Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Life Sci ; 296: 120424, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196531

RESUMO

AIMS: Hypertension is one of the major causes of cardiac damage. In this study, the effects of resveratrol supplementation and regular exercise on hypertension-induced cellular stress responses of myocardium were compared. MAIN METHODS: Hypertension was induced in male Wistar rats by deoxycorticosterone-acetate + salt administration for 12 weeks. Resveratrol and regular exercise were applied for the last six weeks. In addition to biochemical and molecular examinations, isoprenaline, phenylephrine and, acetylcholine-mediated contractions and sinus rate were recorded in the isolated cardiac tissues. KEY FINDINGS: Resveratrol and regular exercise reduced systolic blood pressure in hypertensive rats. The altered adrenergic and cholinergic responses of the right atrium and left papillary muscles in hypertension were separately improved by resveratrol and regular exercise. Resveratrol and regular exercise decreased plasma and cardiac total antioxidant capacity and, augmented the expression of antioxidant genes in hypertensive rats. While regular exercise restored the increase in p-PERK expression associated with endoplasmic reticulum stress and decrease in mitophagic marker PINK1 expression, resveratrol only ameliorated PINK1 expression in hypertensive rats. Resveratrol and exercise training suppressed hypertension-induced NLRP3 inflammasome activation by reversing the increase in NLRP3, p-NF-κB expression and the mature-IL-1ß/pro-IL-1ß and cleaved-caspase-1/pro-caspase-1 ratio. Resveratrol and exercise enhanced mRNA expression of caspase-3, bax, and bcl-2 involved in the apoptotic pathway, but attenuated phosphorylation of stress-related mitogenic proteins p38 and JNK induced by hypertension. SIGNIFICANCE: Our study demonstrated the protective effect of resveratrol and exercise on hypertension-induced cardiac dysfunction by modulating cellular stress responses including oxidative stress, ER stress, mitophagy, NLRP3 inflammasome-mediated inflammation, and mitogenic activation.


Assuntos
Coração/fisiopatologia , Hipertensão/fisiopatologia , Resveratrol/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Animais , Acetato de Desoxicorticosterona/toxicidade , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Coração/efeitos dos fármacos , Hipertensão/induzido quimicamente , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Masculino , Mitofagia/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Condicionamento Físico Animal , Proteínas/genética , Proteínas/metabolismo , Ratos Wistar , Estresse Fisiológico/fisiologia
2.
Stroke ; 52(7): 2404-2413, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34107734

RESUMO

Background and Purpose: Hypertension is a leading risk factor for cerebrovascular disease and loss of brain health. While the brain renin-angiotensin system (RAS) contributes to hypertension, its potential impact on the local vasculature is unclear. We tested the hypothesis that activation of the brain RAS would alter the local vasculature using a modified deoxycorticosterone acetate (DOCA) model. Methods: C57BL/6 mice treated with DOCA (50 mg SQ; or shams) were given tap H2O and H2O with 0.9% NaCl for 1 to 3 weeks. Results: In isolated cerebral arteries and parenchymal arterioles from DOCA-treated male mice, endothelium- and nitric oxide-dependent dilation was progressively impaired, while mesenteric arteries were unaffected. In contrast, cerebral endothelial function was not significantly affected in female mice treated with DOCA. In males, mRNA expression of renal Ren1 was markedly reduced while RAS components (eg, Agt and Ace) were increased in both brain and cerebral arteries with central RAS activation. In NZ44 reporter mice expressing GFP (green fluorescent protein) driven by the angiotensin II type 1A receptor (Agtr1a) promoter, DOCA increased GFP expression ≈3-fold in cerebral arteries. Impaired endothelial responses were restored to normal by losartan, an AT1R (angiotensin II type 1 receptor) antagonist. Last, DOCA treatment produced inward remodeling of parenchymal arterioles. Conclusions: These findings suggest activation of the central and cerebrovascular RAS impairs endothelial (nitric oxide dependent) signaling in brain through expression and activation of AT1R and sex-dependent effects. The central RAS may be a key contributor to vascular dysfunction in brain in a preclinical (low renin) model of hypertension. Because the brain RAS is also activated during aging and other diseases, a common mechanism may promote loss of endothelial and brain health despite diverse cause.


Assuntos
Transtornos Cerebrovasculares/metabolismo , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Óxido Nítrico Sintase Tipo III/biossíntese , Receptor Tipo 1 de Angiotensina/biossíntese , Sistema Renina-Angiotensina/fisiologia , Animais , Transtornos Cerebrovasculares/induzido quimicamente , Transtornos Cerebrovasculares/genética , Acetato de Desoxicorticosterona/toxicidade , Feminino , Hipertensão/induzido quimicamente , Hipertensão/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Óxido Nítrico Sintase Tipo III/genética , Receptor Tipo 1 de Angiotensina/genética , Sistema Renina-Angiotensina/efeitos dos fármacos
3.
J Hypertens ; 39(8): 1559-1566, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534341

RESUMO

OBJECTIVE: We have previously reported that renal medullary sphingosine-1-phosphate (S1P) regulates sodium excretion via the S1P type-1 receptor (S1PR1). As S1PR1 is predominantly expressed in collecting ducts (CD), the present study tested the hypothesis that the CD-S1PR1 pathway plays a critical role in sodium excretion and contributes to salt-sensitive hypertension. METHODS: CD-specific S1PR1 knockout mice were generated by crossing aquaporin-2-Cre mice with S1PR1-floxed mice. Renal sodium excretion and arterial pressure were compared between wild type and KO mice in response to high-salt challenges and treatment of deoxycorticosterone acetate (DOCA) salt. RESULTS: Protein levels of renal medullary S1PR1 were increased by 100% after high-salt intake, whereas DOCA treatment with high-salt intake blocked the increase of S1PR1 levels. Urinary sodium excretions in knockout mice were decreased by 60% compared with wild type mice after acute intravenous sodium loading (0.84 ±â€Š0.16 vs. 2.22 ±â€Š0.62 µmole/min per g kwt). The pressure natriuresis was impaired in knockout mice compared with wild type mice (4.32 ±â€Š1.04 vs. 8.73 ±â€Š0.19 µmole/min per g kwt). The chronic high-salt intake-induced positive sodium balance was enhanced in knockout mice compared with wild type mice (5.27 ±â€Š0.39 vs. 2.38 ±â€Š1.04 mmol/100 g BW per 24 h). After 10-day DOCA-salt treatment, knockout mice developed more severe hypertension than wild type mice (SBP 142 ±â€Š8 vs. 115 ±â€Š4 mmHg). CONCLUSION: The deletion of CD-S1PR1 reduced sodium excretion, promoted sodium retention, and accelerated DOCA-salt-induced salt-sensitive hypertension, suggesting that the CD-S1PR1 signaling is an important antihypertensive pathway by promoting sodium excretion and that impairment of renal medullary S1PR1 may represent a novel mechanism for salt-sensitive hypertension.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Animais , Pressão Sanguínea , Desoxicorticosterona , Acetato de Desoxicorticosterona/toxicidade , Hipertensão/induzido quimicamente , Hipertensão/genética , Rim , Camundongos , Camundongos Knockout , Receptores de Esfingosina-1-Fosfato
4.
J Mol Med (Berl) ; 99(3): 315-326, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33443617

RESUMO

Although essential hypertension affects a large proportion of the human population and is one of the key drivers of cardiovascular mortality worldwide, we still do not have a complete understanding of its pathophysiology. More than 50 years ago, the immune system has been identified as an important part of the pathogenesis of arterial hypertension. An exceeding variety of recent publications deals with the interplay between the numerous different components of the immune system and mechanisms of arterial hypertension and has substantially contributed to our understanding of the role of immunity and inflammation in the pathogenesis of the disease. In this review, we focus on myeloid cells and anatomical barriers as particular aspects of innate immunity in arterial hypertension. Since it represents a first line of defense protecting against pathogens and maintaining tissue homeostasis, innate immunity provides many mechanistic hinge points in the area of hypertension.


Assuntos
Hipertensão/imunologia , Imunidade Inata , Células Mieloides/imunologia , Angiotensina II/toxicidade , Animais , Peptídeos Catiônicos Antimicrobianos/imunologia , Ativação do Complemento , Acetato de Desoxicorticosterona/toxicidade , Disbiose/imunologia , Microbioma Gastrointestinal/imunologia , Homeostase/imunologia , Humanos , Hipertensão/induzido quimicamente , Hipertensão/patologia , Inflamassomos/fisiologia , Mucosa Intestinal/imunologia , Camundongos , Modelos Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Ratos , Pele/imunologia , Pele/metabolismo , Sódio/metabolismo , Cloreto de Sódio na Dieta/toxicidade , Receptores Toll-Like/imunologia , Equilíbrio Hidroeletrolítico/fisiologia
5.
BMC Nephrol ; 21(1): 173, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393187

RESUMO

BACKGROUND: Sphingosine-1-phosphate (S1P) is a bioactive metabolite of sphingolipids and produced by sphingosine kinases (SphK1 and SphK2). SphK1/S1P pathway is implicated in the progression of chronic kidney disease. However, the role of SphK1/S1P pathway in renal injury in hypertension has not been reported. This study tested the hypothesis that SphK1/S1P pathway mediates the kidney damage in DOCA-salt hypertensive mice. METHODS: Male wild type (WT) C57BL6 and SphK1 knockout (KO) mice were subjected to unilateral nephrectomy, subcutaneous implant containing 50 mg of deoxycorticosterone acetate (DOCA) and 1% NaCl drinking water for 7 weeks. At the end of experiments, blood pressure data, 24 h urine and kidney samples were collected. Renal mRNA levels of SphK1 were measured by real-time RT-PCR. Markers for fibrogenesis and immune cell infiltration in kidneys were detected using Western blot and immunohistochemistray analysis, respectively. The glomerular morphological changes were examined in kidney tissue slides stained with Periodic-Acid Schiff. Four groups were studied: wild type control (WT-C), WT-DOCA, KO-C and KO-DOCA. RESULTS: The renal SphK1 mRNA expression was significantly upregulated in WT-DOCA mice, whereas this upregulation of renal SphK1 mRNA was blocked in KO-DOCA mice. There was no difference in DOCA-salt-induced hypertension between WT and KO mice. The urinary albumin was increased in both DOCA-salt groups. However, the albuminuria was significantly lower in KO-DOCA than in WT-DOCA group. There were increases in glomerulosclerosis indices in both DOCA-salt groups, whereas the increases were also significantly lower in KO-DOCA than in WT-DOCA mice. Renal protein levels of α-smooth muscle actin were upregulated in both DOCA-salt groups, but the increase was significant lower in KO-DOCA than in WT-DOCA group. The increased staining areas of collagen detected by Sirius Red-staining in kidney tissue sections were also attenuated in KO-DOCA compared with WT-DOCA mice. In contrast, the increased infiltration of CD43+ (a T cell marker) or CD68+ (a macrophage marker) cells in DOCA-salt kidneys showed no significant difference between WT-DOCA and KO-DOCA mice. CONCLUSIONS: SphK1/S1P signaling pathway mediates kidney damage in DOCA-salt hypertensive mice independent of blood pressure and immune modulation.


Assuntos
Hipertensão/genética , Rim/metabolismo , Lisofosfolipídeos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , RNA Mensageiro/metabolismo , Insuficiência Renal Crônica/genética , Esfingosina/análogos & derivados , Actinas/metabolismo , Albuminúria/metabolismo , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Western Blotting , Colágeno/metabolismo , Acetato de Desoxicorticosterona/toxicidade , Modelos Animais de Doenças , Fibrose , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Hipertensão/patologia , Imuno-Histoquímica , Rim/patologia , Leucossialina/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mineralocorticoides/toxicidade , Nefrectomia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Transdução de Sinais , Cloreto de Sódio na Dieta/toxicidade , Esfingosina/metabolismo , Linfócitos T/metabolismo
6.
J Neuroinflammation ; 16(1): 79, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30971251

RESUMO

BACKGROUND: Microglia play crucial roles in the maintenance of brain homeostasis. Activated microglia show a biphasic influence, promoting beneficial repair and causing harmful damage via M2 and M1 microglia, respectively. It is well-known that microglia are initially activated to the M2 state and subsequently switch to the M1 state, called M2-to-M1 class switching in acute ischemic models. However, the activation process of microglia in chronic and sporadic hypertension remains poorly understood. We aimed to clarify the process using a chronic hypertension model, the deoxycorticosterone acetate (DOCA)-salt-treated Wistar rats. METHODS: After unilateral nephrectomy, the rats were randomly divided into DOCA-salt, placebo, and control groups. DOCA-salt rats received a weekly subcutaneous injection of DOCA (40 mg/kg) and were continuously provided with 1% NaCl in drinking water. Placebo rats received a weekly subcutaneous injection of vehicle and were provided with tap water. Control rats received no administration of DOCA or NaCl. To investigate the temporal expression profiles of M1- and M2-specific markers for microglia, the animals were subjected to the immunohistochemical and biochemical studies after 2, 3, or 4 weeks DOCA-salt treatment. RESULTS: Hypertension occurred after 2 weeks of DOCA and salt administration, when round-shaped microglia with slightly shortened processes were observed juxtaposed to the vessels, although the histopathological findings were normal. After 3 weeks of DOCA and salt administration, M1-state perivascular and parenchyma microglia significantly increased, when local histopathological findings began to be observed but cerebrovascular destruction did not occur. On the other hand, M2-state microglia were never observed around the vessels at this period. Interestingly, prior to M1 activation, about 55% of perivascular microglia transiently expressed Ki-67, one of the cell proliferation markers. CONCLUSIONS: We concluded that the resting perivascular microglia directly switched to the pro-inflammatory M1 state via a transient proliferative state in DOCA-salt rats. Our results suggest that the activation machinery of microglia in chronic hypertension differs from acute ischemic models. Proliferative microglia are possible initial key players in the development of hypertension-induced cerebral vessel damage. Fine-tuning of microglia proliferation and activation could constitute an innovative therapeutic strategy to prevent its development.


Assuntos
Encéfalo/patologia , Proliferação de Células/fisiologia , Hipertensão/complicações , Hipertensão/patologia , Microglia/classificação , Microglia/patologia , Animais , Antígenos CD/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Carboximetilcelulose Sódica/farmacologia , Proliferação de Células/efeitos dos fármacos , Acetato de Desoxicorticosterona/toxicidade , Modelos Animais de Doenças , Lateralidade Funcional , Hipertensão/diagnóstico por imagem , Hipertensão/etiologia , Antígeno Ki-67/metabolismo , Imageamento por Ressonância Magnética , Masculino , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Mineralocorticoides/toxicidade , Nefrectomia/efeitos adversos , Ratos , Ratos Wistar , Cloreto de Sódio/toxicidade , Fatores de Tempo
7.
Hypertension ; 73(5): 1079-1086, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30879356

RESUMO

Recent reports indicate that, in addition to treating hypertension, renal denervation (RDN) also mitigates renal inflammation. However, because RDN decreases renal perfusion pressure, it is unclear whether these effects are because of the direct effects of RDN on inflammatory signaling or secondary to decreased arterial pressure (AP). Therefore, this study was conducted to elucidate the contribution of renal nerves to renal inflammation in the deoxycorticosterone (DOCA)-salt rat, a model in which RDN decreases AP and abolishes renal inflammation. In Experiment 1, we assessed the temporal changes in renal inflammation by measuring renal cytokines and AP in DOCA-salt rats. Uninephrectomized (1K) adult male Sprague Dawley rats that received surgical RDN or sham (Sham) were administered DOCA (100 mg, SC) and 0.9% saline for 21 days. AP was measured by radiotelemetry, and urinary cytokine excretion was measured repeatedly. In Experiment 2, the contribution of renal nerves in renal inflammation was assessed in a 2-kidney DOCA-salt rat to control for renal perfusion pressure. DOCA-salt treatment was administered after unilateral (U-)RDN. In Experiment 1, DOCA-salt-induced increases in AP and renal inflammation (assessed by urinary cytokines) were attenuated by RDN versus Sham. In Experiment 2, GRO/KC (growth-related oncogene/keratinocyte chemoattractant), MCP (monocyte chemoattractant protein)-1, and macrophage infiltration were lower in the denervated kidney versus the contralateral Sham kidney. No differences in T-cell infiltration were observed. Together, these data support the hypothesis that renal nerves mediate, in part, the development of renal inflammation in the DOCA-salt rat independent of hypertension. The mechanisms and cell-specificity mediating these effects require further investigation.


Assuntos
Pressão Sanguínea/fisiologia , Citocinas/metabolismo , Hipertensão/complicações , Rim/patologia , Nefrite/etiologia , Animais , Acetato de Desoxicorticosterona/toxicidade , Modelos Animais de Doenças , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Rim/inervação , Rim/metabolismo , Masculino , Nefrite/diagnóstico , Nefrite/metabolismo , Ratos , Ratos Sprague-Dawley , Cloreto de Sódio na Dieta/toxicidade , Sistema Nervoso Simpático/metabolismo , Sistema Nervoso Simpático/patologia
8.
Physiol Res ; 68(2): 209-217, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30628826

RESUMO

To determine the influence of IGF-1 deletion on renal sympathetic nerve activity (RSNA), left ventricular dysfunction, and renal function in deoxycorticosterone acetate (DOCA)-salt hypertensive mice. The DOCA-salt hypertensive mice models were constructed and the experiment was classified into WT (Wild-type mice) +sham, LID (Liver-specific IGF-1 deficient mice) + sham, WT + DOCA, and LID+ DOCA groups. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum IGF-1 levels in mice. The plasma norepinephrine (NE), urine protein, urea nitrogen and creatinine, as well as RSNA were measured. Echocardiography was performed to assess left ventricular dysfunction, and HE staining to observe the pathological changes in renal tissue of mice. DOCA-salt induction time-dependently increased the systolic blood pressure (SBP) of mice, especially in DOCA-salt LID mice. Besides, the serum IGF-1 levels in WT mice were decreased after DOCA-salt induction. In addition, the plasma NE concentration and NE spillover, urinary protein, urea nitrogen, creatinine and RSNA were remarkably elevated with severe left ventricular dysfunction, but the creatinine clearance was reduced in DOCA-salt mice, and these similar changes were obvious in DOCA-salt mice with IGF-1 deletion. Moreover, the DOCA-salt mice had tubular ectasia, glomerular fibrosis, interstitial cell infiltration, and increased arterial wall thickness, and the DOCA-salt LID mice were more serious in those aspects. Deletion of IGF-1 may lead to enhanced RSNA in DOCA-salt hypertensive mice, thereby further aggravating left ventricular dysfunction and renal damage.


Assuntos
Acetato de Desoxicorticosterona/toxicidade , Hipertensão/sangue , Fator de Crescimento Insulin-Like I/deficiência , Rim/fisiologia , Fibras Simpáticas Pós-Ganglionares/metabolismo , Disfunção Ventricular Esquerda/sangue , Animais , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Fator de Crescimento Insulin-Like I/genética , Rim/efeitos dos fármacos , Rim/inervação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mineralocorticoides/toxicidade , Norepinefrina/sangue , Fibras Simpáticas Pós-Ganglionares/efeitos dos fármacos , Disfunção Ventricular Esquerda/induzido quimicamente , Disfunção Ventricular Esquerda/fisiopatologia
9.
J Pharmacol Exp Ther ; 368(3): 462-473, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30622171

RESUMO

The endothelin (ET) system has emerged as a novel target for hypertension treatment where a medical need persists despite availability of several pharmacological classes, including renin angiotensin system (RAS) blockers. ET receptor antagonism has demonstrated efficacy in preclinical models of hypertension, especially under low-renin conditions and in hypertensive patients. We investigated the pharmacology of aprocitentan (N-[5-(4-bromophenyl)-6-[2-[(5-bromo-2-pyrimidinyl)oxy]ethoxy]-4-pyrimidinyl]-sulfamide), a potent dual ETA/ETB receptor antagonist, on blood pressure (BP) in two models of experimental hypertension: deoxycorticosterone acetate (DOCA)-salt rats (low-renin model) and spontaneously hypertensive rats [(SHR), normal renin model]. We also compared the effect of its combination with RAS blockers (valsartan and enalapril) with that of the combination of the mineraloreceptor antagonist spironolactone with the same RAS blockers on BP and renal function in hypertensive rats. Aprocitentan was more potent and efficacious in lowering BP in conscious DOCA-salt rats than in SHRs. In DOCA-salt rats, single oral doses of aprocitentan induced a dose-dependent and long-lasting BP decrease and 4-week administration of aprocitentan dose dependently decreased BP (statistically significant) and renal vascular resistance, and reduced left ventricle hypertrophy (nonsignificant). Aprocitentan was synergistic with valsartan and enalapril in decreasing BP in DOCA-salt rats and SHRs while spironolactone demonstrated additive effects with these RAS blockers. In hypertensive rats under sodium restriction and enalapril, addition of aprocitentan further decreased BP without causing renal impairment, in contrast to spironolactone. In conclusion, ETA/ETB receptor antagonism represents a promising therapeutic approach to hypertension, especially with low-renin characteristics, and could be used in combination with RAS blockers, without increasing the risk of renal impairment.


Assuntos
Anti-Hipertensivos/administração & dosagem , Antagonistas dos Receptores de Endotelina/administração & dosagem , Hipertensão/tratamento farmacológico , Hipertensão/fisiopatologia , Pirimidinas/administração & dosagem , Sistema Renina-Angiotensina/efeitos dos fármacos , Sulfonamidas/administração & dosagem , Animais , Anti-Hipertensivos/farmacologia , Acetato de Desoxicorticosterona/toxicidade , Quimioterapia Combinada , Antagonistas dos Receptores de Endotelina/farmacologia , Hipertensão/induzido quimicamente , Masculino , Pirimidinas/farmacologia , Ratos , Ratos Endogâmicos SHR , Ratos Wistar , Sistema Renina-Angiotensina/fisiologia , Sulfonamidas/farmacologia
10.
Clin Exp Hypertens ; 41(6): 564-570, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30325243

RESUMO

Aim: Role of TRPV4 channel in regulation of endothelial function in the carotid artery in deoxycorticosterone acetate (DOCA) model of hypertension in rat was studied. Methods: 8-10 weeks old albino Wistar rats divided into three groups namely Control, UNX and hypertensive animals. Vascular smooth muscle response was studied in isolated carotid artery of rat with acetylcholine, sodium nitroprusside, GSK1016790A (GSK) in presence and absence of L-NAME and indomethacin. Results: At the end of the 6th week, the mean systolic blood pressure was increased in DOCA-treated hypertensive rats (166 ± 8 mm Hg) compared to Control and UNX (125 ± 5 mm Hg). ACh (10-9 to 10-5 M) produced almost 100% relaxation in Control (Emax = 97.48 ± 1.06 %) and UNX animals (Emax = 93.16 ± 2.33 %) which was attenuated in DOCA-treated hypertensive animals (Emax = 70.85 ± 1.65 %). No significant changes seen in SNP (10-12 to 10-5 M) induced relaxation. GSK1016790A (10-12 to 10-7 M)-mediated relaxation was significantly attenuated in DOCA-treated hypertensive animals (Emax = 25.58 ± 13.60%) compared to the control (Emax = 80.59 ± 6.86%) and UNX (Emax = 87.32 ± 2.01%) animals. L-NAME (10-4 M) potently blocked GSK-induced relaxation, and a contractile response to GSK was observed in presence of L-NAME in all the three groups of animals which was sensitive to indomethacin (10-5 M). Conclusion: TRPV4 may regulate the vascular tone of rat carotid artery through an attenuated NO pathway and stimulation of the release of contractile prostanoids in the DOCA hypertensive rats.


Assuntos
Pressão Sanguínea/fisiologia , Artéria Carótida Primitiva/fisiopatologia , Endotélio Vascular/fisiopatologia , Hipertensão/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Canais de Cátion TRPV/metabolismo , Vasoconstrição/fisiologia , Animais , Artéria Carótida Primitiva/metabolismo , Acetato de Desoxicorticosterona/toxicidade , Modelos Animais de Doenças , Hipertensão/fisiopatologia , Masculino , Ratos , Ratos Wistar
11.
Am J Physiol Heart Circ Physiol ; 315(3): H669-H680, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29727215

RESUMO

Experimental data indicate that stimulation of the nitric oxide-soluble guanylate cyclase(sGC)-cGMP-PKG pathway can increase left ventricular (LV) capacitance via phosphorylation of the myofilamental protein titin. We aimed to test whether acute pharmacological sGC stimulation with BAY 41-8543 would increase LV capacitance via titin phosphorylation in healthy and deoxycorticosteroneacetate (DOCA)-induced hypertensive pigs. Nine healthy Landrace pigs and 7 pigs with DOCA-induced hypertension and LV concentric hypertrophy were acutely instrumented to measure LV end-diastolic pressure-volume relationships (EDPVRs) at baseline and during intravenous infusion of BAY 41-8543 (1 and 3 µg·kg-1·min-1 for 30 min, respectively). Separately, in seven healthy and six DOCA pigs, transmural LV biopsies were harvested from the beating heart to measure titin phosphorylation during BAY 41-8543 infusion. LV EDPVRs before and during BAY 41-8543 infusion were superimposable in both healthy and DOCA-treated pigs, whereas mean aortic pressure decreased by 20-30 mmHg in both groups. Myocardial titin phosphorylation was unchanged in healthy pigs, but total and site-specific (Pro-Glu-Val-Lys and N2-Bus domains) titin phosphorylation was increased in DOCA-treated pigs. Bicoronary nitroglycerin infusion in healthy pigs ( n = 5) induced a rightward shift of the LV EDPVR, demonstrating the responsiveness of the pathway in this model. Acute systemic sGC stimulation with the sGC stimulator BAY 41-8543 did not recruit an LV preload reserve in both healthy and hypertrophied LV porcine myocardium, although it increased titin phosphorylation in the latter group. Thus, increased titin phosphorylation is not indicative of increased in vivo LV capacitance. NEW & NOTEWORTHY We demonstrate that acute pharmacological stimulation of soluble guanylate cyclase does not increase left ventricular compliance in normal and hypertrophied porcine hearts. Effects of long-term soluble guanylate cyclase stimulation with oral compounds in disease conditions associated with lowered myocardial cGMP levels, i.e., heart failure with preserved ejection fraction, remain to be investigated.


Assuntos
Cardiomegalia/metabolismo , Ventrículos do Coração/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Capacitância Vascular , Animais , Pressão Sanguínea , Cardiomegalia/etiologia , Cardiomegalia/fisiopatologia , Conectina/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Acetato de Desoxicorticosterona/toxicidade , Feminino , Ventrículos do Coração/efeitos dos fármacos , Morfolinas/farmacologia , Nitroglicerina/farmacologia , Pirimidinas/farmacologia , Suínos , Vasodilatadores/farmacologia , Função Ventricular Esquerda
12.
Cell Physiol Biochem ; 46(2): 727-739, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29621749

RESUMO

BACKGROUND/AIMS: Recent interest in the use of cannabinoids as therapeutic agents has revealed the involvement of the endogenous cannabinoid system (ECS) in the regulation of the cardiovascular system in hypertension. Abnormalities in glucose metabolism and insulin action are commonly detected in hypertensive animals. Thus, potential antihypertensive drugs should be investigated with respect to modulation of glucose homeostasis. Therefore, the aim of the present study was to evaluate the effects of the ECS activation after chronic fatty acid amide hydrolase inhibitor (URB597) administration on plasma glucose and insulin concentrations as well as parameters of myocardial glucose metabolism in the deoxycorticosterone acetate (DOCA)-salt hypertensive rats, an animal model of secondary hypertension. METHODS: Hypertension was induced by DOCA (25mg/kg) injections and addition of 1% NaCl in the drinking water for six weeks. Chronic activation of the ECS was performed by URB597 (1mg/kg) injections for two weeks. We examined fasting plasma levels of insulin (ELISA), glucose and intramyocardial glycogen (colorimetric method). Expressions of glucose transporters (GLUT1, 4) and selected proteins engaged in GLUT translocation as well as glucose metabolism were determined using Western blotting. RESULTS: Hypertension induced hypoinsulinemia with concomitant lack of significant changes in glycemia, reduced intramyocardial glycogen content and increased pyruvate dehydrogenase (PDH) expression in the cardiac muscle. Importantly, chronic URB597 administration in the hypertensive rats increased insulin concentration, elevated plasmalemmal GLUT1 and GLUT4 expression and concomitantly improved myocardial glycogen storage. CONCLUSION: Chronic administration of fatty acid amide hydrolase (FAAH) inhibitor has potential protective properties on myocardial glucose metabolism in hypertension.


Assuntos
Benzamidas/uso terapêutico , Carbamatos/uso terapêutico , Glucose/metabolismo , Hipertensão/patologia , Miocárdio/metabolismo , Animais , Benzamidas/farmacologia , Glicemia/análise , Carbamatos/farmacologia , Acetato de Desoxicorticosterona/toxicidade , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glicogênio/análise , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Insulina/sangue , Cetona Oxirredutases/metabolismo , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Miocárdio/patologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar
13.
Hypertension ; 67(1): 214-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26597823

RESUMO

Loss of peroxisome proliferator-activated receptor-γ (PPARγ) function causes hypertension, whereas its activation lowers blood pressure. Evidence suggests that these effects may be attributable to PPARγ activity in the vasculature. However, the specific transcriptional targets of PPARγ in vessels remain largely unidentified. In this study, we examined the role of smooth muscle PPARγ during salt-sensitive hypertension and investigated its transcriptional targets and functional effect. Transgenic mice expressing dominant-negative PPARγ (S-P467L) in smooth muscle cells were more prone to deoxycorticosterone acetate-salt-induced hypertension and mesenteric arterial dysfunction compared with nontransgenic controls. Despite similar morphometry at baseline, vascular remodeling in conduit and small arteries was enhanced in S-P467L after deoxycorticosterone acetate-salt treatment. Gene expression profiling in aorta and mesenteric arteries revealed significantly decreased expression of tissue inhibitor of metalloproteinase-4 (TIMP-4) in S-P467L. Expression of TIMP-4 was increased by deoxycorticosterone acetate-salt treatment, but this increase was ablated in S-P467L. Interference with PPARγ activity either by treatment with a PPARγ inhibitor, GW9662, or by expressing P467L PPARγ markedly suppressed TIMP-4 in primary smooth muscle cells. PPARγ binds to a PPAR response element (PPRE) in chromatin close to the TIMP-4 gene in smooth muscle cells, suggesting that TIMP-4 is a novel target of PPARγ. The interference with PPARγ and decrease in TIMP-4 were accompanied by an increase in total matrix metalloproteinase activity. PPARγ-mediated loss of TIMP-4 increased, whereas overexpression of TIMP-4 decreased smooth muscle cell migration in a scratch assay. Our findings highlight a protective mechanism induced by PPARγ in deoxycorticosterone acetate-salt treatment, establishing a novel mechanistic link between PPARγ and TIMP-4.


Assuntos
DNA/genética , Regulação da Expressão Gênica , Hipertensão/genética , Músculo Liso Vascular/metabolismo , PPAR gama/genética , Inibidores Teciduais de Metaloproteinases/genética , Animais , Pressão Sanguínea/fisiologia , Acetato de Desoxicorticosterona/toxicidade , Modelos Animais de Doenças , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Camundongos , Camundongos Transgênicos , Músculo Liso Vascular/fisiopatologia , PPAR gama/metabolismo , Inibidores Teciduais de Metaloproteinases/antagonistas & inibidores , Vasoconstrição , Inibidor Tecidual 4 de Metaloproteinase
14.
Hypertension ; 67(1): 130-8, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26553231

RESUMO

Chronic kidney disease has a tremendously increasing prevalence and requires novel therapeutic approaches. Mineralocorticoid receptor (MR) antagonists have proven highly beneficial in the therapy of cardiac disease. The cellular and molecular events leading to cardiac inflammation and remodeling are proposed to be similar to those mediating renal injury. Thus, this study was designed to evaluate and directly compare the effect of MR deletion in endothelial cells on cardiac and renal injury in a model of deoxycorticosterone acetate-induced hypertension. Endothelial MR deletion ameliorated deoxycorticosterone acetate/salt-induced cardiac remodeling. This was associated with a reduced expression of the vascular cell adhesion molecule Vcam1 in MR-deficient cardiac endothelial cells. Ambulatory blood pressure telemetry revealed that the protective effect of MR deletion was independent from blood pressure. Similar to the heart, deoxycorticosterone acetate/salt-induced severe renal injury, including inflammation, fibrosis, glomerular injury, and proteinuria. However, no differences in renal injury were observed between genotypes. In conclusion, MR deletion from endothelial cells ameliorated deoxycorticosterone acetate/salt-induced cardiac inflammation and remodeling independently from alterations in blood pressure but it did not affect renal injury. These findings suggest that the anti-inflammatory mechanism mediating organ protection after endothelial cell MR deletion is specific for the heart versus the kidney.


Assuntos
Pressão Sanguínea/fisiologia , Endotélio Vascular/metabolismo , Hipertensão/metabolismo , Receptores de Mineralocorticoides/metabolismo , Animais , Células Cultivadas , Acetato de Desoxicorticosterona/toxicidade , Modelos Animais de Doenças , Endotélio Vascular/fisiopatologia , Regulação da Expressão Gênica , Hipertensão/genética , Hipertensão/fisiopatologia , Imuno-Histoquímica , Rim/efeitos dos fármacos , Rim/metabolismo , Masculino , Camundongos , Camundongos Mutantes , Reação em Cadeia da Polimerase , RNA/genética , Molécula 1 de Adesão de Célula Vascular/biossíntese , Molécula 1 de Adesão de Célula Vascular/genética , Remodelação Ventricular
15.
Am J Physiol Heart Circ Physiol ; 309(9): H1407-18, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26342070

RESUMO

Heart failure with preserved ejection fraction (HFPEF) evolves with the accumulation of risk factors. Relevant animal models to identify potential therapeutic targets and to test novel therapies for HFPEF are missing. We induced hypertension and hyperlipidemia in landrace pigs (n = 8) by deoxycorticosteroneacetate (DOCA, 100 mg/kg, 90-day-release subcutaneous depot) and a Western diet (WD) containing high amounts of salt, fat, cholesterol, and sugar for 12 wk. Compared with weight-matched controls (n = 8), DOCA/WD-treated pigs showed left ventricular (LV) concentric hypertrophy and left atrial dilatation in the absence of significant changes in LV ejection fraction or symptoms of heart failure at rest. The LV end-diastolic pressure-volume relationship was markedly shifted leftward. During simultaneous right atrial pacing and dobutamine infusion, cardiac output reserve and LV peak inflow velocities were lower in DOCA/WD-treated pigs at higher LV end-diastolic pressures. In LV biopsies, we observed myocyte hypertrophy, a shift toward the stiffer titin isoform N2B, and reduced total titin phosphorylation. LV superoxide production was increased, in part attributable to nitric oxide synthase (NOS) uncoupling, whereas AKT and NOS isoform expression and phosphorylation were unchanged. In conclusion, we developed a large-animal model in which loss of LV capacitance was associated with a titin isoform shift and dysfunctional NOS, in the presence of preserved LV ejection fraction. Our findings identify potential targets for the treatment of HFPEF in a relevant large-animal model.


Assuntos
Cardiomiopatias/fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Hipertensão/complicações , Hipertrofia Ventricular Esquerda/fisiopatologia , Miócitos Cardíacos/patologia , Volume Sistólico , Animais , Cardiomiopatias/etiologia , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Conectina/metabolismo , Acetato de Desoxicorticosterona/toxicidade , Dieta Ocidental , Dilatação Patológica/etiologia , Dilatação Patológica/fisiopatologia , Modelos Animais de Doenças , Feminino , Átrios do Coração/fisiopatologia , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Hiperlipidemias/induzido quimicamente , Hiperlipidemias/complicações , Hipertensão/induzido quimicamente , Hipertrofia/etiologia , Hipertrofia/patologia , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Mineralocorticoides/toxicidade , Miócitos Cardíacos/metabolismo , Óxido Nítrico Sintase/metabolismo , Fosforilação , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Superóxidos/metabolismo , Suínos
16.
Clin Exp Hypertens ; 37(8): 616-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114354

RESUMO

OBJECTIVE: Resveratrol, a phytoalexin, is reported to activate AMP-activated protein kinase (AMPK) in vascular cells. Activation of AMPK induces vasorelaxation to lower blood pressure (BP). Whether resveratrol via activation of AMPK decreases, BP remains unknown. METHODS: Male wild-type (WT) mice and mice deficient in AMPKα2 (AMPKα2(-/-)) were fed with resveratrol (400 mg/kg). After 7 d, mice were implanted with deoxycorticosterone acetate (DOCA)-salt (150 mg/kg) for 35 d. BP was detected by the radiotelemetry method. Vessel contraction was determined by organ chamber. Active RhoA, Rho-associated kinase (ROCK) activity, phosphorylations of myosin light chain (MLC), and myosin phosphatase targeting subunit 1 (MYPT1) were assayed by western blot. RESULTS: Implantation of DOCA-salt dramatically increased systemic BPs (systolic BP and diastolic BP) in WT and AMPKα2(-/-) mice. However, treatment of resveratrol significantly decreased systemic BP in WT mice but not in AMPKα2(-/-) mice. In the organ chamber study, resveratrol inhibited agonist-induced vessel relaxation in WT mice aortas. Loss of AMPKα2 or AMPK inhibition by compound C reversed resveratrol-suppressed vasoconstriction in isolated mice aortas. In cultured vascular smooth muscle cells (VSMCs), activation of AMPK by resveratrol inhibited phenylephrine-enhanced MLC phosphorylation in a dose-dependent manner. CONCLUSIONS: Resveratrol via activation of AMPK lowers BP in DOCA-hypertensive mice through an AMPK/RhoA/ROCK2/MLCMLC pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Pressão Sanguínea/fisiologia , Hipertensão/tratamento farmacológico , Músculo Liso Vascular/efeitos dos fármacos , Estilbenos/farmacologia , Proteínas Quinases Ativadas por AMP/efeitos dos fármacos , Animais , Anticarcinógenos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Acetato de Desoxicorticosterona/toxicidade , Modelos Animais de Doenças , Ativação Enzimática , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Resveratrol , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasodilatadores
17.
J Neuroinflammation ; 12: 47, 2015 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-25885968

RESUMO

BACKGROUND: Recent studies demonstrate that there are sex differences in the expression of angiotensin receptor type 2 (AT2-R) in the kidney and that AT2-R plays an enhanced role in regulating blood pressure (BP) in females. Also, brain AT2-R activation has been reported to negatively modulate BP and sympathetic outflow. The present study investigated whether the central blockade of endogenous AT2-R augments deoxycorticosterone acetate (DOCA)/salt-induced hypertension in both male and female rats. METHODS: All rats were subcutaneously infused with DOCA combined with 1% NaCl solution as the sole drinking fluid. BP and heart rate (HR) were recorded by telemetric transmitters. To determine the effect of central AT2-R on DOCA/salt-induced hypertension, male and female rats were intracerebroventricularly (icv) infused with AT2-R antagonist, PD123,319, during DOCA/salt treatment. Subsequently, the paraventricular nucleus (PVN) of the hypothalamus, a key cardiovascular regulatory region of the brain, was analyzed by quantitative real-time PCR and Western blot. RESULTS: DOCA/salt treatment elicited a greater increase in BP in male rats than that in females. Icv infusions of the AT2-R antagonist significantly augmented DOCA/salt pressor effects in females. However, this same treatment had no enhanced effect on DOCA/salt-induced increase in the BP in males. Real-time PCR and Western blot analysis of the female brain revealed that DOCA/salt treatment enhanced the mRNA and protein expression for both antihypertensive components including AT2-R, angiotensin-converting enzyme (ACE)-2, and interleukin (IL)-10 and hypertensive components including angiotensin receptor type 1 (AT1-R), ACE-1, tumor necrosis factor (TNF)-α, and IL-1ß, but decreased mRNA expression of renin in the PVN. The central blockade of AT2-R reversed the changes in mRNA and protein expressions of ACE-2, IL-10, and renin, further increased the expressions of TNF-α and IL-1ß, and kept higher the expressions of AT1-R, ACE-1, and AT2-R. CONCLUSIONS: These results indicate that endogenous AT2-R activation in the brain plays an important protective role in the development of DOCA/salt-induced hypertension in females, but not in males. The protective effect of AT2-R in females involves regulating the expression of brain renin-angiotensin system components and proinflammatory cytokines.


Assuntos
Encéfalo/metabolismo , Acetato de Desoxicorticosterona/toxicidade , Hipertensão/induzido quimicamente , Hipertensão/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Cloreto de Sódio/toxicidade , Análise de Variância , Bloqueadores do Receptor Tipo 2 de Angiotensina II/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Hipertensão/tratamento farmacológico , Imidazóis/uso terapêutico , Masculino , Piridinas/uso terapêutico , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptor Tipo 2 de Angiotensina/genética , Fatores Sexuais , Telemetria
18.
Hypertension ; 65(2): 345-51, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25385762

RESUMO

Myogenic responses by resistance vessels are a key component of autoregulation in brain, thus playing a crucial role in regulating cerebral blood flow and protecting the blood-brain barrier against potentially detrimental elevations in blood pressure. Although cerebrovascular disease is often accompanied by alterations in myogenic responses, mechanisms that control these changes are poorly understood. Peroxisome proliferator-activated receptor γ has emerged as a regulator of vascular tone. We hypothesized that interference with peroxisome proliferator-activated receptor γ in smooth muscle would augment myogenic responses in cerebral arteries. We studied transgenic mice expressing a dominant-negative mutation in peroxisome proliferator-activated receptor γ selectively in smooth muscle (S-P467L) and nontransgenic littermates. Myogenic tone in middle cerebral arteries from S-P467L was elevated 3-fold when compared with nontransgenic littermates. Rho kinase is thought to play a major role in cerebrovascular disease. The Rho kinase inhibitor, Y-27632, abolished augmented myogenic tone in middle cerebral arteries from S-P467L mice. CN-03, which modifies RhoA making it constitutively active, elevated myogenic tone to ≈60% in both strains, via a Y-27632-dependent mechanism. Large conductance Ca(2+)-activated K(+) channels (BKCa) modulate myogenic tone. Inhibitors of BKCa caused greater constriction in middle cerebral arteries from nontransgenic littermates when compared with S-P467L. Expression of RhoA or Rho kinase-I/II protein was similar in cerebral arteries from S-P467L mice. Overall, the data suggest that peroxisome proliferator-activated receptor γ in smooth muscle normally inhibits Rho kinase and promotes BKCa function, thus influencing myogenic tone in resistance arteries in brain. These findings have implications for mechanisms that underlie large- and small-vessel disease in brain, as well as regulation of cerebral blood flow.


Assuntos
Circulação Cerebrovascular/fisiologia , Artéria Cerebral Média/fisiologia , Músculo Liso Vascular/fisiologia , PPAR gama/deficiência , Vasoconstrição/fisiologia , Animais , Circulação Cerebrovascular/efeitos dos fármacos , Acetato de Desoxicorticosterona/toxicidade , Indução Enzimática , Perfilação da Expressão Gênica , Genes Dominantes , Hipertensão/induzido quimicamente , Hipertensão/genética , Hipertensão/fisiopatologia , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/efeitos dos fármacos , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/fisiologia , Camundongos , Camundongos Knockout , Artéria Cerebral Média/efeitos dos fármacos , Artéria Cerebral Média/enzimologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/enzimologia , PPAR gama/efeitos dos fármacos , PPAR gama/genética , PPAR gama/fisiologia , Cloreto de Sódio/toxicidade , Tetraetilamônio/farmacologia , Proteínas rho de Ligação ao GTP/biossíntese , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/fisiologia , Quinases Associadas a rho/biossíntese , Quinases Associadas a rho/genética , Quinases Associadas a rho/fisiologia , Proteína rhoA de Ligação ao GTP
19.
Hypertension ; 65(2): 352-61, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25421983

RESUMO

We previously reported that binding of prorenin to the (pro)renin receptor (PRR) plays a major role in brain angiotensin II formation and the development of deoxycorticosterone acetate (DOCA)-salt hypertension. Here, we designed and developed an antagonistic peptide, PRO20, to block prorenin binding to the PRR. Fluorescently labeled PRO20 bound to both mouse and human brain tissues with dissociation constants of 4.4 and 1.8 nmol/L, respectively. This binding was blocked by coincubation with prorenin and was diminished in brains of neuron-specific PRR-knockout mice, indicating specificity of PRO20 for PRR. In cultured human neuroblastoma cells, PRO20 blocked prorenin-induced calcium influx in a concentration- and AT(1) receptor-dependent manner. Intracerebroventricular infusion of PRO20 dose-dependently inhibited prorenin-induced hypertension in C57Bl6/J mice. Furthermore, acute intracerebroventricular infusion of PRO20 reduced blood pressure in both DOCA-salt and genetically hypertensive mice. Chronic intracerebroventricular infusion of PRO20 attenuated the development of hypertension and the increase in brain hypothalamic angiotensin II levels induced by DOCA-salt. In addition, chronic intracerebroventricular infusion of PRO20 improved autonomic function and spontaneous baroreflex sensitivity in mice treated with DOCA-salt. In summary, PRO20 binds to both mouse and human PRRs and decreases angiotensin II formation and hypertension induced by either prorenin or DOCA-salt. Our findings highlight the value of the novel PRR antagonist, PRO20, as a lead compound for a novel class of antihypertensive agents and as a research tool to establish the validity of brain PRR antagonism as a strategy for treating hypertension.


Assuntos
Anti-Hipertensivos/uso terapêutico , Hipertensão/prevenção & controle , Fragmentos de Peptídeos/uso terapêutico , Receptores de Superfície Celular/antagonistas & inibidores , Renina/uso terapêutico , ATPases Vacuolares Próton-Translocadoras/antagonistas & inibidores , Angiotensina II/análise , Angiotensina II/fisiologia , Animais , Anti-Hipertensivos/administração & dosagem , Barorreflexo/efeitos dos fármacos , Ligação Competitiva , Pressão Sanguínea/efeitos dos fármacos , Cálcio/metabolismo , Captopril/farmacologia , Linhagem Celular Tumoral , Acetato de Desoxicorticosterona/toxicidade , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Hipertensão/genética , Hipotálamo/química , Hipotálamo/efeitos dos fármacos , Infusões Intraventriculares , Transporte de Íons/efeitos dos fármacos , Losartan/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neuroblastoma , Fragmentos de Peptídeos/administração & dosagem , Fosforilação/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Receptores de Superfície Celular/análise , Renina/administração & dosagem , Cloreto de Sódio/toxicidade , ATPases Vacuolares Próton-Translocadoras/análise , Receptor de Pró-Renina
20.
Hypertension ; 63(3): 565-71, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24366079

RESUMO

T cells participate in angiotensin II (Ang II)-induced hypertension. However, the specific subsets of T cells that are important in the end-organ damage are unknown. T-helper 17 cells are a recently identified subset that produces interleukin 17 (IL-17) and requires interleukin 23 (IL-23) for expansion. To evaluate the role of the T-helper 17 immune response in hypertensive renal and cardiac end-organ damage, hypertension was induced with deoxycorticosterone acetate (DOCA)+Ang II in wild-type (n=39) and IL-17-deficient (n=31) mice. The injury was evaluated at day 4 and day 14. To inactivate the IL-17/IL-23 axis at a different point, DOCA+Ang II hypertension was also induced in IL-23p19-deficient mice. Renal infiltration by T-helper 17 cells was increased in hypertensive wild-type mice. Systolic blood pressure did not differ between hypertensive IL-17-deficient and wild-type mice. Three days after induction of hypertension, a significantly higher albuminuria was found in IL-17-deficient than in wild-type mice (196±64 versus 58±16 mg/mg albumin/creatinine). Histology revealed significantly more glomerular injury (1.04±0.06 versus 0.67±0.05) and renal infiltration of γδ T cells in IL-17-deficient than in wild-type mice after 14 days. Similarly, significantly higher albuminuria, glomerular injury, and γδ T cell infiltration were found in IL-23p19-deficient mice with DOCA+Ang II-induced hypertension. DOCA+Ang II also induced cardiac damage as assessed by heart weight, cardiac fibrosis, as well as expression of fetal genes and matrix components, but no significant differences were found among IL-17(-/-), IL-23p19(-/-), and wild-type mice. IL-17/IL-23 deficiency accelerates DOCA+Ang II-induced albuminuria and hypertensive renal but not cardiac end-organ damage.


Assuntos
Pressão Sanguínea/fisiologia , Hipertensão/metabolismo , Interleucina-17/deficiência , Nefropatias/metabolismo , Angiotensina II/toxicidade , Animais , Acetato de Desoxicorticosterona/toxicidade , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Nefropatias/etiologia , Nefropatias/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA