Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Biomed Mater ; 18(4)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37285854

RESUMO

Niacin (NA) and zinc (Zn) were used to fabricate metal organic frameworks (Zn-NA MOFs), based on coordination chemistry via a simple, rapid technique conducted at room temperature. The identity of the prepared MOFs was confirmed by Fourier-transform infrared, x-ray diffraction, scanning electron microscopy, and transmission electron microscopy, which showed cubic shaped, crystalline, microporous MOFs with an average size of 150 nm. Release of the active ingredients from the MOFs was proved to be pH dependent in a slightly alkaline medium (pH 8.5) with a sustained release rate of its two ingredients, NA and Zn, which have wound healing activity. Zn-NA MOFs proved to be biocompatible in the tested concentrations range (5-100 mg ml-1), with no cytotoxic effect on WI-38 cell line. Zn-NA MOFs at 10 and 50 mg ml-1concentrations and their components, NA and Zn, exerted antibacterial effects againstStaphylococcus aureus, Escherichia coli, andPseudomonas aeruginosa. Wound healing effect of the Zn-NA MOFs (50 mg ml-1) was evaluated on full excisional rat wounds. Significant reduction of the wound area was observed after 9 d of treatment using the Zn-NA MOFs compared to the other treatment groups. Additionally, wounds were fully healed after 10 d of treatment with the Zn-NA MOFs with histological and immunohistochemical evidence of re-epithelization, collagen formation, and angiogenesis. Similar histological evidence was also observed in wounds treated with niacin only; however, with no significant wound closure rates. Nevertheless, the formation of new blood vessels, as confirmed by the vascular endothelial growth factor protein expression, was highest in the niacin group. Zn-NA MOFs synthesized using a facile, low-cost method are potentially capable of healing wounds rapidly and effectively.


Assuntos
Niacina , Acetato de Zinco , Ratos , Animais , Acetato de Zinco/farmacologia , Niacina/farmacologia , Fator A de Crescimento do Endotélio Vascular/farmacologia , Cicatrização , Zinco/farmacologia , Antibacterianos/farmacologia
2.
Biomed Pharmacother ; 163: 114779, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37119739

RESUMO

Recently the complexation-mediated antioxidative and glycaemic control synergism between zinc(II) and caffeic acid was demonstrated in vitro. The present study evaluated the complexation-mediated antidiabetic and antioxidative synergism between zinc(II) and caffeic acid in diabetic rats and the possible underlying mechanisms. Male SD rats were induced with diabetes using 10% fructose and 40 mg/kg bw streptozotocin. The diabetic rats were treated with Zn(II)-caffeic acid complex and its precursors (caffeic acid and zinc acetate) for 4 weeks at predetermined doses. The effect of the treatments on diabetes and oxidative stress was measured. The complex ameliorated diabetic alterations. It reduced polyphagia and polydipsia and recovered weight loss. It increased insulin secretion, insulin sensitivity, hepatic and muscle glycogen, muscle hexokinase activity and Akt phosphorylation, which resulted in improved glucose tolerance and reduced blood glucose in the diabetic rats. The complex concomitantly reduced systemic and tissue lipid peroxidation and increased antioxidant enzymes activity in the diabetic rats. The complex outperformed the antidiabetic and antioxidative action of its precursors and had a broader bioactivity profile. Complexing zinc acetate with caffeic acid improved their ameliorative effect on insulin resistance by ∼24% and 42%, respectively, as well as their anti-hyperglycaemic action by ∼24 - 36% and ∼42 - 47%, respectively, suggesting a complexation-mediated synergism. In some instances, the antidiabetic action of the complex was comparable to metformin, while its antioxidant effect was better than that of metformin. Zinc(II)-caffeic acid complexation may be an alternative approach to improving the efficacy of antidiabetic and antioxidative therapy with minimal adverse or side effects.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Metformina , Ratos , Masculino , Animais , Diabetes Mellitus Tipo 2/tratamento farmacológico , Acetato de Zinco/farmacologia , Acetato de Zinco/uso terapêutico , Diabetes Mellitus Experimental/tratamento farmacológico , Ratos Sprague-Dawley , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Metformina/uso terapêutico , Glicemia , Zinco/uso terapêutico , Insulina
3.
Microbiol Spectr ; 10(6): e0115222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36354329

RESUMO

Rapid increase in resistance of Helicobacter pylori (H. pylori) has hindered antibiotics-based eradication efforts worldwide and raises the need for additional approaches. Here, we investigate the role of zinc-based compounds in inhibiting H. pylori growth and modulating antibiotic sensitivities, interrogate their downstream transcriptomic changes, and highlight the potential mechanism driving the observed effects. We showed that zinc acetate inhibited H. pylori growth and increased H. pylori sensitivity to levofloxacin. Transcriptomic profiling showed distinct gene expression patterns between zinc acetate treated groups versus controls. In particular, we independently replicated the association between zinc acetate treatment and increased ssrA expression. Knockdown of ssrA restored levofloxacin resistance to levels of the control group. In this study, we first demonstrated the role of zinc acetate in H. pylori growth and antibiotic sensitivities. Additionally, we explored the transcriptomic perturbations of zinc acetate followed by functional knockdown follow-up of differentially expressed ssrA, highlighting the role of tmRNA and trans-translation in H. pylori levofloxacin resistance. Our results provide alternative and complementary strategies for H. pylori treatment and shed light on the underlying mechanisms driving these effects. IMPORTANCE Helicobacter pylori (H. pylori) eradication plays an important role in gastric cancer prevention, but the antimicrobial resistance of H. pylori is fast becoming a growing concern. In this study, we investigated the role of zinc acetate in inhibiting H. pylori growth and modulating antibiotic sensitivities in vitro. Additionally, we explored the transcriptomic perturbations of zinc acetate followed by functional knockdown follow-up of differentially expressed ssrA, highlighting the role of tmRNA and trans-translation in H. pylori levofloxacin resistance. Our results open up a new horizon for the treatment of antibiotic-resistant H. pylori.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , Levofloxacino/farmacologia , Helicobacter pylori/genética , Acetato de Zinco/farmacologia , Claritromicina/farmacologia , Infecções por Helicobacter/tratamento farmacológico , Transcriptoma , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/genética
4.
J Nutr Sci Vitaminol (Tokyo) ; 68(4): 303-311, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36047102

RESUMO

We aimed to verify antitumor effects of zinc acetate on hepatocellular carcinoma (HCC) in vitro. Five HCC cell lines (HepG2, Hep3B, Huh7, HLE and Alex) were used to evaluate the antitumor effects of zinc acetate. Cell viability was determined by the Cell Counting Kit-8 assay. The cell-cycle alteration was evaluated by a flow cytometric analysis and the detection of cell cycle-related proteins. Apoptosis was determined based on the caspase-cleaved cytokeratin 18 (cCK18) levels. The microRNAs (miRNAs) related to an antitumor effect of zinc acetate were identified using microarrays. Zinc acetate significantly inhibited the proliferation of HCC cells in a dose-dependent manner. The treatment with zinc acetate resulted in significantly increased cCK18 levels in the supernatant and enhanced the expression of heme oxygenase-1 (HO-1) in HCC cells. The flow cytometric analysis revealed an increase of HCC cells in the S and G2/M phases by the administration of zinc acetate, and the expressions of Cdk2 and cyclin E were increased. The miRNA expression profile of the HCC cells treated with zinc acetate was extremely different from that of the untreated HCC cells. These results suggest that the zinc acetate supplementation induces the apoptosis of HCC cells, but does not affect the cell cycle progression. Upregulation of HO-1 and the alteration of miRNAs' profile may be involved in antitumor effects of zinc acetate in HCC cells.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Acetato de Zinco , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , MicroRNAs/genética , Acetato de Zinco/farmacologia
5.
J Bacteriol ; 204(3): e0059321, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35156836

RESUMO

With the increasing morbidity and mortality rates associated with multidrug-resistant bacteria, interest in bacteriophage therapy has been revived. However, bacterial resistance to phage infection threatens the usefulness of phage therapy, especially its inclusion in modern medicine. Multidrug-resistant Acinetobacter baumannii is a top-priority pathogen requiring urgent intervention and new therapeutic approaches, such as phage therapy. Here, we experimentally adapted A. baumannii WHG40004 to its lytic phage P21 and thereafter isolated a phage-resistant bacterial mutant, named Ev5-WHG. We then aimed to identify potential agents to aid phage killing of Ev5-WHG by analyzing its genome and that of the wild-type strain. The enriched Gene Ontology (GO) analysis based on genetic alterations in minor alleles and mutations showed that pathways such as zinc ion transport and cell membrane synthesis could play certain roles in phage resistance. Remarkably, the combination of zinc acetate and P21 showed increased bactericidal effect on Ev5-WHG. Significantly also, we showed that P21 completely prevented the growth of wild-type WHG40004 in the presence of antibiotics (meropenem and imipenem). The results from this study indicate that the analysis of phage resistance signatures during adaptation of bacteria to a lytic phage can inform the choice of agents to work cooperatively with phage to limit and/or reverse resistance. This approach could be important for guiding future successful phage therapy. IMPORTANCE Bacteriophages have proven very useful as alternative therapeutic agents in combating multidrug-resistant bacterial infections; however, bacterial resistance to phages threatens their use. In this study, we showed a new strategy of leveraging genetic signatures that accompany phage resistance in bacteria to predict agents that can be used with lytic phages to combat multidrug-resistant Acinetobacter baumannii. Significantly, this approach was helpful in suggesting the use of zinc acetate to reduce resistance in phage-resistant bacteria, as well as the use of phage with antibiotics meropenem and imipenem to prevent resistance in a wild-type strain of multidrug-resistant A. baumannii. The approach of this study will be helpful for improving the outcome of phage therapy and in overcoming antimicrobial resistance.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Bacteriófagos , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriófagos/genética , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Imipenem/farmacologia , Imipenem/uso terapêutico , Meropeném/farmacologia , Meropeném/uso terapêutico , Acetato de Zinco/farmacologia , Acetato de Zinco/uso terapêutico
6.
Nutrients ; 13(11)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34836165

RESUMO

It is difficult to match annual vaccines against the exact influenza strain that is spreading in any given flu season. Owing to the emergence of drug-resistant viral strains, new approaches for treating influenza are needed. Euglena gracilis (hereinafter Euglena), microalga, used as functional foods and supplements, have been shown to alleviate symptoms of influenza virus infection in mice. However, the mechanism underlying the inhibitory action of microalgae against the influenza virus is unknown. Here, we aimed to study the antiviral activity of Euglena extract against the influenza virus and the underlying action mechanism using Madin-Darby canine kidney (MDCK) cells. Euglena extract strongly inhibited infection by all influenza virus strains examined, including those resistant to the anti-influenza drugs oseltamivir and amantadine. A time-of-addition assay revealed that Euglena extract did not affect the cycle of virus replication, and cell pretreatment or prolonged treatment of infected cells reduced the virus titer. Thus, Euglena extract may activate the host cell defense mechanisms, rather than directly acting on the influenza virus. Moreover, various minerals, mainly zinc, in Euglena extract were found to be involved in the antiviral activity of the extract. In conclusion, Euglena extract could be a potent agent for preventing and treating influenza.


Assuntos
Antivirais , Misturas Complexas/farmacologia , Euglena , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza B/crescimento & desenvolvimento , Animais , Cães , Euglena/química , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/crescimento & desenvolvimento , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Células Madin Darby de Rim Canino , Replicação Viral/efeitos dos fármacos , Zinco/análise , Acetato de Zinco/farmacologia
7.
Int J Mol Sci ; 20(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035445

RESUMO

Zinc is one of the most important essential trace elements. It is involved in more than 300 enzyme systems and is an indispensable participant in many biochemical processes. Zinc deficiency causes a number of disorders in the human body, the main ones being the delay of growth and puberty, immune disorders, and cognitive dysfunctions. There are over two billion people in the world suffering from zinc deficiency conditions. Acyzol, a zinc-containing medicine, developed as an antidote against carbon monoxide poisoning, demonstrates a wide range of pharmacological activities: Anti-inflammatory, reparative, detoxifying, immunomodulatory, bacteriostatic, hepatoprotective, adaptogenic, antioxidant, antihypoxic, and cardioprotective. The presence of zinc in the composition of Acyzol suggests the potential of the drug in the treatment and prevention of zinc deficiency conditions, such as Prasad's disease, immune system pathology, alopecia, allergodermatoses, prostate dysfunction, psoriasis, stomatitis, periodontitis, and delayed mental and physical development in children. Currently, the efficiency of Acyzol in the cases of zinc deficiency is shown in a large number of experimental studies. So, Acyzol can be used as a highly effective drug for pharmacologic therapy of a wide range of diseases and conditions and it opens up new perspectives in the treatment and prevention of zinc deficiency conditions.


Assuntos
Distúrbios Nutricionais/tratamento farmacológico , Distúrbios Nutricionais/etiologia , Oligoelementos/deficiência , Acetato de Zinco/uso terapêutico , Zinco/deficiência , Animais , Estudos Clínicos como Assunto , Avaliação Pré-Clínica de Medicamentos , Humanos , Imidazóis/química , Camundongos , Distúrbios Nutricionais/diagnóstico , Distúrbios Nutricionais/prevenção & controle , Resultado do Tratamento , Acetato de Zinco/química , Acetato de Zinco/farmacologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-30936108

RESUMO

Formation of bacterial biofilms is a major health threat due to their high levels of tolerance to multiple antibiotics and the presence of persisters responsible for infection relapses. We previously showed that a combination of starvation and induction of SOS response in biofilm led to increased levels of persisters and biofilm tolerance to fluoroquinolones. In this study, we hypothesized that inhibition of the SOS response may be an effective strategy to target biofilms and fluoroquinolone persister cells. We tested the survival of Escherichia coli biofilms to different classes of antibiotics in starved and nonstarved conditions and in the presence of zinc acetate, a SOS response inhibitor. We showed that zinc acetate potentiates, albeit moderately, the activity of fluoroquinolones against E. coli persisters in starved biofilms. The efficacy of zinc acetate to increase fluoroquinolone activity, particularly that of tosufloxacin, suggests that such a combination may be a potential strategy for treating biofilm-related bacterial infections.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Escherichia coli/efeitos dos fármacos , Fluoroquinolonas/farmacologia , Acetato de Zinco/farmacologia , Sinergismo Farmacológico , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Humanos , Naftiridinas/farmacologia
9.
Sci Rep ; 8(1): 10831, 2018 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-30018455

RESUMO

Chikungunya virus has emerged as one of the most important global arboviral threats over the last decade. Inspite of large scale morbidity, with long lasting polyarthralgia, so far no licensed vaccine or antiviral is available. CHIKV nsP2 protease is crucial for processing of viral nonstructural polypeptide precursor to release enzymes required for viral replication, thus making it a promising drug target. In this study, high cell density cultivation (HCDC) of Escherichia coli in batch process was carried out to produce rCHIKV nsP2pro in a cost-effective manner. The purified nsP2pro and fluorogenic peptide substrate have been adapted for fluorescence resonance energy transfer (FRET) based high throughput screening (HTS) assay with Z' value and CV of 0.67 ± 0.054 and <10% respectively. We used this cell free HTS system to screen panel of metal ions and its conjugate which revealed zinc acetate as a potential candidate, which was further found to inhibit CHIKV in Vero cells. Scale-up process has not been previously reported for any of the arboviral nonstructural enzymes. The successful scale-up method for viral protease together with a HTS assay could lead to the development of industrial level large-scale screening platform for identification of protease inhibitors against emerging and re-emerging viruses.


Assuntos
Cisteína Endopeptidases/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Inibidores de Proteases/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Antivirais/farmacologia , Vírus Chikungunya/enzimologia , Vírus Chikungunya/fisiologia , Chlorocebus aethiops , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Escherichia coli/metabolismo , Transferência Ressonante de Energia de Fluorescência , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Especificidade por Substrato , Células Vero , Acetato de Zinco/farmacologia
10.
J Neurosci ; 38(2): 474-483, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29192128

RESUMO

Zinc is a transition metal that has a long history of use as an anti-inflammatory agent. It also soothes pain sensations in a number of animal models. However, the effects and mechanisms of zinc on chemotherapy-induced peripheral neuropathy remain unknown. Here we show that locally injected zinc markedly reduces neuropathic pain in male and female mice induced by paclitaxel, a chemotherapy drug, in a TRPV1-dependent manner. Extracellularly applied zinc also inhibits the function of TRPV1 expressed in HEK293 cells and mouse DRG neurons, which requires the presence of zinc-permeable TRPA1 to mediate entry of zinc into the cytoplasm. Moreover, TRPA1 is required for zinc-induced inhibition of TRPV1-mediated acute nociception. Unexpectedly, zinc transporters, but not TRPA1, are required for zinc-induced inhibition of TRPV1-dependent chronic neuropathic pain produced by paclitaxel. Together, our study demonstrates a novel mechanism underlying the analgesic effect of zinc on paclitaxel-induced neuropathic pain that relies on the function of TRPV1.SIGNIFICANCE STATEMENT The chemotherapy-induced peripheral neuropathy is a major limiting factor affecting the chemotherapy patients. There is no effective treatment available currently. We demonstrate that zinc prevents paclitaxel-induced mechanical hypersensitivity via inhibiting the TRPV1 channel, which is involved in the sensitization of peripheral nociceptors in chemotherapy. Zinc transporters in DRG neurons are required for the entry of zinc into the intracellular side, where it inhibits TRPV1. Our study provides insight into the mechanism underlying the pain-soothing effect of zinc and suggests that zinc could be developed to therapeutics for the treatment of chemotherapy-induced peripheral neuropathy.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Neuralgia/metabolismo , Paclitaxel/toxicidade , Canais de Cátion TRPV/antagonistas & inibidores , Acetato de Zinco/farmacologia , Animais , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuralgia/induzido quimicamente , Canais de Cátion TRPV/efeitos dos fármacos
11.
Am J Physiol Gastrointest Liver Physiol ; 313(6): G537-G548, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28864501

RESUMO

During the postweaning period, piglets are prone to gastrointestinal infections. The resulting impairment of intestinal barrier function may cause diarrhea associated with growth retardation or even death of piglets. Orally applied Zn is commonly used to prevent and treat diarrhea, but its mode of action still needs to be elucidated. To analyze the molecular mechanism whereby Zn acts on porcine intestinal barrier function, ex vivo studies on piglet jejunum and accompanying in vitro studies on a porcine jejunal epithelial cell line, IPEC-J2/PS, were performed with electrophysiological tools. Feeding pharmacological Zn doses exerted no significant electrophysiologically ascertainable short- and long-term effects on jejunal barrier function ex vivo. However, in IPEC-J2/PS, basolateral Zn was cytotoxic since its application caused a release of lactate dehydrogenase and an irreversible breakdown of the epithelial barrier. In contrast, apical Zn application caused an immediate increase in paracellular resistance and a decrease in permeability to the paracellular marker fluorescein, reflecting overall barrier strengthening in vitro. Apical effects were fully reversible upon washout. This indicates that Zn supplemented to feed was completely washed out during ex vivo jejunum preparation. We conclude that there is no evidence for long-term barrier effects through prophylactic Zn supplementation and that extracellular Zn acts acutely and reversibly from the apical side via tightening the paracellular route, thus counteracting leak-flux diarrhea.NEW & NOTEWORTHY Therapeutically administered Zn successfully treats diarrhea in veterinary and human medicine. Here we present data that Zn strengthens the porcine jejunal epithelial barrier by reversibly tightening the paracellular route for inorganic ions and small solutes. Acute or long-lasting Zn effects on transcellular transport (Cl- secretion) were not detected. We therefore conclude that Zn is useful for acutely treating leak-flux diarrhea rather than secretory diarrhea. Suitability as prophylactic feed supplement, however, is questionable.


Assuntos
Polaridade Celular , Suplementos Nutricionais , Células Epiteliais/efeitos dos fármacos , Junções Intercelulares/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Acetato de Zinco/farmacologia , Administração Oral , Aminoácidos/farmacologia , Animais , Animais Recém-Nascidos , Bicarbonatos/farmacologia , Linhagem Celular , Claudinas/metabolismo , Condutividade Elétrica , Impedância Elétrica , Células Epiteliais/metabolismo , Junções Intercelulares/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Jejuno/citologia , Jejuno/metabolismo , Permeabilidade , Sus scrofa , Fatores de Tempo , Acetato de Zinco/administração & dosagem
12.
Drug Deliv Transl Res ; 7(6): 859-866, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28812250

RESUMO

We previously showed that the combination of the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 with zinc acetate (ZA) formulated in a carrageenan (CG; MZC) gel provided macaques significant protection against vaginal simian-human immunodeficiency virus-RT (SHIV-RT) challenge, better than either MIV-150/CG or ZA/CG. The MZC gel was shown to be safe in a phase 1 clinical trial. Herein, we used in vitro approaches to study the antiviral properties of ZA and the MIV-150/ZA combination, compared to other NNRTIs. Like other NNRTIs, MIV-150 has EC50 values in the subnanomolar to nanomolar range against wild type and NNRTI or RT-resistant HIVs. While less potent than NNRTIs, ZA was shown to be active in primary cells against laboratory-adapted and primary HIV-1 isolates and HIV-1 isolates/clones with NNRTI and RT resistance mutations, with EC50 values between 20 and 110 µM. The MIV-150/ZA combination had a potent and broad antiviral activity in primary cells. In vitro resistance selection studies revealed that previously described NNRTI-resistant mutations were selected by MIV-150. ZA-resistant virus retained susceptibility to MIV-150 (and other RTIs) and MIV-150-selected virus remained sensitive to ZA. Notably, resistant virus was not selected when cultured in the presence of both ZA and MIV-150. This underscores the potency and breadth of the MIV-150/ZA combination, supporting preclinical macaque studies and the advancement of MZC microbicides into clinical testing.


Assuntos
Antirretrovirais/administração & dosagem , HIV-1/efeitos dos fármacos , Piridinas/administração & dosagem , Ureia/análogos & derivados , Acetato de Zinco/administração & dosagem , Antirretrovirais/farmacologia , Farmacorresistência Viral/efeitos dos fármacos , Quimioterapia Combinada , HIV-1/genética , Humanos , Testes de Sensibilidade Microbiana , Piridinas/farmacologia , Ureia/administração & dosagem , Ureia/farmacologia , Acetato de Zinco/farmacologia
13.
Drug Deliv Transl Res ; 7(6): 840-858, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28600625

RESUMO

Women globally need access to multipurpose prevention technologies (MPTs) that prevent human immunodeficiency virus (HIV), sexually transmitted infections that increase HIV acquisition/transmission risk, and unintended pregnancy. Seeking an MPT with activity against HIV, herpes simplex virus-2 (HSV-2), and human papillomavirus (HPV), we developed a prototype intravaginal ring (IVR), the MZCL IVR, which released the antiviral agents MIV-150, zinc acetate, and carrageenan (MZC for short) and the contraceptive levonorgestrel (LNG). Previously, we showed that an MZC gel has potent activity against immunodeficiency viruses, HSV-2, and HPV and that the MZCL (MZC with LNG) IVR releases all four components in macaques in vivo at levels associated with efficacy. Vaginal fluid from treated macaques has in vitro activity against HIV, HSV-2, and HPV. Herein, we assessed the ability of the MZCL IVR to protect macaques against repeated co-challenge with HSV-2 and SHIV-RT (simian immunodeficiency virus [SIV] containing the reverse transcriptase gene from HIV) and prevent hormonal cycling. We evaluated in vivo drug release in co-challenged macaques by measuring drug levels in blood and vaginal fluid and residual drug levels in used IVRs. The MZCL IVR significantly prevented SHIV-RT infection, reduced HSV-2 vaginal shedding, and prevented cycling. No non-nucleoside HIV reverse transcriptase inhibitor (NNRTI)-resistant SHIV was detected in macaques that became infected after continuous exposure to MZC from the IVR. Macaques wearing the MZCL IVR also had carrageenan levels in vaginal fluid expected to protect from HPV (extrapolated from mice) and LNG levels in blood associated with contraceptive efficacy. The MZCL IVR is a promising MPT candidate that warrants further development.


Assuntos
Antivirais/administração & dosagem , Anticoncepcionais Femininos/administração & dosagem , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Cremes, Espumas e Géis Vaginais/administração & dosagem , Eliminação de Partículas Virais/efeitos dos fármacos , Alphapapillomavirus/efeitos dos fármacos , Alphapapillomavirus/fisiologia , Animais , Antivirais/farmacologia , Carragenina/administração & dosagem , Carragenina/farmacologia , Anticoncepcionais Femininos/farmacologia , Dispositivos Anticoncepcionais Femininos , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Feminino , Herpes Simples/prevenção & controle , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 2/fisiologia , Humanos , Macaca mulatta , Ciclo Menstrual , Piridinas/administração & dosagem , Piridinas/farmacologia , Ureia/administração & dosagem , Ureia/análogos & derivados , Ureia/farmacologia , Cremes, Espumas e Géis Vaginais/farmacologia , Acetato de Zinco/administração & dosagem , Acetato de Zinco/farmacologia
14.
Exp Cell Res ; 347(1): 192-200, 2016 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-27502587

RESUMO

Copper is an essential trace element, however, excess copper is harmful to human health. Excess copper-derived oxidants contribute to the progression of Wilson disease, and oxidative stress induces accumulation of abnormal proteins. It is known that the endoplasmic reticulum (ER) plays an important role in proper protein folding, and that accumulation of misfolded proteins disturbs ER homeostasis resulting in ER stress. However, copper-induced ER homeostasis disturbance has not been fully clarified. We treated human hepatoma cell line (Huh7) and immortalized-human hepatocyte cell line (OUMS29) with copper and chemical chaperones, including 4-phenylbutyrate and ursodeoxycholic acid. We examined copper-induced oxidative stress, ER stress and apoptosis by immunofluorescence microscopy and immunoblot analyses. Furthermore, we examined the effects of copper on carcinogenesis. Excess copper induced not only oxidative stress but also ER stress. Furthermore, excess copper induced DNA damage and reduced cell proliferation. Chemical chaperones reduced this copper-induced hepatotoxicity. Excess copper induced hepatotoxicity via ER stress. We also confirmed the abnormality of ultra-structure of the ER of hepatocytes in patients with Wilson disease. These findings show that ER stress plays a pivotal role in Wilson disease, and suggests that chemical chaperones may have beneficial effects in the treatment of Wilson disease.


Assuntos
Cobre/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Hepatócitos/patologia , Degeneração Hepatolenticular/patologia , Adulto , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA , Feminino , Imunofluorescência , Células HEK293 , Hepatócitos/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Immunoblotting , Antígeno Ki-67/metabolismo , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Inibidores de Proteassoma/farmacologia , Acetato de Zinco/farmacologia
15.
PLoS One ; 11(7): e0159332, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27428377

RESUMO

Women need multipurpose prevention products (MPTs) that protect against sexually transmitted infections (STIs) and provide contraception. The Population Council has developed a prototype intravaginal ring (IVR) releasing the non-nucleoside reverse transcriptase inhibitor (NNRTI) MIV-150 (M), zinc acetate (ZA), carrageenan (CG) and levonorgestrel (LNG) (MZCL IVR) to protect against HIV, HSV-2, HPV and unintended pregnancy. Our objective was to evaluate the anti-SHIV-RT activity of MZCL IVR in genital mucosa. First, macaque vaginal tissues were challenged with SHIV-RT in the presence of (i) MIV-150 ± LNG or (ii) vaginal fluids (VF); available from studies completed earlier) collected at various time points post insertion of MZCL and MZC IVRs. Then, (iii) MZCL IVRs (vs. LNG IVRs) were inserted in non-Depo Provera-treated macaques for 24h and VF, genital biopsies, and blood were collected and tissues were challenged with SHIV-RT. Infection was monitored with one step SIV gag qRT-PCR or p27 ELISA. MIV-150 (LCMS/MS, RIA), LNG (RIA) and CG (ELISA) were measured in different compartments. Log-normal generalized mixed linear models were used for analysis. LNG did not affect the anti-SHIV-RT activity of MIV-150 in vitro. MIV-150 in VF from MZC/MZCL IVR-treated macaques inhibited SHIV-RT in vaginal mucosa in a dose-dependent manner (p<0.05). MIV-150 in vaginal tissue from MZCL IVR-treated animals inhibited ex vivo infection relative to baseline (96%; p<0.0001) and post LNG IVR group (90%, p<0.001). No MIV-150 dose-dependent protection was observed, likely because of high MIV-150 concentrations in all vaginal tissue samples. In cervical tissue, MIV-150 inhibited infection vs. baseline (99%; p<0.05). No cervical tissue was available for MIV-150 measurement. Exposure to LNG IVR did not change tissue infection level. These observations support further development of MZCL IVR as a multipurpose prevention technology to improve women's sexual and reproductive health.


Assuntos
Anti-Infecciosos/farmacologia , Anticoncepcionais Femininos/farmacologia , Levanogestrel/farmacologia , Piridinas/farmacologia , Vírus Reordenados/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Ureia/análogos & derivados , Vagina/efeitos dos fármacos , Animais , Carragenina/farmacologia , Dispositivos Anticoncepcionais Femininos , Combinação de Medicamentos , Feminino , HIV/efeitos dos fármacos , HIV/genética , HIV/crescimento & desenvolvimento , Macaca mulatta , Mucosa/efeitos dos fármacos , Mucosa/virologia , Vírus Reordenados/genética , Vírus Reordenados/crescimento & desenvolvimento , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Vírus da Imunodeficiência Símia/genética , Vírus da Imunodeficiência Símia/crescimento & desenvolvimento , Resultado do Tratamento , Ureia/farmacologia , Vagina/virologia , Acetato de Zinco/farmacologia
16.
Antimicrob Agents Chemother ; 60(9): 5459-66, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27381393

RESUMO

Our recent phase 1 trial demonstrated that PC-1005 gel containing 50 µM MIV-150, 14 mM zinc acetate dihydrate, and carrageenan (CG) applied daily vaginally for 14 days is safe and well tolerated. Importantly, cervicovaginal lavage fluid samples (CVLs) collected 4 or 24 h after the last gel application inhibited HIV-1 and human papillomavirus (HPV) in cell-based assays in a dose-dependent manner (MIV-150 for HIV-1 and CG for HPV). Herein we aimed to determine the anti-HIV and anti-herpes simplex virus 2 (anti-HSV-2) activity of PC-1005 in human cervical explants after in vitro exposure to the gel and to CVLs from participants in the phase 1 trial. Single HIV-1BaL infection and HIV-1BaL-HSV-2 coinfection explant models were utilized. Coinfection with HSV-2 enhanced tissue HIV-1BaL infection. In vitro exposure to PC-1005 protected cervical mucosa against HIV-1BaL (up to a 1:300 dilution) in single-challenge and cochallenge models. CG gel (PC-525) provided some barrier effect against HIV-1BaL at the 1:100 dilution in a single-challenge model but not in the cochallenge model. Both PC-1005 and PC-525 at the 1:100 dilution inhibited HSV-2 infection, pointing to a CG-mediated protection. MIV-150 and CG in CVLs inhibited HIV (single-challenge or cochallenge models) and HSV-2 infections in explants in a dose-dependent manner (P < 0.05). Stronger inhibition of HIV-1 infection by CVLs collected 4 h after the last gel administration was observed compared to infection detected in the presence of baseline CVLs. The anti-HIV and anti-HSV-2 activity of PC-1005 gel in vitro and CVLs in human ectocervical explants supports the further development of PC-1005 gel as a broad-spectrum on-demand microbicide.


Assuntos
Anti-Infecciosos/farmacologia , Líquidos Corporais/virologia , Infecções por HIV/tratamento farmacológico , Herpes Genital/tratamento farmacológico , Mucosa/virologia , Vagina/efeitos dos fármacos , Administração Intravaginal , Líquidos Corporais/efeitos dos fármacos , Coinfecção/tratamento farmacológico , Coinfecção/virologia , Feminino , Géis/farmacologia , Infecções por HIV/virologia , Transcriptase Reversa do HIV/farmacologia , HIV-1/efeitos dos fármacos , Herpes Genital/virologia , Herpesvirus Humano 2/efeitos dos fármacos , Humanos , Mucosa/efeitos dos fármacos , Piridinas/farmacologia , Ureia/análogos & derivados , Ureia/farmacologia , Vagina/virologia , Acetato de Zinco/farmacologia
17.
Nat Commun ; 7: 11926, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27305972

RESUMO

Diatoms are an important group of eukaryotic algae with a curious evolutionary innovation: they sheath themselves in a cell wall made largely of silica. The cellular machinery responsible for silicification includes a family of membrane permeases that recognize and actively transport the soluble precursor of biosilica, silicic acid. However, the molecular basis of silicic acid transport remains obscure. Here, we identify experimentally tractable diatom silicic acid transporter (SIT) homologues and study their structure and function in vitro, enabled by the development of a new fluorescence method for studying substrate transport kinetics. We show that recombinant SITs are Na(+)/silicic acid symporters with a 1:1 protein: substrate stoichiometry and KM for silicic acid of 20 µM. Protein mutagenesis supports the long-standing hypothesis that four conserved GXQ amino acid motifs are important in SIT function. This marks a step towards a detailed understanding of silicon transport with implications for biogeochemistry and bioinspired materials.


Assuntos
Proteínas de Transporte/genética , Diatomáceas/metabolismo , Ácido Silícico/metabolismo , Silício/metabolismo , Sequência de Aminoácidos , Evolução Biológica , Transporte Biológico , Proteínas de Transporte/metabolismo , Parede Celular/metabolismo , Clonagem Molecular , Bases de Dados Genéticas , Diatomáceas/classificação , Diatomáceas/efeitos dos fármacos , Diatomáceas/genética , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Filogenia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Acetato de Zinco/farmacologia , Sulfato de Zinco/farmacologia
18.
Vet Parasitol ; 216: 93-100, 2016 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-26801601

RESUMO

The present study was designed to investigate the invitro acaricidal effects of seven ethnoveterinary plants, zinc acetate and green synthesized zinc oxide nanoparticles against the Southern cattle tick, Rhipicephalus (Boophilus) microplus. The selected ethnoveterinary plants were extracted using ethanol and aqueous (water) solvents at 0.02mg/ml and 0.04mg/ml concentrations. Of these seven plants, Lobelia leschenaultiana showed the highest percentage of tick mortality. The ethanol extracts of L. leschenaultiana showed 93.33% mortality at 0.04mg/ml and its LC50 was 0.05mg/ml. However, zinc acetate exhibited 70% mortality at 0.04mg/ml (LC50: 0.0192mg/ml). Further, we synthesized ZnO nanoparticle using the leaf extracts of L. leschenaultiana and zinc acetate as the precursor material to control R. (B.) microplus. The structural characterization of the synthesized ZnO nanoparticles (Ll-ZnO NPs) was performed by UV-vis spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and transmission electron microsopy (TEM). UV-vis spectra showed the absorption band at 383nm. XRD analysis clearly showed the crystalline nature of Ll-ZnO NPs with various Bragg's reflection peaks at 100, 002, 101, 102, 110, 103, 200, 201 and 202 planes. FTIR analysis showed the possible functional groups of Ll-ZnO NPs with strong band at 3420.63 and 2922.48cm(-1). SEM and TEM analysis revealed that the Ll-ZnO NPs were spherical and hexagonal in shape with particle size ranging between 20 and 65nm. The mortality of R. (B.) microplus after treatment with Ll-ZnO NPs was 35, 57.5 and 82.5% at 0.001, 0.002 and 0.004mg/ml. On the otherhand, 100% mortality of R. (B.) microplus was observed at 0.008mg/ml (LC50: 0.0017mg/ml). The results indicated that the Ll-ZnO NPs have good acaricidal properties compared to L. leschenaultiana leaf extract and zinc acetate.


Assuntos
Doenças dos Bovinos/tratamento farmacológico , Lobelia/química , Fitoterapia/veterinária , Rhipicephalus , Infestações por Carrapato/veterinária , Acaricidas/farmacologia , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Doenças dos Bovinos/prevenção & controle , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/metabolismo , Nanopartículas/ultraestrutura , Extratos Vegetais/uso terapêutico , Folhas de Planta/química , Rhipicephalus/anatomia & histologia , Rhipicephalus/efeitos dos fármacos , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Infestações por Carrapato/tratamento farmacológico , Infestações por Carrapato/prevenção & controle , Difração de Raios X , Acetato de Zinco/farmacologia , Óxido de Zinco/metabolismo
19.
Antimicrob Agents Chemother ; 60(2): 1141-4, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26596943

RESUMO

We compared the preclinical safety and efficacy of tenofovir (TFV) 1% gel with that of MZC gel [containing 50 µM MIV-150, 14 mM Zn(O2CCH3)2(H2O)2, and 3% carrageenan] through a series of in vitro, ex vivo, and in vivo assays. The two gels showed good antiviral therapeutic indexes (50% cytotoxic concentration/50% effective concentration ratios; range, >25 to 800). MZC showed greater anti-simian-human immunodeficiency virus reverse transcriptase (SHIV-RT) activity than TFV 1% gel in rhesus macaque vaginal explants. MZC protected mice from vaginal herpes simplex virus 2 (HSV-2) challenge (P < 0.0001), but the TFV 1% gel did not.


Assuntos
Antirretrovirais/farmacologia , Tenofovir/farmacologia , Acetato de Zinco/farmacologia , Administração Intravaginal , Animais , Antirretrovirais/administração & dosagem , Carragenina/química , Combinação de Medicamentos , Feminino , Géis/administração & dosagem , Géis/química , HIV-1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Herpesvirus Humano 2/patogenicidade , Macaca mulatta , Camundongos Endogâmicos BALB C , Piridinas/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Ureia/análogos & derivados , Ureia/farmacologia , Vagina/efeitos dos fármacos , Vagina/virologia , Acetato de Zinco/administração & dosagem
20.
Bull Exp Biol Med ; 160(2): 281-2, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26616014

RESUMO

Zinc chloride and zinc acetate solutions injected in a dose of 1 µg into the rostral neostriatum produced opposite effect on locomotor behavior of rats. Zink chloride disturbed conditioned avoidance and reduced spontaneous motor activity. Zink acetate virtually did not modify avoidance behavior and stimulated motor activity with elements of motor stereotypy. It was hypothesized that important factors here were the relationship between the effect and the level of metal released after salt dissociation and different reactivity of the synaptic substrate of the neostriatum to the presence of zinc ions.


Assuntos
Cloretos/farmacologia , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Acetato de Zinco/farmacologia , Compostos de Zinco/farmacologia , Animais , Aprendizagem da Esquiva/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA