/K-ATPase. These findings warrant further studies on endogenous CTS in chronic inflammatory diseases, such as atherosclerosis.
Assuntos
Antígenos CD36/metabolismo , Cardiotônicos/toxicidade , Mediadores da Inflamação/metabolismo , Inflamação/induzido quimicamente , Macrófagos Peritoneais/efeitos dos fármacos , Ouabaína/toxicidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Receptor 4 Toll-Like/metabolismo , Animais , Antígenos CD36/deficiência , Antígenos CD36/genética , Células Cultivadas , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Feminino , Inflamação/enzimologia , Inflamação/genética , Macrófagos Peritoneais/enzimologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/deficiência , ATPase Trocadora de Sódio-Potássio/genética , Fatores de Tempo , TransfecçãoRESUMO
ATP1A3 encodes a neuron-specific human α3 subunit isoform of the sodium pump that plays an important role in neuronal excitability. Point and deletion mutations in ATP1A3 have been recognized in diverse neurological disorders. Three ATP1A3 disorders, alternating hemiplegia of childhood (AHC); apnea; and severe infantile epileptic encephalopathy often appear shortly after birth. To gain insight into the pathophysiology of these disorders and to understand the functional roles of the sodium pump α3 subunit in the brain in vivo during this period of development, we examined the phenotype of Atp1a3 knockout homozygous mouse fetuses (Atp1a3-/-). We focused on fetuses just before birth because at birth, about half of them showed severe seizure, and none could continue effective breathing and died soon after birth, without any gross anatomical anomalies. We examined c-Fos expression in the brains of Atp1a3-/- and found a significantly increased number of c-Fos-expressing cells in various regions of the brains, with unique distribution in the cerebellum, when compared with wild-type littermates (Atp1a3+/+). We also measured contents of monoamine neurotransmitters in the brains and found higher contents, especially of dopamine and noradrenaline, in the brains of Atp1a3-/- compared with those of Atp1a3+/+. In addition, we found various abnormal respiratory rhythms produced in the brainstem of Atp1a3-/-. These results suggest that Atp1a3 plays a critical role in neural function during development and at birth.
Assuntos
Mutação/genética , Taxa Respiratória/genética , Convulsões/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Hemiplegia/genética , Camundongos Knockout , Fenótipo , Taxa Respiratória/efeitos dos fármacos , Convulsões/fisiopatologia , ATPase Trocadora de Sódio-Potássio/deficiência , ATPase Trocadora de Sódio-Potássio/genéticaRESUMO
The Jimpy mouse illustrates the importance of interactions between astrocytes and oligodendrocytes. It has a mutation in Plp coding for proteolipid protein and DM20. Its behavior is normal at birth but from the age of ~2 weeks it shows severe convulsions associated with oligodendrocyte/myelination deficits and early death. A normally occurring increase in oxygen consumption by highly elevated K+ concentrations is absent in Jimpy brain slices and cultured astrocytes, reflecting that Plp at early embryonic stages affects common precursors as also shown by the ability of conditioned medium from normal astrocytes to counteract histological abnormalities. This metabolic response is now known to reflect opening of L-channels for Ca2+. The resulting deficiency in Ca2+ entry has many consequences, including lack of K+-stimulated glycogenolysis and release of gliotransmitter ATP. Lack of purinergic stimulation compromises oligodendrocyte survival and myelination and affects connexins and K+ channels. Mice lacking the oligodendrocytic connexins Cx32 and 47 show similar neurological dysfunction as Jimpy. This possibly reflects that K+ released by intermodal axonal Kv channels is transported underneath a loosened myelin sheath instead of reaching the extracellular space via connexin-mediated transport to oligodendrocytes, followed by release and astrocytic Na+,K+-ATPase-driven uptake with subsequent Kir4.1-facilitated release and neuronal uptake.
Assuntos
Conexinas/deficiência , Doenças Desmielinizantes/metabolismo , Oligodendroglia/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Convulsões/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Conexinas/genética , Doenças Desmielinizantes/genética , Doenças Desmielinizantes/patologia , Humanos , Camundongos , Camundongos Jimpy , Bainha de Mielina/genética , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Oligodendroglia/patologia , Canais de Potássio Corretores do Fluxo de Internalização/genética , Convulsões/genética , Convulsões/patologia , ATPase Trocadora de Sódio-Potássio/deficiência , ATPase Trocadora de Sódio-Potássio/genética , Proteína beta-1 de Junções ComunicantesRESUMO
Atp1a2 has been previously studied for anxiety, learning and motor function disorders, and fear. Since Atp1a2 has been shown to be involved in anxiety and this behavior is a known risk factor for developing alcoholism, we have been investigating Atp1a2 for its potential role in responses to alcohol. This study utilized Atp1a2 knockout mice; Atp1a2 heterozygous mice, with half the amount of protein compared to wild-type mice, were used because Atp1a2 homozygous null mice die shortly after birth. The alcohol-related behavioral experiments performed were loss of righting reflex (LORR), acute alcohol withdrawal measured by handling-induced convulsions (HIC), drinking in the dark (DID), open-field activity (OFA), and elevated plus-maze (EPM). LORR was a 2-day test that measures acute alcohol sensitivity, and rapid and acute functional tolerance (AFT). HIC was a 3-day test to measure alcohol withdrawal, DID was a 4-day test which measures voluntary alcohol consumption, and OFA and EPM measured anxiety with alcohol exposure. The effect of genotype on alcohol metabolism was also examined. There was a genotype effect on rate of alcohol metabolism, but only in males. There was no effect on alcohol withdrawal severity. The Atp1a2 heterozygous mice consumed more alcohol than wild-type mice in the DID test, although only in males. In addition, only males were observed to show rapid tolerance in the LORR test while only female heterozygous mice showed a pretreatment effect on AFT. Alcohol exposure had a greater anxiolytic effect in the heterozygous mice compared to wild-type mice, although, again, there were sex effects with only males showing the effect in OFA and only females in the EPM. Although the behavioral results were mixed, there does appear to be a connection between anxiety and alcohol. Overall, the results suggest that Atp1a2 does contribute to alcohol-related behaviors, although the effect is modest with a clear dependence on sex.
Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Etanol/administração & dosagem , Locomoção/fisiologia , Reflexo de Endireitamento/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Consumo de Bebidas Alcoólicas/psicologia , Animais , Relação Dose-Resposta a Droga , Etanol/toxicidade , Feminino , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Reflexo de Endireitamento/efeitos dos fármacos , Fatores Sexuais , ATPase Trocadora de Sódio-Potássio/deficiênciaRESUMO
The molecular pathways underlying tumor suppression are incompletely understood. Here, we identify cooperative non-cell-autonomous functions of a single gene that together provide a novel mechanism of tumor suppression in basal keratinocytes of zebrafish embryos. A loss-of-function mutation in atp1b1a, encoding the beta subunit of a Na,K-ATPase pump, causes edema and epidermal malignancy. Strikingly, basal cell carcinogenesis only occurs when Atp1b1a function is compromised in both the overlying periderm (resulting in compromised epithelial polarity and adhesiveness) and in kidney and heart (resulting in hypotonic stress). Blockade of the ensuing PI3K-AKT-mTORC1-NFκB-MMP9 pathway activation in basal cells, as well as systemic isotonicity, prevents malignant transformation. Our results identify hypotonic stress as a (previously unrecognized) contributor to tumor development and establish a novel paradigm of tumor suppression.
Assuntos
Carcinoma Basocelular/fisiopatologia , Queratinócitos/enzimologia , Queratinócitos/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Pressão Osmótica , ATPase Trocadora de Sódio-Potássio/deficiência , Peixe-ZebraRESUMO
Immunohistochemistry (IHC) is a powerful method to determine localization of tissue components by the interaction of target antigens with labeled antibodies. Here we describe an IHC protocol for localizing the myosin heavy chain of zebrafish embryos at 1-2 and 3-5 days post fertilization (dpf).
Assuntos
Embrião não Mamífero/metabolismo , Fertilização , Imuno-Histoquímica/métodos , Peixe-Zebra/embriologia , Animais , Embrião não Mamífero/fisiologia , Técnicas de Silenciamento de Genes , Isoenzimas/deficiência , Isoenzimas/genética , Mutação , Cadeias Pesadas de Miosina/metabolismo , ATPase Trocadora de Sódio-Potássio/deficiência , ATPase Trocadora de Sódio-Potássio/genética , Coloração e Rotulagem , Fatores de TempoRESUMO
Na-K-ATPase is a fundamental component of ion transport. Four α isoforms of the Na-K-ATPase catalytic α subunit are expressed in human cells. The ubiquitous Na-K-ATPase α1 was recently discovered to also mediate signal transduction through Src kinase. In contrast, α2 expression is limited to a few cell types including myocytes, where it is coupled to the Na(+)/Ca(2+) exchanger. To test whether rat Na-K-ATPase α2 is capable of cellular signaling like its α1 counterpart in a recipient mammalian system, we used an α1 knockdown pig renal epithelial cell (PY-17) to create an α2-expressing cell line with no detectable level of α1 expression. These cells exhibited normal ouabain-sensitive ATPase, but failed to effectively regulate Src. In contrast to α1-expressing cells, ouabain did not stimulate Src kinase or downstream effectors such as ERK and Akt in α2 cells, although their signaling apparatus was intact as evidenced by EGF-mediated signal transduction. Additionally, α2 cells were unable to rescue caveolin-1. Unlike the NaKtide sequence derived from Na-K-ATPase α1, which downregulates basal Src activity, the corresponding α2 NaKtide was unable to inhibit Src in vitro. Finally, coimmunoprecipitation of cellular Src was diminished in α2 cells. These findings indicate that Na-K-ATPase α2 does not regulate Src and, therefore, may not serve the same role in signal transduction as α1. This further implies that the signaling mechanism of Na-K-ATPase is isoform specific, thereby supporting a model where α1 and α2 isoforms play distinct roles in mediating contraction and signaling in myocytes.
Assuntos
Células Epiteliais/metabolismo , Bombas de Íon/metabolismo , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/deficiência , Sequência de Aminoácidos , Animais , Caveolina 1/metabolismo , Linhagem Celular , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Células Epiteliais/efeitos dos fármacos , Rim/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Dados de Sequência Molecular , Ouabaína/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos , Quinases da Família src/metabolismoRESUMO
Intervertebral disc cells are constantly exposed to a hyperosmotic environment. Among cellular responses towards this stress is the inhibition of proliferation through the activation of p38 MAPK and p53. In an effort to further elucidate the biochemical pathways triggered by hyperosmotic stress, we assessed the high osmolality-induced transcriptional changes of bovine nucleus pulposus cells using whole-genome arrays. A 5- and a 24-h hyperosmotic treatment led to the differential expression of >100 and >200 genes, respectively, including nine genes encoding transporters (SLC4A11, SLC5A3, ATP1A1, SLC38A2, KCNK17, KCTD20, KCTD11, SLC7A5, and CLCA2). Differences in the transcriptional profile of these selected genes, as indicated by the microarrays experiments, were validated by qRT-PCR in 2D and 3D cell cultures, under hyperosmolar salt and sorbitol conditions, revealing the presence of a common triggering signal for osmotic adaptation. The key signaling molecules p38 MAPK and p53 were demonstrated to differently participate in the regulation of the aforementioned transporters. Finally, siRNA-mediated knocking-down of each one of the three transporters with the highest and sustained over-expression (i.e., SLC4A11, SLC5A3, and ATP1A1) had a distinct outcome on the transcriptional profile of the other transporters, on p38 MAPK and p53 phosphorylation and consequently on cell cycle progression. The inhibition of ATP1A1 had the most prominent effect on the transcription of the rest of the transporters and was found to enhance the anti-proliferative effect of hyperosmotic conditions through an increased G2/M cell cycle block, ascribing to this pump a central role in the osmoregulatory response of nucleus pulposus cells.
Assuntos
Proliferação de Células/efeitos dos fármacos , Disco Intervertebral/efeitos dos fármacos , Osmorregulação/efeitos dos fármacos , Solução Salina Hipertônica/farmacologia , ATPase Trocadora de Sódio-Potássio/deficiência , Sorbitol/farmacologia , Ureia/farmacologia , Animais , Bovinos , Células Cultivadas , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Regulação Enzimológica da Expressão Gênica , Estudo de Associação Genômica Ampla , Disco Intervertebral/enzimologia , Disco Intervertebral/patologia , Concentração Osmolar , Osmorregulação/genética , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/genética , Fatores de Tempo , Transcrição Gênica , Transfecção , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Dystonia is a neurological disorder with involuntary and simultaneous contractions of agonist and antagonist muscles. Rapid-onset dystonia parkinsonism (RDP), one of the heredity forms of dystonia, is caused by mutations of Na,K-ATPase α3 subunit gene (ATP1A3). The abrupt onset of bulbar and limb symptoms of RDP are often triggered by physical and/or emotional stress. We reported previously that Atp1a3-deficient heterozygous mice showed higher locomotor activity and developed enhanced dystonia symptoms after kainate injection into the cerebellum, but not spontaneous movement disorder like RDP patients. Here we show that Atp1a3-deficient heterozygous mice exhibited shorter stride length at 4 weeks of age without stress and at later stages under chronic restraint stress loading. Shorter hanging time in the hanging box test was also observed after stress loading. Shorter stride length and hanging time may be relevant to certain phenotypes, such as gait abnormality, observed in RDP patients. Atp1a3 was widely expressed in the brain, including basal ganglia and cerebellum, and spinal cord of young mice, and the expression pattern was compatible with movement abnormalities under lack of one of alleles. Our results demonstrated the usefulness of Atp1a3-deficient heterozygous mice as an animal model of RDP and its potential use to explore the pathophysiology of movement abnormality in this disorder.
Assuntos
Distúrbios Distônicos/fisiopatologia , Atividade Motora/fisiologia , ATPase Trocadora de Sódio-Potássio/deficiência , Estresse Psicológico/fisiopatologia , Animais , Fenômenos Biomecânicos , Encéfalo/patologia , Encéfalo/fisiopatologia , Doença Crônica , Modelos Animais de Doenças , Distúrbios Distônicos/patologia , Feminino , Heterozigoto , Masculino , Camundongos Transgênicos , Restrição Física , Caracteres Sexuais , ATPase Trocadora de Sódio-Potássio/genética , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Estresse Psicológico/patologiaRESUMO
The current study examined the role of Na/K-ATPase α1-subunit in animals subjected to 5/6th partial nephrectomy (PNx) using Na/K-ATPase α1-heterozygous (α1(+/-)) mice and their wild-type (WT) littermates. After PNx, both WT and α1(+/-) animals displayed diastolic dimension increases, increased blood pressure, and increased cardiac hypertrophy. However, in the α1(+/-) animals we detected significant increases in cardiac cell death in PNx animals. Given that reduction of α1 elicited increased cardiac cell death with PNx, while at the same time these animals developed cardiac hypertrophy, an examination of cardiac cell number, and proliferative capabilities of those cells was carried out. Cardiac tissues were probed for the progenitor cell marker c-kit and the proliferation marker ki-67. The results revealed that α1(+/-) mice had significantly higher numbers of c-kit-positive and ki-67-positive cells, especially in the PNx group. We also found that α1(+/-) mice express higher levels of stem cell factor, a c-kit ligand, in their heart tissue and had higher circulating levels of stem cell factor than WT animals. In addition, PNx induced significant enlargement of cardiac myocytes in WT mice but has much less effect in α1(+/-) mice. However, the total cell number determined by nuclear counting is higher in α1(+/-) mice with PNx compared with WT mice. We conclude that PNx induces hypertrophic growth and high blood pressure regardless of Na/K-ATPase content change. However, total cardiac cell number as well as c-kit-positive cell number is increased in α1(+/-) mice with PNx.
Assuntos
Remodelamento Atrial/fisiologia , Proliferação de Células , Miócitos Cardíacos/patologia , Nefrectomia , Proteínas Proto-Oncogênicas c-kit/metabolismo , ATPase Trocadora de Sódio-Potássio/deficiência , Remodelação Ventricular/fisiologia , Animais , Apoptose/fisiologia , Cardiomegalia/fisiopatologia , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , Serina-Treonina Quinases TOR/metabolismoRESUMO
Alzheimer disease (AD) is a neurodegenerative disorder clinically characterized by progressive cognitive and memory dysfunction, which is the most common form of dementia. Although the pathogenesis of neuronal injury in AD is not clear, recent evidences suggest that Naâº-Kâº-ATPase plays an important role in AD, and may be a potent neuroprotective modulator against AD. This review aims to provide readers with an in-depth understanding of Naâº-Kâº-ATPase in AD through these modulations of some factors that are as follows, which leads to the change of learning and memory in the process of AD. 1. The deficiency in Naâº, Kâº-ATPase α1, α2 and α3 isoform genes induced learning and memory deficits, and α isoform was evidently changed in AD, revealing that Naâº, Kâº-ATPase α isoform genes may play an important role in AD. 2. Some factors, such as ß-amyloid, cholinergic and oxidative stress, can modulate learning and memory in AD through the mondulation of Naâº-Kâº-ATPase activity. 3. Some substances, such as Zn, s-Ethyl cysteine, s-propyl cysteine, citicoline, rivastigmine, Vit E, memantine, tea polyphenol, curcumin, caffeine, Alpinia galanga (L.) fractions, and Bacopa monnieri could play a role in improving memory performance and exert protective effects against AD by increasing expression or activity of Naâº, Kâº-ATPase.
Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/enzimologia , Neurônios/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Doença de Alzheimer/etiologia , Doença de Alzheimer/prevenção & controle , Doença de Alzheimer/terapia , Animais , Encéfalo/metabolismo , Suplementos Nutricionais , Ativação Enzimática/efeitos dos fármacos , Indução Enzimática/efeitos dos fármacos , Humanos , Isoenzimas/química , Isoenzimas/deficiência , Isoenzimas/metabolismo , Neurônios/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Nootrópicos/uso terapêutico , Estresse Oxidativo/efeitos dos fármacos , Subunidades Proteicas/agonistas , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/deficiência , Subunidades Proteicas/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/deficiênciaRESUMO
The Na(+)/K(+)-ATPase generates ion gradients across the plasma membrane, essential for multiple cellular functions. In mammals, four different Na(+)/K(+)-ATPase α-subunit isoforms are associated with characteristic cell-type expression profiles and kinetics. We found the zebrafish α2Na(+)/K(+)-ATPase associated with striated muscles and that knockdown causes a significant depolarization of the resting membrane potential in slow-twitch fibers of skeletal muscles. Abrupt mechanosensory responses were observed in α2Na(+)/K(+)-ATPase-deficient embryos, possibly linked to a postsynaptic defect. The α2Na(+)/K(+)-ATPase deficiency reduced the heart rate and caused a loss of left-right asymmetry in the heart tube. Similar phenotypes from knockdown of the Na(+)/Ca(2+) exchanger indicated a role for the interplay between these two proteins in the observed phenotypes. Furthermore, proteomics identified up- and downregulation of specific phenotype-related proteins, such as parvalbumin, CaM, GFAP and multiple kinases, thus highlighting a potential proteome change associated with the dynamics of α2Na(+)/K(+)-ATPase. Taken together, our findings show that zebrafish α2Na(+)/K(+)-ATPase is important for skeletal and heart muscle functions.
Assuntos
Músculo Esquelético/enzimologia , Miocárdio/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Membrana Celular/enzimologia , Feminino , Técnicas de Silenciamento de Genes , Masculino , Potenciais da Membrana , ATPase Trocadora de Sódio-Potássio/deficiência , ATPase Trocadora de Sódio-Potássio/genética , Peixe-ZebraRESUMO
To examine the possible enrolment of Na(+)/K(+)-ATPase during osteoclast differentiation, Na(+)/K(+)-ATPase inhibitors, including ouabain and vanadate, were used in this study. These inhibitors significantly inhibited cell-cell fusion of RAW264.7 cells and bone marrow cells induced by RANKL. Interestingly, in response to RANKL-stimulation, ouabain and vanadate decreased the number of large TRAP+ osteoclasts in the culture of RAW264.7 cells, as well as bone marrow cells. In contrast, the number of small TRAP+ osteoclasts either increased in RAW264.7 cells or were otherwise less affected in bone marrow cells than large TRAP+ osteoclasts. Large TRAP+ osteoclasts are defined as having ≥ 10 nuclei/cell and having more potency in bone resorption than small multinuclear osteoclasts with <9 nuclei/cell. Na(+)/K(+)-ATPase α1 and ß2 mRNAs were detected in sRANKL-stimulated RAW264.7 cells. Moreover, real-time quantitative PCR showed that ouabain and vanadate suppressed the RANKL-dependent induction of the osteoclast fusion-promotion molecule DC-STAMP at the mRNA level. Finally, and importantly, RNAi-mediated suppression of Na(+)/K(+)-ATPase α1 resulted in a diminished number of large TRAP+ osteoclasts in the sRANKL-stimulated RAW264.7 cells, along with the decreased level of DC-STAMP mRNA expression. These findings strongly suggest that blockage of the Na(+)/K(+)-ATPase α1 subunit by ouabain or vanadate caused the inhibition of RANKL-induced cell-cell fusion, resulting in the generation of large osteoclasts through suppression of DC-STAMP expression. Thus, in addition to its known function of sodium and potassium ion exchange during bone resorption by mature osteoclasts, this study has revealed a novel molecular role of the Na(+)/K(+)-ATPase α1 subunit in osteoclastogenesis.