Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 206(5): e0004824, 2024 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-38712944

RESUMO

Whole genome sequencing has revealed that the genome of Staphylococcus aureus possesses an uncharacterized 5-gene operon (SAOUHSC_00088-00092 in strain 8325 genome) that encodes factors with functions related to polysaccharide biosynthesis and export, indicating the existence of a new extracellular polysaccharide species. We designate this locus as ssc for staphylococcal surface carbohydrate. We found that the ssc genes were weakly expressed and highly repressed by the global regulator MgrA. To characterize Ssc, Ssc was heterologously expressed in Escherichia coli and extracted by heat treatment. Ssc was also conjugated to AcrA from Campylobacter jejuni in E. coli using protein glycan coupling technology (PGCT). Analysis of the heat-extracted Ssc and the purified Ssc-AcrA glycoconjugate by tandem mass spectrometry revealed that Ssc is likely a polymer consisting of N-acetylgalactosamine. We further demonstrated that the expression of the ssc genes in S. aureus affected phage adsorption and susceptibility, suggesting that Ssc is surface-exposed. IMPORTANCE: Surface polysaccharides play crucial roles in the biology and virulence of bacterial pathogens. Staphylococcus aureus produces four major types of polysaccharides that have been well-characterized. In this study, we identified a new surface polysaccharide containing N-acetylgalactosamine (GalNAc). This marks the first report of GalNAc-containing polysaccharide in S. aureus. Our discovery lays the groundwork for further investigations into the chemical structure, surface location, and role in pathogenesis of this new polysaccharide.


Assuntos
Polissacarídeos Bacterianos , Staphylococcus aureus , Staphylococcus aureus/enzimologia , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/metabolismo , Acetilgalactosamina/análise , Óperon , Escherichia coli/genética , Expressão Gênica , Parede Celular/química
2.
Biol. Res ; 33(3/4): 215-226, 2000. ilus
Artigo em Inglês | LILACS | ID: lil-454063

RESUMO

The structural diversity of the many oligosaccharide chains of surface glycoconjugates renders them likely candidates for modulators of cell-interactions, cellular movements, differentiation, and cellular recognition. A selection of different lectins was used to investigate the appearance of cellular distribution and changes in sugar residues during tooth development in the polyphyodont lizard, Liolaemus gravenhorsti. Lectins from three groups were used: (1) N-acetylgalactosamine specificity: BS-1, PNA, RCA-120; (2) N-acetylglucosamine specificity: ECA; and (3) fucose specificity: UEA 1 and LTA.. Digital images were processed using Scion Image. Grayscale graphics in each image were obtained. The lectins used showed a strong, wide distribution of the L-fucose and N-acetylgalactosamine at the cell surface and in the cytoplasm of multinucleate odontoclast cell, while mononuclear odontoclast cells showed no binding, suggesting some roles that the residues sugar might play in the resorption of dentine or with multinucleation of odontoclast after the attachment to the dentine surface in this polyphyodont species. Further studies must be planned to determine the specific identities of these glycoconjugates,and to elucidate the roles played by these sugar residues in the complex processes related to odontogenesis in polyphyodont species.


Assuntos
Animais , Acetilgalactosamina/análise , Acetilglucosamina/análise , Dente/química , Fucose/análise , Lectinas , Lagartos , Osteoclastos/química , Dente/citologia , Histocitoquímica , Odontogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA