Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828800

RESUMO

Angus-cross steers (n = 144; 362 kg ±â€…20.4) were used to determine the effect of Zn and steroidal implants on performance, trace mineral status, circulating metabolites, and transcriptional changes occurring in skeletal muscle. Steers (n = 6 per pen) were stratified by body weight (BW) in a 3 × 2 factorial. GrowSafe bunks recorded individual feed intake (steer as experimental unit; n = 24 per treatment). Dietary treatments (ZINC; eight pens per treatment) included supplemental Zn as ZnSO4 at 1) 0 (analyzed 54 mg Zn/kg DM; Zn0); 2) 30 mg/kg DM (Zn30); 3) 100 mg Zn/kg DM (Zn100). After 60 d of Zn treatment, steers received a steroidal implant treatment (IMP) on day 0: 1) no implant; NO; or 2) high-potency combination implant (TE-200, Elanco, Greenfield, IN; 200 mg TBA, 20 mg E2; TE200). BWs were taken at days -60, 0, and in 28 d increments thereafter. Liver biopsies for TM analysis and blood for TM, serum glucose, insulin, nonesterified fatty acids (NEFA), urea-N, and IGF-1 analysis were collected on days 0, 20, 40, and 84. Glucose, NEFA, and insulin were used to calculate the revised quantitative insulin sensitivity check index (RQUICKI). Linear and quadratic effects of ZINC were evaluated in SAS 9.4. Means for IMP were separated using the LSMEANS statement with the PDIFF option. Day -60 BW was a covariate for performance and carcass data. Growth performance, plasma, liver, and metabolite data were analyzed as repeated measures. TE200 tended to decrease plasma Zn by 8.4% from days 0 to 20 while NO decreased by 3.6% (IMP × day; P = 0.08). A tendency for a ZINC × day effect on G:F was noted (P = 0.06) driven by Zn30 and Zn100 decreasing significantly from period 0-28 to period 28-56 while Zn0 was similar in both periods. An IMP × day effect was noted for RQUICKI where (P = 0.02) TE200 was greater on day 40 compared to NO cattle, but by day 84 RQUICKI was not different between TE200 and NO. On day 20, increasing Zn supplementation linearly increased mRNA abundance (P ≤ 0.09) of protein kinase B (AKT1), mammalian target of rapamycin (mTOR), matrix metalloproteinase 2 (MMP2), and myogenic factor 5 (MYF5). In this study, Zn and implants differentially affected genes related to energy metabolism, satellite cell function, and TM homeostasis on days 20 and 84 postimplant. These results suggest steroidal implants increase demand for Zn immediately following implant administration to support growth and may influence insulin sensitivity in finishing cattle.


Steroidal implants are a commonly used growth-enhancing technology that improves the efficiency of beef production. Steroidal implants increase muscle growth via increased net protein synthesis and skeletal muscle hypertrophy. Various trace minerals (TM) are important in supporting growth and development. Zinc (Zn) is an essential TM that influences numerous enzymes, transcription factors, and is involved in nearly every signaling pathway in the body. Nutritionists routinely supplement Zn, amongst other TM, at concentrations greater than current recommendations. Previous work shows that increased Zn supplementation improves growth performance in steers given a steroidal implant. The objective of this study was to better understand the effects of steroidal implants and zinc sulfate supplementation on growth, carcass characteristics, TM status, blood metabolites, and skeletal muscle mRNA abundance. In this study, there is evidence that steroidal implant administration increases tissue Zn demand as plasma Zn decreases following implant administration when growth rates are greatest. Our results also provide preliminary data outlining the impact of zinc and steroidal implants on mRNA abundance of skeletal muscle gene expression.


Assuntos
Suplementos Nutricionais , Músculo Esquelético , Oligoelementos , Sulfato de Zinco , Animais , Bovinos/crescimento & desenvolvimento , Bovinos/fisiologia , Masculino , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Suplementos Nutricionais/análise , Oligoelementos/farmacologia , Oligoelementos/administração & dosagem , Oligoelementos/metabolismo , Sulfato de Zinco/farmacologia , Sulfato de Zinco/administração & dosagem , Implantes de Medicamento , Dieta/veterinária , Ração Animal/análise , Acetato de Trembolona/farmacologia , Acetato de Trembolona/administração & dosagem
2.
Endokrynol Pol ; 75(3): 267-278, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38887114

RESUMO

Trenbolone is a synthetic analogue of testosterone, belonging to the nandrolone group. It has both a strong anabolic effect and a limited androgenic effect (i.e. an androgen and anabolic steroid - AAS). It is used illegally by professional or amateur athletes, who want to improve their athletic performance and appearance by increasing their muscle mass. Trenbolone, like other AASs, are harmful, with 90% of users experiencing injurious side effects. It acts systemically on the body, and as such, its side effects can manifest as symptoms from different systems. Nevertheless, its popularity is increasing. This paper reviews the current state of knowledge regarding the adverse effects of trenbolone on the nervous, reproductive, immune systems and breast, muscular and adipose tissues. However, various other adverse consequences of trenbolone utilization are observed, with severe acne and gynaecomastia affecting approximately one-third of all users, as well as excessive body hair, stretch marks, hypertension and cardiac arrhythmia. The drugs are also subject to contamination, with use frequently resulting in local inflammation at the injection site, muscle adhesions and fibrosis, nerve damage or, in extreme cases, necrosis of the injection site. Additionally, due to the lack of available knowledge on the subject, many of the effects of trenbolone use remain unknown. Moreover, the fact that multiple AASs may be used simultaneously presents a significant problem in their study. Therefore, further research is necessary to better understand the effects of AAS on the body, and to expand our currently incomplete knowledge of their functional pathways.


Assuntos
Anabolizantes , Acetato de Trembolona , Humanos , Anabolizantes/efeitos adversos , Acetato de Trembolona/efeitos adversos , Masculino , Feminino , Ginecomastia/induzido quimicamente
3.
Environ Toxicol Chem ; 43(7): 1615-1626, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38837484

RESUMO

Amphibians are the most threatened vertebrate class globally. Multiple factors have been implicated in their global decline, and it has been hypothesized that interactions between stressors may be a major cause. Increased ultraviolet (UV) radiation, as a result of ozone depletion, has been identified as one such stressor. Exposure to UV radiation has been shown to have detrimental effects on amphibians and can exacerbate the effects of other stressors, such as chemical pollutants. Chemical pollution has likewise been recognized as a major factor contributing to amphibian declines, particularly, endocrine-disrupting chemicals. In this regard, 17ß-trenbolone is a potent anabolic steroid used in the agricultural industry to increase muscle mass in cattle and has been repeatedly detected in the environment where amphibians live and breed. At high concentrations, 17ß-trenbolone has been shown to impact amphibian survival and gonadal development. In the present study, we investigated the effects of environmentally realistic UV radiation and 17ß-trenbolone exposure, both in isolation and in combination, on the morphology and behavior of tadpoles (Limnodynastes tasmaniensis). We found that neither stressor in isolation affected tadpoles, nor did we find any interactive effects. The results from our 17ß-trenbolone treatment are consistent with recent research suggesting that, at environmentally realistic concentrations, tadpoles may be less vulnerable to this pollutant compared to other vertebrate classes. The absence of UV radiation-induced effects found in the present study could be due to species-specific variation in susceptibility, as well as the dosage utilized. We suggest that future research should incorporate long-term studies with multiple stressors to accurately identify the threats to, and subsequent consequences for, amphibians under natural conditions. Environ Toxicol Chem 2024;43:1615-1626. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Larva , Raios Ultravioleta , Poluentes Químicos da Água , Animais , Larva/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Acetato de Trembolona/toxicidade , Anuros , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/efeitos da radiação
4.
Horm Behav ; 161: 105501, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368844

RESUMO

Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.


Assuntos
Anabolizantes , Transtornos da Memória , Nandrolona , Ratos Wistar , Testosterona , Animais , Masculino , Testosterona/sangue , Testosterona/análogos & derivados , Ratos , Nandrolona/análogos & derivados , Nandrolona/farmacologia , Anabolizantes/efeitos adversos , Anabolizantes/farmacologia , Transtornos da Memória/induzido quimicamente , Tamanho do Órgão/efeitos dos fármacos , Acetato de Trembolona/farmacologia , Decanoato de Nandrolona/farmacologia , Peso Corporal/efeitos dos fármacos , Corticosterona/sangue , Reconhecimento Psicológico/efeitos dos fármacos
5.
Eur J Pharm Sci ; 194: 106691, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38181869

RESUMO

Altrenogest (ALT), a synthetic progestogen, serves a critical role in estrus synchronization among animals like gilts and mares. However, its practical application in animal husbandry is hampered due to its poor solubility and limited oral bioavailability. To address this challenge, a solvent evaporation method was employed to create an inclusion complex of ALT with hydroxypropyl-ß-cyclodextrin (ALT/HP-ß-CD). The formation of this inclusion complex was confirmed by scanning electron microscopy, power X-ray diffraction, differential scanning calorimetry, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and docking calculations. In addition, we further conducted pharmacokinetic investigation involving gilts, comparing ALT/HP-ß-CD inclusion complex to an ALT oral solution. The physicochemical characterization results unveiled a transformation of ALT's crystal morphology into an amorphous state, with ALT effectively entering the cavity of HP-ß-CD. Compared with ALT, the solubility of ALT/HP-ß-CD inclusion complex increased by 1026.51-fold, and its dissolution rate demonstrated significant improvement. Pharmacokinetic assessments further revealed that the oral bioavailability of ALT/HP-ß-CD inclusion complex surpassed that of the ALT oral solution, with a relative bioavailability of 114.08 %. In conclusion, complexation with HP-ß-CD represents a highly effective approach to improve both the solubility and oral bioavailability of ALT.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina , Acetato de Trembolona/análogos & derivados , Animais , Feminino , Cavalos , Suínos , 2-Hidroxipropil-beta-Ciclodextrina/química , Solubilidade , Disponibilidade Biológica , Espectroscopia de Infravermelho com Transformada de Fourier , Varredura Diferencial de Calorimetria , Difração de Raios X
6.
Braz. j. vet. res. anim. sci ; 43(supl): 74-79, 2006. graf, tab
Artigo em Inglês | LILACS | ID: lil-473522

RESUMO

Brazil is one of the many countries that forbids the use of anabolic compounds, which generates difficulties on monitoring its use, once it has one of the biggest cattle herd. Therefore, several anabolic compounds are used, including trenbolone acetate. With the agreement of “Ministério da Agricultura, Pecuária e Abastecimento", an ELISA based test was done with the production of polyclonal antibodies in rabbits and testing in steers urine which received trenbolone acetate implants. The test showed to be cheap, easy and reliable to use in bovine urine to determine alfa- trenbolone, trenbolone acetate major metabolite, released in the animals urine until 60 days after implant was been injected. The results in comparison to the ones obtained by the commercial kit used by the Brazilian "Ministério da Agricultura, Pecuária e Abastecimento" were similar, with no significant differences.


O Brasil está entre os países que mantêm o uso de anabolizantes proibido, o que gera dificuldades muito grandes no monitoramento destas substâncias, uma vez que possui o maior rebanho bovino. Contudo, diversas substâncias são largamente utilizadas, entre as quais o acetato de trembolona. Com o consentimento do Ministério da Agricultura, Pecuária e Abastecimento, foram produzidos anticorpos policlonais para um teste baseado em ELISA ("enzyme linked immunosorbent assay") capazes de detectar acetato de trembolona na urina de bovinos tratados com trembolona. O teste apresentou baixo custo e de fácil execução para a detecção de alfa-trembolone, o principal metabólito na absorção do acetato de trembolona, liberado na urina dos animais. Os resultados foram similares aos obtidos com o "kit" comercial usado pelo Ministério da Agricultura, Pecuária e Abastecimento do Brasil.


Assuntos
Bovinos , Ensaio de Imunoadsorção Enzimática , Acetato de Trembolona/administração & dosagem , Acetato de Trembolona/isolamento & purificação , Urina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA