Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
BMC Microbiol ; 24(1): 356, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300361

RESUMO

BACKGROUND: Maple is an important ornamental plant in China. With the increasing use of maple trees in landscaping, a symptom of shoot dieback has been observed in Henan province, China. RESULTS: In this study, 28 Diaporthe isolates were obtained from symptomatic shoots of maple trees between 2020 and 2023. Phylogenetic analyses based on five loci (ITS, TEF, CAL, HIS and TUB) coupled with morphology of 12 representative isolates identified three known species (D. eres, D. pescicola and D. spinosa) and one new species, namely D. pseudoacerina sp. nov. Koch's postulates confirmed that all these species were pathogenic. Additionally, D. pseudoacerina was able to infect China wingnut (Pterocarya stenoptera), pear (Pyrus sp.), and black locust (Robinia pseudoacacia). This study marks the first report of Diaporthe spinosa and D. pescicola pathogens infecting maple trees. CONCLUSIONS: These findings enhance the existing knowledge of the taxonomy and host diversity of Diaporthe species as, while also providing valuable information for managing of maple shoot dieback in Henan Province, China.


Assuntos
Acer , Ascomicetos , Filogenia , Doenças das Plantas , Brotos de Planta , Acer/microbiologia , China , Doenças das Plantas/microbiologia , Brotos de Planta/microbiologia , Ascomicetos/genética , Ascomicetos/classificação , Ascomicetos/isolamento & purificação , Ascomicetos/fisiologia , DNA Fúngico/genética , Análise de Sequência de DNA , Pyrus/microbiologia
2.
Dokl Biol Sci ; 518(1): 225-229, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39128963

RESUMO

We tested whether one of the consequences predicted for alien plant invasion by the mutualism disruption hypothesis was true in the case of the ash-leaved maple Acer negundo L. The study aimed to determine whether the occurrences of mycorrhizal and nonmycorrhizal herbs varied similarly or differently in communities with varying degrees of A. negundo dominance. The analysis included the results of 78 vegetation descriptions carried out in Belarusian Polesia, the Middle Volga region, and the Middle Urals. Communities with or without A. negundo dominance were described in each region. The mycorrhizal status of plant species was determined using the FungalRoot Database. Species that are more likely to form arbuscular mycorrhiza were found to occur less frequently in A. negundo thickets. On the contrary, a higher probability of the nonmycorrhizal status was associated with a lower frequency of detection in A. negundo thickets. Therefore, the occurrence of arbuscular mycorrhizal herbs was found to selectively decrease in communities dominated by A. negundo.


Assuntos
Acer , Espécies Introduzidas , Micorrizas , Micorrizas/fisiologia , Micorrizas/efeitos dos fármacos , Acer/microbiologia , Simbiose , Árvores/microbiologia
3.
Genes (Basel) ; 15(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39062644

RESUMO

DNA barcodes can provide accurate identification of plants. We used previously reported DNA primers targeting the internal transcribed spacer (ITS1) region of the nuclear ribosomal cistron, internal transcribed spacer (ITS2), and chloroplast trnL (UAA) intron to identify four trees at Bergen Community College. Two of the four trees were identified as Acer rubrum and Fagus sylvatica. However, Quercus was only identified at the genus level, and the fourth tree did not show similar identification between barcodes. Next-generation sequencing of 16S rRNA genes showed that the predominant bacterial communities in the rhizosphere mainly consisted of the Pseudomonadota, Actinomycetota, Bacteroidota, and Acidobacteriota. A. rubrum showed the most diverse bacterial community while F. sylvatica was less diverse. The genus Rhodoplanes showed the highest relative bacterial abundance in all trees. Fungal ITS sequence analysis demonstrated that the communities predominantly consisted of the Ascomycota and Basidiomycota. Quercus showed the highest fungi diversity while F. sylvatica showed the lowest. Russula showed the highest abundance of fungi genera. Average similarity values in the rhizosphere for fungi communities at the phylum level were higher than for bacteria. However, at the genus level, bacterial communities showed higher similarities than fungi. Similarity values decreased at lower taxonomical levels for both bacteria and fungi, indicating each tree has selected for specific bacterial and fungal communities. This study confirmed the distinctiveness of the microbial communities in the rhizosphere of each tree and their importance in sustaining and supporting viability and growth but also demonstrating the limitations of DNA barcoding with the primers used in this study to identify genus and species for some of the trees. The optimization of DNA barcoding will require additional DNA sequences to enhance the resolution and identification of trees at the study site.


Assuntos
Bactérias , Código de Barras de DNA Taxonômico , Microbiota , Quercus , RNA Ribossômico 16S , Rizosfera , Árvores , Código de Barras de DNA Taxonômico/métodos , Microbiota/genética , Bactérias/genética , Bactérias/classificação , RNA Ribossômico 16S/genética , Quercus/microbiologia , Quercus/genética , Árvores/microbiologia , Árvores/genética , Microbiologia do Solo , Fagus/microbiologia , Fagus/genética , Fungos/genética , Fungos/classificação , Genótipo , Filogenia , Acer/microbiologia , Acer/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos
4.
Plant Dis ; 108(9): 2788-2794, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38679593

RESUMO

Phytopythium root rot caused by Phytopythium vexans is an emerging threat to red maple and Freeman maple production that seriously impacts plant growth, aesthetic, and economic values. This study reports on the resistance of red maple and Freeman maple cultivars against root rot disease caused by P. vexans. Rooted cuttings were received from a commercial nursery and planted in 3-gallon containers. For each cultivar, six plants were inoculated by drenching 300 ml/plant of P. vexans suspension, prepared by blending two plates of 10-day-old P. vexans culture/liter sterile water. An equal number of plants remained noninoculated and were drenched with 300 ml of sterile water. Two trials were conducted for 4 months in the greenhouse during the summer of 2023. Plants were evaluated for growth, physiology, Phytopythium root rot severity (0 to 100% of roots affected), and pathogen reisolation frequency. Out of seven cultivars, Somerset had the lowest Phytopythium root rot severity and pathogen reisolation frequency. Cultivars Autumn Blaze, Brandywine, and October Glory were highly susceptible to P. vexans, whereas Sun Valley, Summer Red, and Celebration were found to have a partial resistance to P. vexans. Cultivars Autumn Blaze, Brandywine, and October Glory had significantly lower chlorophyll content, net photosynthesis, and stomatal conductance compared with the other three cultivars under pathogen inoculation. Phytopythium root rot reduced plant height, width, total plant, and root fresh weight. The disease severity was negatively correlated with width, chlorophyll content, net photosynthesis, and stomatal conductance. These results can aid growers and landscapers in developing effective P. vexans management strategies.


Assuntos
Acer , Resistência à Doença , Doenças das Plantas , Raízes de Plantas , Acer/microbiologia , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Fotossíntese
5.
Ecology ; 103(8): e3727, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35412652

RESUMO

Climate change is prompting plants to migrate and establish novel interactions in new habitats. Because of the pivotal roles that microbes have on plant health and function, it is important to understand the ecological consequences of these shifts in host-microbe interactions with range expansion. Here we examine how the diversity of plant-associated microbes varies along the host's current range and extended range according with climate change predictions, and assess the relative influence of host genotype (seed provenance) and environment in structuring the host microbiome. We collected sugar maple seeds from across the species current range, then planted them in temperate and mixedwood/transitional forests (current range) and in the boreal region (beyond range but predicted future range in response to climate change). We used amplicon sequencing to quantify bacterial, fungal, and mycorrhizal communities from seedling leaves and roots. Variation among sites and regions were the main drivers of the differences in host microbial communities, whereas seed provenance did not play a large role. No unifying pattern was observed for microbial community richness, diversity, or specialization, demonstrating the complexity of responses of different taxa on above- and belowground plant compartments. Along the latitudinal gradient, we (1) observed reductions in mycorrhizal diversity that can negatively impact maple establishment; (2) and revealed reductions in fungal leaf pathogens that can have opposite effects. Our results highlight the need for an integrated approach including the examination of various microbial taxa on different plant compartments to improve our understanding of plant range shifts and plant-microbe interactions.


Assuntos
Acer , Microbiota , Acer/microbiologia , Bactérias/genética , Raízes de Plantas/microbiologia , Microbiologia do Solo
6.
PeerJ ; 10: e12701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127279

RESUMO

Fungal communities are known to contribute to the functioning of living plant microbiomes as well as to the decay of dead plant material and affect vital ecosystem services, such as pathogen resistance and nutrient cycling. Yet, factors that drive structure and function of phyllosphere mycobiomes and their fate in leaf litter are often ignored. We sought to determine the factors contributing to the composition of communities in temperate forest substrates, with culture-independent amplicon sequencing of fungal communities of pre-senescent leaf surfaces, internal tissues, leaf litter, underlying humus soil of co-occurring red maple (Acer rubrum) and shagbark hickory (Carya ovata). Paired samples were taken at five sites within a temperate forest in southern Michigan, USA. Fungal communities were differentiable based on substrate, host species, and site, as well as all two-way and three-way interactions of these variables. PERMANOVA analyses and co-occurrence of taxa indicate that soil communities are unique from both phyllosphere and leaf litter communities. Correspondence of endophyte, epiphyte, and litter communities suggests dispersal plays an important role in structuring fungal communities. Future work will be needed to assess how this dispersal changes microbial community functioning in these niches.


Assuntos
Acer , Carya , Microbiota , Micobioma , Acer/microbiologia , Folhas de Planta/microbiologia , Solo
7.
Plant Dis ; 105(10): 3087-3091, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34702082

RESUMO

In Japan, no association between the ambrosia beetle and their fungal symbionts causing branch dieback or tree mortality on maple, Acer amoenum, has been reported. However, we identified dieback of several branches and numerous holes created by three species of ambrosia beetles, Euwallacea fornicatus, Euwallacea interjectus, and Platypus calamus, on Acer amoenum trees at the University of Tokyo Tanashi Forest, Tokyo Metropolis, Japan, in 2016. The high attack density of the beetles was observed on the weakened trees; however, the contribution of the associated fungi to the branch dieback was still unknown. We isolated fungi carried by these three beetles and inoculated them to Acer amoenum cut main trunks and sapling branches to determine whether the associated fungi caused the branch dieback. Fusarium euwallaceae was isolated from all Euwallacea fornicatus and Euwallacea interjectus, whereas Arthrinium phaeospermum, Raffaelea cyclorhipidia, and Epicoccum nigrum were isolated from P. calamus, with 35, 15, and 5% isolation frequencies, respectively. Inoculation with F. euwallaceae and R. cyclorhipidia induced statistically significantly wider sapwood discoloration (six and four times wider for F. euwallaceae and R. cyclorhipidia, respectively) than the controls, and larger water-conductance loss (2 and 1.7 times larger for F. euwallaceae and R. cyclorhipidia, respectively) than the controls. However, the observed lesions were not large enough to cause discoloration, and symptoms of dieback were not observed, even 13 months after the inoculation. Therefore, we concluded that the virulence of the four investigated fungi to Acer amoenum was very low and that these fungi were likely not the primary cause of the branch dieback.


Assuntos
Acer , Fungos/patogenicidade , Doenças das Plantas/microbiologia , Gorgulhos , Acer/microbiologia , Animais , Virulência , Gorgulhos/microbiologia
8.
Fungal Biol ; 125(8): 585-595, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34281652

RESUMO

The introduction, spread, and impact of fungal plant pathogens is a critical concern in ecological systems. In this study, we were motivated by the rather sudden appearance of Acermacrophyllum heavily infected with powdery mildew. We used morphological and genetic analyses to confirm the pathogen causing the epidemic was Sawadaea bicornis. In subsequent field studies, this pathogen was found in several locations in western North America, and in greenhouse studies, A. macrophyllum was found to be significantly more susceptible to S. bicornis than nine other Acer species tested. A genetic analysis of 178 specimens of powdery mildew from freshly collected and old herbarium specimens from 15 countries revealed seven different haplotypes. The high diversity of haplotypes found in Europe coupled with sequence results from a specimen from 1864 provides evidence that S. bicornis has a European origin. Furthermore, sequence data from a specimen from 1938 in Canada show that the pathogen has been present in North America for at least 82 years revealing a considerable lag time between the introduction and current epidemic. This study used old herbarium specimens to genetically hypothesize the origin, the native host, and the invasion time of a detrimental fungal plant pathogen.


Assuntos
Acer , Ascomicetos , Espécies Introduzidas , Doenças das Plantas , Acer/microbiologia , Ascomicetos/fisiologia , Ecossistema , Doenças das Plantas/microbiologia
9.
Commun Biol ; 4(1): 483, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33875783

RESUMO

Fine roots vary dramatically in their functions, which range from resource absorption to within-plant resource transport. These differences should alter resource availability to root-associated microorganisms, yet most root microbiome studies involve fine root homogenization. We hypothesized that microbial filtering would be greatest in the most distal roots. To test this, we sampled roots of six temperate tree species from a 23-year-old common garden planting, separating by branching order. Rhizoplane bacterial composition was characterized with 16S rRNA gene sequencing, while bacterial abundance was determined on a subset of trees through flow cytometry. Root order strongly impacted composition across tree species, with absorptive lower order roots exerting the greatest selective pressure. Microbial carrying capacity was higher in absorptive roots in two of three tested tree species. This study indicates lower order roots as the main point of microbial interaction with fine roots, suggesting that root homogenization could mask microbial recruitment signatures.


Assuntos
Bactérias/metabolismo , Microbiota , Raízes de Plantas/microbiologia , Microbiologia do Solo , Árvores/microbiologia , Acer/microbiologia , Bactérias/classificação , Carya/microbiologia , Juglans/microbiologia , Liriodendron/microbiologia , Pinus/microbiologia , Quercus/microbiologia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
10.
Arch Microbiol ; 203(6): 2843-2852, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33748874

RESUMO

A Gram-reaction-negative, strictly aerobic, betaproteobacterial strain, designated SAP-35T, was isolated from sap extracted from Acer pictum in Mt. Halla in Jeju, Republic of Korea, and its taxonomic status was examined by a polyphasic approach. Cells of the organism were non-sporulating, motile rods and grew at 4-30 °C, pH 6-7 and in the absence of NaCl. 16S rRNA gene- and whole genome-based phylogenetic analyses showed that strain SAP-35T belonged to the family Oxalobacteraceae and was closely related to Rugamonas rivuli (98.9% 16S rRNA gene sequence similarity) and Rugamonas aquatica (98.4%). The phylogenomic clustering and average amino acid identity values supported that strain SAP-35T belonged to the genus Duganella and two Rugamonas species should be transferred to the genus Duganella. The major isoprenoid quinone of the isolate was Q-8. The major polar lipids were phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol and an unidentified aminophospholipid. The predominant fatty acids were summed feature 3, C16:0 and C17:0 cyclo. The G + C content of genome was 64.9%. The average nucleotide identity and dDDH values between strain SAP-35T and the members of the genera Rugamonas and Duganella were < 85.1% and < 49%, respectively. Based on the combined data presented here, strain SAP-35T (= KCTC 72227T = NBRC 113903T) represents a novel species of the genus Duganella, for which the name Duganella aceris sp. nov. is proposed. Also, Rugamonas aquatica Lu et al. (Int J Syst Evol Microbiol 70: 3328-3334, 2020) and Rugamonas aquatica Lu et al. 2020 are reclassified as Duganella aquatica comb. nov., with the emended description of the genus Rugamonas.


Assuntos
Acer/microbiologia , Oxalobacteraceae/classificação , Oxalobacteraceae/genética , Oxalobacteraceae/metabolismo , Filogenia , RNA Ribossômico 16S/genética
11.
Microb Ecol ; 81(1): 157-168, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32761502

RESUMO

The phyllosphere is a challenging microbial habitat in which microorganisms can flourish on organic carbon released by plant leaves but are also exposed to harsh environmental conditions. Here, we assessed the relative importance of canopy position-top, mid, and bottom at a height between 31 and 20 m-and tree species identity for shaping the phyllosphere microbiome in a floodplain hardwood forest. Leaf material was sampled from three tree species-maple (Acer pseudoplatanus L.), oak (Quercus robur L.), and linden (Tilia cordata MILL.)-at the Leipzig canopy crane facility (Germany). Estimated bacterial species richness (Chao1) and bacterial abundances approximated by quantitative PCR of 16S rRNA genes exhibited clear vertical trends with a strong increase from the top to the mid and bottom position of the canopy. Thirty operational taxonomic units (OTUs) formed the core microbiome, which accounted for 77% of all sequence reads. These core OTUs showed contrasting trends in their vertical distribution within the canopy, pointing to different ecological preferences and tolerance to presumably more extreme conditions at the top position of the canopy. Co-occurrence analysis revealed distinct tree species-specific OTU networks, and 55-57% of the OTUs were unique to each tree species. Overall, the phyllosphere microbiome harbored surprisingly high fractions of Actinobacteria of up to 66%. Our results clearly demonstrate strong effects of the position in the canopy on phyllosphere bacterial communities in a floodplain hardwood forest and-in contrast to other temperate or tropical forests-a strong predominance of Actinobacteria.


Assuntos
Acer/microbiologia , Actinobacteria/classificação , Folhas de Planta/microbiologia , Quercus/microbiologia , Tilia/microbiologia , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Biodiversidade , Florestas , Alemanha , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/fisiologia , RNA Ribossômico 16S/genética , Árvores/microbiologia
12.
Arch Microbiol ; 202(9): 2411-2417, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32591910

RESUMO

A Gram-reaction-negative, facultatively anaerobic bacterium, designated SAP-19T, was isolated from sap extracted from Acer pictum in Mt. Halla in Jeju, Republic of Korea and its taxonomic statue was investigated by a polyphasic approach including genome- and 16S rRNA gene-based phylogenetic analyses. Cells were motile, short rods and showed growth at 20-30 °C, pH 4-9 and 0-6% (w/v) NaCl. The whole genome- and 16S rRNA gene-based phylogenetic analyses exhibited that strain SAP-19T belongs to the genus Rahnella and forms a tight cluster with Rahnella aquatilis. The isolate shared average nucleotide identity of 92.7% and 16S rRNA gene sequence similarity of 99.6% with the type strain of Rahnella aquatilis. The polar lipids contained phosphatidylethanolamine, an unidentified aminophospholipid and an unidentified lipid. The major isoprenoid quinone was Q-8. The predominant fatty acids were C16:0 and C17:0cyclo. The G + C content of the genome was 52.3%. The low average nucleotide identity (92.7%) and digital DNA relatedness (48.6%) values between the isolate and the most closely related strain showed that the isolate can be considered a different genospecies. On the basis of combined data obtained in this study, strain SAP-19T (= KACC 21744T = NBRC 114407T) represents a novel species of the genus Rahnella, for which the name Rahnella aceris sp. nov. is proposed.


Assuntos
Acer/microbiologia , Filogenia , Rahnella/classificação , Técnicas de Tipagem Bacteriana , Ácidos Graxos/análise , Fosfolipídeos/análise , RNA Ribossômico 16S/genética , Rahnella/genética , Rahnella/isolamento & purificação , República da Coreia , Especificidade da Espécie
13.
Fungal Biol ; 124(2): 144-154, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32008755

RESUMO

Phellinus noxius is a root-decay pathogen with a pan-tropical/subtropical distribution that attacks a wide range of tree hosts. For this study, genomic sequencing was conducted on P. noxius isolate P919-02W.7 from Federated States of Micronesia (Pohnpei), and its gene expression profile was analyzed using different host wood (Acer, Pinus, Prunus, and Salix) substrates. The assembled genome was 33.92 Mbp with 2954 contigs and 9389 predicted genes. Only small differences were observed in size and gene content in comparison with two other P. noxius genome assemblies (isolates OVT-YTM/97 from Hong Kong, China and FFPRI411160 from Japan, respectively). Genome analysis of P. noxius isolate P919-02W.7 revealed 488 genes encoding proteins related to carbohydrate and lignin metabolism, many of these enzymes are associated with degradation of plant cell wall components. Most of the transcripts expressed by P. noxius isolate P919-02W.7 were similar regardless of wood substrates. This study highlights the vast suite of decomposing enzymes produced by P. noxius, which suggests potential for degrading diverse wood substrates, even from temperate host trees. This information contributes to our understanding of pathogen ecology, mechanisms of wood decomposition, and pathogenic/saprophytic lifestyle.


Assuntos
Basidiomycota/genética , Genoma Fúngico , Phellinus/genética , Árvores/microbiologia , Madeira/metabolismo , Acer/microbiologia , China , Proteínas Fúngicas/metabolismo , Variação Genética , Genômica , Japão , Lignina/metabolismo , Micronésia , Phellinus/enzimologia , Filogeografia , Pinus/microbiologia , Doenças das Plantas/microbiologia , Prunus/microbiologia , Salix/microbiologia , Transcriptoma , Madeira/microbiologia
14.
Sci Rep ; 9(1): 14183, 2019 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-31578453

RESUMO

Green islands (the re-greening of senescent leaf tissues) are particularly evident on leaves infected with fungal pathogens. To date, there is only a limited number of studies investigating foliar endophytic microorganisms in phytopathogen-infected leaves. Here, we analysed bacterial and fungal endophyte communities in leaves without green islands (control leaves; CL), within green island areas (GLA) and the surrounding yellow leaf areas (YLA) of leaves with green islands of Acer campestre and A. platanoides. GLA samples of A. campestre and A. platanoides were dominated by Sawadaea polyfida and S. bicornis, respectively, suggesting that these fungi might be responsible for the green islands. We detected a higher fungal richness and diversity in CL compared to GLA samples of A. campestre. Leaf status (CL, GLA, YLA) significantly altered the composition of fungal communities of A. campestre. This was related to differences in fungal community composition between YLA and GLA samples. Site was the main driver of bacterial communities, suggesting that bacterial and fungal endophytes are shaped by different factors. Overall, we observed Acer species-specific responses of endophyte communities towards the presence of green islands and/or leaf type, which might be attributed to several fungi and bacteria specifically associated with one Acer species.


Assuntos
Acer/microbiologia , Endófitos/patogenicidade , Microbiota , Folhas de Planta/microbiologia , Bactérias/genética , Bactérias/patogenicidade , Endófitos/genética , Fungos/genética , Fungos/patogenicidade , Metagenoma
15.
PLoS One ; 14(7): e0219166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31291304

RESUMO

Habitat heterogeneity is an important driver of aboveground species diversity but few studies have investigated effects on soil communities. Trees shape their surrounding by both leaf litter and roots generating small scale heterogeneity and potentially governing community patterns of soil organisms. To assess the role of vegetation for the soil fauna, we studied whether tree species (Fagus sylvatica L., Acer pseudoplatanus L., Fraxinus excelsior L., Tilia cordata Mill.), markedly differing in leaf litter quality and root associated mycorrhizal symbionts, affect oribatid mite communities by shaping below- and aboveground resources and habitat complexity and availability. Oribatid mite abundance, species richness, community structure and the proportion of litter living and parthenogenetic individuals were analyzed and related to microbial biomass and the amount of remaining litter mass. Although leaf litter species with higher nutritional values decomposed considerably faster, microbial biomass only slightly differed between leaf litter species. Neither root species nor leaf litter species affected abundance, species richness or community structure of oribatid mites. However, root species had an effect on the proportion of parthenogenetic individuals with increased proportions in the presence of beech roots. Overall, the results suggest that identity and diversity of vegetation via leaf litter or roots are of minor importance for structuring oribatid mite communities of a temperate forest ecosystem.


Assuntos
Ácaros/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Folhas de Planta/classificação , Raízes de Plantas/classificação , Acer/classificação , Acer/microbiologia , Animais , Biomassa , Ecossistema , Fagus/classificação , Fagus/microbiologia , Fraxinus/classificação , Fraxinus/microbiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Dinâmica Populacional , Especificidade da Espécie , Simbiose , Tilia/classificação , Tilia/microbiologia
16.
Mycorrhiza ; 29(2): 85-96, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30547252

RESUMO

In forest ecosystems, ectomycorrhizal (ECM) fungi are important for plant growth and soil biogeochemical processes. The biochemical composition of ECM mycelium is an important fungal effect trait with consequences for its decomposition rate, and consequently on soil carbon pools and plant nutrition. Although the link between ECM fungi and leaf litter-released nutrients is well known, the response of ECM fungal biochemical composition to different leaf litter species remains poorly understood. To determine how leaf litter quality influences ECM fungi's biochemical profiles, we planted young beech trees in an oak forest and replaced the natural leaf litter with that of European beech (Fagus sylvatica), ash (Fraxinus excelsior), maple (Acer pseudoplatanus), or lime (Tilia cordata). We assessed the biochemical profiles of ECM root tips colonized by common fungal taxa in temperate forests (i.e., Cenococcum geophilum, Inocybe sp., and Lactarius subdulcis), using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). ECM fungal biochemical composition changed with leaf litter species. Changes were apparent in the infrared absorption bands assigned to functional groups of lipids, amides, and carbohydrates. C. geophilum and L. subdulcis exhibited large spectral differences corresponding to the initial pattern of leaf litter chemical composition between samples collected in the beech and ash leaf litter treatments. In contrast, Inocybe sp. was influenced by lime, but with no differences between samples from ash or beech leaf litter treatments. Although the spectral bands affected by leaf litter type differed among ECM fungi, they were mainly related to amides, indicating a dynamic response of the fungal proteome to soil nutritional changes. Overall, the results indicate that the biochemical response of ECM fungi to leaf litter species varies among ECM fungal species and suggests that the biochemical composition of ECM mycelium is a fungal response trait, sensitive to environmental changes such as shifts in leaf litter species.


Assuntos
Florestas , Micorrizas/química , Folhas de Planta/microbiologia , Microbiologia do Solo , Árvores/microbiologia , Acer/microbiologia , Biomassa , Fagus/microbiologia , Fraxinus/microbiologia , Alemanha , Especificidade da Espécie , Tilia/microbiologia
17.
Microb Ecol ; 77(1): 230-242, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29948017

RESUMO

Microbial symbionts play pivotal roles in the ecology and physiology of insects feeding in woody plants. Both eukaryotic and bacterial members occur in these systems where they facilitate digestive and nutrient provisioning. The larval gut of the Asian longhorned beetle (Anoplophora glabripennis) is associated with a microbial consortium that fulfills these metabolic roles. While members of the community vary in presence and abundance among individuals from different hosts, A. glabripennis is consistently associated with a fungus in the Fusarium solani species complex (FSSC). We used amplicon sequencing, taxon-specific PCR, culturing, and imaging to determine how bacterial and fungal communities differ between life stages and possible modes of symbiont transfer. The bacterial and fungal communities of adult guts were more diverse than those from larvae and eggs. The communities of larvae and eggs were more similar to those from oviposition sites than from adult female guts. FSSC isolates were not detected in the reproductive tissues of adult females, but were consistently detected on egg surfaces after oviposition and in frass. These results demonstrate that frass can serve as a vehicle of transmission of a subset for the beetle gut microbiota. Vertically transmitted symbionts are often beneficial to their host, warranting subsequent functional studies.


Assuntos
Bactérias/classificação , Besouros/microbiologia , Fungos/classificação , Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Mães , Acer/microbiologia , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Ovos/microbiologia , Feminino , Fungos/genética , Fungos/isolamento & purificação , Fusarium/classificação , Larva/microbiologia , Estágios do Ciclo de Vida , Oviposição , Filogenia , RNA Ribossômico 16S/genética , Simbiose
18.
Int J Syst Evol Microbiol ; 67(9): 3198-3202, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28840799

RESUMO

Two Gram-stain-negative bacterial strains, SAP-32T and SAP-36, were isolated from sap drawn from the Acer pictum from Mount Halla in Jeju, Republic of Korea. The organisms were strictly aerobic, non-sporulating, motile rods and showed growth at 10-30 °C, pH 7-8 and with 0-2 % NaCl. The major isoprenoid quinone was Q-8. The predominant fatty acids were C16 : 0, cyclo-C17 : 0, summed feature 3 and C18 : 0. The polar lipids contained phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, an unknown aminophosphoglycolipid, an unknown glycolipid, an unknown phospholipid and two unknown lipids. The DNA G+C content was 64.4 mol%. The results of phylogenetic analyses based on 16S rRNA gene sequences indicated that SAP-32T and SAP-36 formed a distinct cluster with members of the genus Pigmentiphaga within the family Alcaligenaceae. Both strains showed 16S rRNA gene sequence similarity of 100 % to each other. The closest relatives of the isolates were Pigmentiphaga daeguensis (97.08 % sequence similarity), Pigmentiphaga kullae (97.01 %) and Pigmentiphaga litoralis (96.73 %). On the basis of data from phenotypic, chemotaxonomic and phylogenetic analyses, SAP-32T (=KCTC 52619T=DSM 104039T) and SAP-36 (=KCTC 52620=DSM 104072) represent members of a novel species of the genus Pigmentiphaga, for which the name Pigmentiphaga aceris sp. nov. is proposed.


Assuntos
Acer/microbiologia , Alcaligenaceae/classificação , Filogenia , Alcaligenaceae/genética , Alcaligenaceae/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Ubiquinona/química
19.
FEMS Yeast Res ; 17(3)2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419220

RESUMO

Xylose fermentation is a rare trait that is immensely important to the cellulosic biofuel industry, and Candida tenuis is one of the few yeasts that has been reported with this trait. Here we report the isolation of two strains representing a candidate sister species to C. tenuis. Integrated analysis of genome sequence and physiology suggested the genetic basis of a number of traits, including variation between the novel species and C. tenuis in lactose metabolism due to the loss of genes encoding lactose permease and ß-galactosidase in the former. Surprisingly, physiological characterization revealed that neither the type strain of C. tenuis nor this novel species fermented xylose in traditional assays. We reexamined three xylose-fermenting strains previously identified as C. tenuis and found that these strains belong to the genus Scheffersomyces and are not C. tenuis. We propose Yamadazyma laniorum f.a. sp. nov. to accommodate our new strains and designate its type strain as yHMH7 (=CBS 14780 = NRRL Y-63967T). Furthermore, we propose the transfer of Candida tenuis to the genus Yamadazyma as Yamadazyma tenuis comb. nov. This approach provides a roadmap for how integrated genome sequence and physiological analysis can yield insight into the mechanisms that generate yeast biodiversity.


Assuntos
Candida/genética , DNA Fúngico/genética , Genoma Fúngico , Filogenia , Saccharomycetales/genética , Xilose/metabolismo , Acer/microbiologia , Biocombustíveis , Candida/classificação , Candida/crescimento & desenvolvimento , Candida/metabolismo , Fermentação , Técnicas de Tipagem Micológica , Saccharomycetales/classificação , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
20.
Int J Syst Evol Microbiol ; 67(4): 1039-1045, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27995861

RESUMO

Strain KUDC4121T was isolated from the rhizosphere of Acer okamotoanum, a plant native to the Korean island of Ulleungdo. The strain was a Gram-stain-positive, non-spore-forming, non-motile, rod-shaped bacterium that can grow at 18-37 °C and pH 6.0-7.5, with optimum growth at 30 °C and pH 7.0. It grew on tryptic soy agar containing less than 0.5 % (w/v) NaCl and in R2A broth. Cell length ranged from 2.0 to 2.5 µm. Strain KUDC4121T was oxidase- and catalase-positive and did not hydrolyse starch or casein. The genomic G+C content was 48.8 mol%. The major fatty acids were anteiso-C15 : 0 and iso-C16 : 0. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain KUDC4121T belongs to the genus Paenibacillus. The closest type strain was Paenibacillus chondroitinus DSM 5051T, with 97.8 % similarity, followed by Paenibacillus alginolyticus DSM 5050T (97.6 %), Paenibacillus ferrarius CY1T (97.5 %), Paenibacillus pocheonensis Gsoil 1138T (97.5 %), Paenibacillus frigoriresistens YIM 016T (97.5 %), Paenibacillus pectinilyticus RCB-08T (97.2 %) and Paenibacillus aestuarii CJ25T (96.9 %). Based on its phenotypic properties and phylogenetic and genetic data, strain KUDC4121T should be considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus aceris sp. nov. is proposed. The type strain is KUDC4121T (=KCTC 13870T=DSM 24950T).


Assuntos
Acer/microbiologia , Paenibacillus/classificação , Filogenia , Rizosfera , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Ilhas , Paenibacillus/genética , Paenibacillus/isolamento & purificação , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA