Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 210
Filtrar
1.
Discov Med ; 36(186): 1334-1344, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39054704

RESUMO

N-acetyltransferase 10 (NAT10) is an important acetyltransferase that regulates telomerase activity and participates in DNA damage reactions, ribosomal RNA (rRNA) transcriptional activation, cell division, microtubule acetylation, and other important cellular processes. Abnormalities in the expression or distribution of NAT10 result in diseases such as Hutchinson-Gilford progeria syndrome (HGPS) and various tumors, with serious consequences. Remodelin, an inhibitor of NAT10, delays HGPS progression; many studies have been conducted on its role in tumor therapy. A major breakthrough in the study of NAT10 was the discovery of mRNA N4-acetylcytidine (ac4C) modification, which can increase mRNA stability and translation efficiency significantly. In addition, NAT10 modifies the mRNA of ac4C, which is associated with tumor development. Here, we present a review of pertinent studies focusing on NAT10, particularly its role in cancer, to provide researchers with a concise and informative summary of the current state of knowledge about this topic. The conclusions drawn from this review could provide a new direction for tumor treatment.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Neoplasias/genética , Neoplasias/enzimologia , Acetiltransferase N-Terminal E/metabolismo , Acetiltransferase N-Terminal E/genética , Animais , Regulação Neoplásica da Expressão Gênica , Acetiltransferases N-Terminal
2.
Acta Pharmacol Sin ; 45(7): 1425-1437, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38839936

RESUMO

Cardiac fibrosis is a pathological scarring process that impairs cardiac function. N-acetyltransferase 10 (Nat10) is recently identified as the key enzyme for the N4-acetylcytidine (ac4C) modification of mRNAs. In this study, we investigated the role of Nat10 in cardiac fibrosis following myocardial infarction (MI) and the related mechanisms. MI was induced in mice by ligation of the left anterior descending coronary artery; cardiac function was assessed with echocardiography. We showed that both the mRNA and protein expression levels of Nat10 were significantly increased in the infarct zone and border zone 4 weeks post-MI, and the expression of Nat10 in cardiac fibroblasts was significantly higher compared with that in cardiomyocytes after MI. Fibroblast-specific overexpression of Nat10 promoted collagen deposition and induced cardiac systolic dysfunction post-MI in mice. Conversely, fibroblast-specific knockout of Nat10 markedly relieved cardiac function impairment and extracellular matrix remodeling following MI. We then conducted ac4C-RNA binding protein immunoprecipitation-sequencing (RIP-seq) in cardiac fibroblasts transfected with Nat10 siRNA, and revealed that angiomotin-like 1 (Amotl1), an upstream regulator of the Hippo signaling pathway, was the target gene of Nat10. We demonstrated that Nat10-mediated ac4C modification of Amotl1 increased its mRNA stability and translation in neonatal cardiac fibroblasts, thereby increasing the interaction of Amotl1 with yes-associated protein 1 (Yap) and facilitating Yap translocation into the nucleus. Intriguingly, silencing of Amotl1 or Yap, as well as treatment with verteporfin, a selective and potent Yap inhibitor, attenuated the Nat10 overexpression-induced proliferation of cardiac fibroblasts and prevented their differentiation into myofibroblasts in vitro. In conclusion, this study highlights Nat10 as a crucial regulator of myocardial fibrosis following MI injury through ac4C modification of upstream activators within the Hippo/Yap signaling pathway.


Assuntos
Fibrose , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Camundongos , Masculino , Proteínas de Sinalização YAP/metabolismo , Fibroblastos/metabolismo , Citidina/análogos & derivados , Citidina/farmacologia , Camundongos Knockout , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Acetiltransferase N-Terminal E/metabolismo , Via de Sinalização Hippo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Células Cultivadas , Transdução de Sinais , Acetiltransferases N-Terminal/metabolismo , Miocárdio/patologia , Miocárdio/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
3.
Ann Agric Environ Med ; 31(2): 306-310, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38940118

RESUMO

The NAA10 gene encodes N-alpha-acetyltransferase 10 which plays an important role in cell growth, differentiation, DNA damage, metastasis, apoptosis, stress response and autophagy. Defects in the NAA10 gene correlate with the diagnosis of NAA10-related syndrome (Ogden syndrome). The most common symptoms of NAA10-related syndrome are: global developmental delay, non-verbal or limited speech, autism spectrum disorder, feeding difficulties, motor delay, muscle tone disturbances, and long QT syndrome. To-date, there are about 100 patients who have been reported with this condition. The case report presents the clinical study of a girl aged 4 years and 3 months diagnosed with Ogden syndrome. She had many characteristic features of the disorder, as well as precocious puberty. This girl represents the case of a patient with p.Arg83Cys mutation in NAA10 gene as well as precocious puberty.


Assuntos
Acetiltransferase N-Terminal A , Acetiltransferase N-Terminal E , Puberdade Precoce , Humanos , Feminino , Puberdade Precoce/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Pré-Escolar , Mutação
4.
Cancer Med ; 13(11): e7283, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38826095

RESUMO

BACKGROUND: Lung cancer remains the foremost reason of cancer-related mortality, with invasion and metastasis profoundly influencing patient prognosis. N-acetyltransferase 10 (NAT10) catalyzes the exclusive N (4)-acetylcytidine (ac4C) modification in eukaryotic RNA. NAT10 dysregulation is linked to various diseases, yet its role in non-small cell lung cancer (NSCLC) invasion and metastasis remains unclear. Our study delves into the clinical significance and functional aspects of NAT10 in NSCLC. METHODS: We investigated NAT10's clinical relevance using The Cancer Genome Atlas (TCGA) and a group of 98 NSCLC patients. Employing WB, qRT-PCR, and IHC analyses, we assessed NAT10 expression in NSCLC tissues, bronchial epithelial cells (BECs), NSCLC cell lines, and mouse xenografts. Further, knockdown and overexpression techniques (siRNA, shRNA, and plasmid) were employed to evaluate NAT10's effects. A series of assays were carried out, including CCK-8, colony formation, wound healing, and transwell assays, to elucidate NAT10's role in proliferation, invasion, and metastasis. Additionally, we utilized lung cancer patient-derived 3D organoids, mouse xenograft models, and Remodelin (NAT10 inhibitor) to corroborate these findings. RESULTS: Our investigations revealed high NAT10 expression in NSCLC tissues, cell lines and mouse xenograft models. High NAT10 level correlated with advanced T stage, lymph node metastasis and poor overall survive. NAT10 knockdown curtailed proliferation, invasion, and migration, whereas NAT10 overexpression yielded contrary effects. Furthermore, diminished NAT10 levels correlated with increased E-cadherin level whereas decreased N-cadherin and vimentin expressions, while heightened NAT10 expression displayed contrasting results. Notably, Remodelin efficiently attenuated NSCLC proliferation, invasion, and migration by inhibiting NAT10 through the epithelial-mesenchymal transition (EMT) pathway. CONCLUSIONS: Our data underscore NAT10 as a potential therapeutic target for NSCLC, presenting avenues for targeted intervention against lung cancer through NAT10 inhibition.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Transição Epitelial-Mesenquimal , Neoplasias Pulmonares , Acetiltransferase N-Terminal E , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Nus , Acetiltransferase N-Terminal E/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferases N-Terminal , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Adv Sci (Weinh) ; 11(32): e2310131, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38922788

RESUMO

N4-acetylcytidine (ac4C) is essential for the development and migration of tumor cells. According to earlier research, N-acetyltransferase 10 (NAT10) can increase messenger RNAs (mRNAs) stability by catalyzing the synthesis of ac4C. However, little is known about NAT10 expression and its role in the acetylation modifications in prostate cancer (PCa). Thus, the biological function of NAT10 in PCa is investigated in this study. Compared to paraneoplastic tissues, the expression of NAT10 is significantly higher in PCa. The NAT10 expression is strongly correlated with the pathological grade, clinical stage, Gleason score, T-stage, and N-stage of PCa. NAT10 has the ability to advance the cell cycle and the epithelial-mesenchymal transition (EMT), both of which raise the malignancy of tumor cells. Mechanistically, NAT10 enhance the stability of high mobility group AT-hook 1 (HMGA1) by acetylating its mRNA, thereby promoting cell cycle progression to improve cell proliferation. In addition, NAT10 improve the stability of Keratin 8 (KRT8) by acetylating its mRNA, which promotes the progression of EMT to improve cell migration. This findings provide a potential prognostic or therapeutic target for PCa.


Assuntos
Proliferação de Células , Proteína HMGA1a , Acetiltransferase N-Terminal E , Neoplasias da Próstata , RNA Mensageiro , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Neoplasias da Próstata/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Camundongos , Animais , Acetilação , Transição Epitelial-Mesenquimal/genética , Metástase Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , Modelos Animais de Doenças , Movimento Celular/genética , Acetiltransferases N-Terminal
6.
Ann Rheum Dis ; 83(9): 1118-1131, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-38724075

RESUMO

OBJECTIVE: Recent studies indicate that N-acetyltransferase 10 (NAT10)-mediated ac4C modification plays unique roles in tumour metastasis and immune infiltration. This study aimed to uncover the role of NAT10-mediated ac4C in fibroblast-like synoviocytes (FLSs) functions and synovial immune cell infiltration in rheumatoid arthritis (RA). METHODS: FLSs were obtained from active established patients with RA. Protein expression was determined by western blotting or immunohistochemistry or multiplexed immunohistochemistry. Cell migration was measured using a Boyden chamber. ac4C-RIP-seq combined with RNA-seq was performed to identify potential targets of NAT10. RNA immunoprecipitation was used to validate the interaction between protein and mRNA. NAT10 haploinsufficiency, inhibitor remodelin or intra-articular Adv-NAT10 was used to suppress arthritis in mice with delayed-type hypersensitivity arthritis (DYHA) and collagen II-induced arthritis (CIA) and rats with CIA. RESULTS: We found elevated levels of NAT10 and ac4C in FLSs and synovium from patients with RA. NAT10 knockdown or specific inhibitor treatment reduced the migration and invasion of RA FLSs. Increased NAT10 level in the synovium was positively correlated with synovial infiltration of multiple types of immune cells. NAT10 inhibition in vivo attenuated the severity of arthritis in mice with CIA and DTHA, and rats with CIA. Mechanistically, we explored that NAT10 regulated RA FLS functions by promoting stability and translation efficiency of N4-acetylated PTX3 mRNA. PTX3 also regulated RA FLS aggression and is associated with synovial immune cell infiltration. CONCLUSION: Our findings uncover the important roles of NAT10-mediated ac4C modification in promoting rheumatoid synovial aggression and inflammation, indicating that NAT10 may be a potential target for the treatment of RA, even other dysregulated FLSs-associated disorders.


Assuntos
Artrite Experimental , Artrite Reumatoide , RNA Mensageiro , Membrana Sinovial , Sinoviócitos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Animais , Humanos , Camundongos , Membrana Sinovial/metabolismo , Ratos , Artrite Experimental/metabolismo , Artrite Experimental/genética , Sinoviócitos/metabolismo , RNA Mensageiro/metabolismo , Proteína C-Reativa/metabolismo , Proteína C-Reativa/genética , Masculino , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Acetilação , Movimento Celular
7.
PLoS One ; 19(5): e0301328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713657

RESUMO

Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting approximately 80% of all human proteins. The human essential X-linked gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex. There is extensive genetic variation in humans with missense, splice-site, and C-terminal frameshift variants in NAA10. In mice, Naa10 is not an essential gene, as there exists a paralogous gene, Naa12, that substantially rescues Naa10 knockout mice from embryonic lethality, whereas double knockouts (Naa10-/Y Naa12-/-) are embryonic lethal. However, the phenotypic variability in the mice is nonetheless quite extensive, including piebaldism, skeletal defects, small size, hydrocephaly, hydronephrosis, and neonatal lethality. Here we replicate these phenotypes with new genetic alleles in mice, but we demonstrate their modulation by genetic background and environmental effects. We cannot replicate a prior report of "maternal effect lethality" for heterozygous Naa10-/X female mice, but we do observe a small amount of embryonic lethality in the Naa10-/y male mice on the inbred genetic background in this different animal facility.


Assuntos
Camundongos Knockout , Acetiltransferase N-Terminal A , Acetiltransferase N-Terminal E , Animais , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Camundongos , Feminino , Masculino , Fenótipo , Patrimônio Genético , Herança Materna/genética , Camundongos Endogâmicos C57BL
8.
Am J Med Genet A ; 194(9): e63651, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38747166

RESUMO

Ogden syndrome, also known as NAA10-related neurodevelopmental syndrome, is a rare genetic condition associated with pathogenic variants in the NAA10 N-terminal acetylation family of proteins. The condition was initially described in 2011 and is characterized by a range of neurologic symptoms, including intellectual disability and seizures, as well as developmental delays, psychiatric symptoms, congenital heart abnormalities, hypotonia, and others. Previously published articles have described the etiology and phenotype of Ogden syndrome, mostly with retrospective analyses; herein, we report prospective data concerning its progress over time. The current study involves a total of 58 distinct participants; of these, 43 caregivers were interviewed using the Vineland-3 and answered a survey regarding therapy and other questions, 10 of whom completed the Vineland-3 but did not answer the survey, and 5 participants who answered the survey but have not yet performed the Vineland-3 due to language constraints. The average age at the time of the most recent assessment was 12.4 years, with individuals ranging in age from 11 months to 40.2 years. Using Vineland-3 scores, we show decline in cognitive function over time in individuals with Ogden syndrome (n = 53). Sub-domain analysis found the decline to be present across all modalities. In addition, we describe the nature of seizures in this condition in greater detail, as well as investigate how already-available non-pharmaceutical therapies impact individuals with NAA10-related neurodevelopmental syndrome. Additional investigation between seizure and non-seizure groups showed no significant difference in adaptive behavior outcomes. A therapy investigation showed speech therapy to be the most commonly used therapy by individuals with NAA10-related neurodevelopmental syndrome, followed by occupational and physical therapy, with more severely affected individuals receiving more types of therapy than their less-severe counterparts. Early intervention analysis was only significantly effective for speech therapy, with analyses of all other therapies being non-significant. Our study portrays the decline in cognitive function over time of individuals within our cohort, independent of seizure status, and therapies being received, and highlights the urgent need for the development of effective treatments for Ogden syndrome.


Assuntos
Convulsões , Humanos , Convulsões/genética , Convulsões/fisiopatologia , Convulsões/terapia , Feminino , Masculino , Criança , Pré-Escolar , Adulto , Lactente , Adolescente , Deficiência Intelectual/genética , Adulto Jovem , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/terapia , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal A/genética , Fenótipo
9.
Curr Opin Genet Dev ; 87: 102207, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38820741

RESUMO

N4-acetylcytidine (ac4C) is an RNA modification that is catalyzed by the enzyme NAT10. Constitutively found in tRNA and rRNA, ac4C displays a dynamic presence in mRNA that is shaped by developmental and induced shifts in NAT10 levels. However, deciphering ac4C functions in mRNA has been hampered by its context-dependent influences in translation and the complexity of isolating effects on specific mRNAs from other NAT10 activities. Recent advances have begun to overcome these obstacles by leveraging natural variations in mRNA acetylation in cancer, developmental transitions, and immune responses. Here, we synthesize the current literature with a focus on nuances that may fuel the perception of cellular discrepancies toward the development of a cohesive model of ac4C function in mRNA.


Assuntos
Citidina , RNA Mensageiro , Humanos , Acetilação , Citidina/análogos & derivados , Citidina/metabolismo , Citidina/genética , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Acetiltransferases N-Terminal , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Plant Physiol ; 195(4): 3097-3118, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38588051

RESUMO

In humans and plants, 40% of the proteome is cotranslationally acetylated at the N-terminus by a single Nα-acetyltransferase (Nat) termed NatA. The core NatA complex is comprised of the catalytic subunit Nα-acetyltransferase 10 (NAA10) and the ribosome-anchoring subunit NAA15. The regulatory subunit Huntingtin Yeast Partner K (HYPK) and the acetyltransferase NAA50 join this complex in humans. Even though both are conserved in Arabidopsis (Arabidopsis thaliana), only AtHYPK is known to interact with AtNatA. Here we uncover the AtNAA50 interactome and provide evidence for the association of AtNAA50 with NatA at ribosomes. In agreement with the latter, a split-luciferase approach demonstrated close proximity of AtNAA50 and AtNatA in planta. Despite their interaction, AtNatA/HYPK and AtNAA50 exerted different functions in vivo. Unlike NatA/HYPK, AtNAA50 did not modulate drought tolerance or promote protein stability. Instead, transcriptome and proteome analyses of a novel AtNAA50-depleted mutant (amiNAA50) implied that AtNAA50 negatively regulates plant immunity. Indeed, amiNAA50 plants exhibited enhanced resistance to oomycetes and bacterial pathogens. In contrast to what was observed in NatA-depleted mutants, this resistance was independent of an accumulation of salicylic acid prior to pathogen exposure. Our study dissects the in vivo function of the NatA interactors HYPK and NAA50 and uncovers NatA-independent roles for NAA50 in plants.


Assuntos
Acetiltransferases , Proteínas de Arabidopsis , Arabidopsis , Acetiltransferase N-Terminal E , Imunidade Vegetal , Acetiltransferases/metabolismo , Acetiltransferases/genética , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/microbiologia , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal A/genética , Doenças das Plantas/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/genética , Imunidade Vegetal/genética , Pseudomonas syringae/fisiologia , Pseudomonas syringae/patogenicidade , Ácido Salicílico/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo
11.
Medicine (Baltimore) ; 103(6): e36034, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38335407

RESUMO

RATIONALE: Ogden syndrome is an exceptionally rare X-linked disease caused by mutations in the NAA10 gene. Reported cases of this syndrome are approximately 20 children and are associated with facial dysmorphism, growth delay, developmental disorders, congenital heart disease, and arrhythmia. PATIENT CONCERNS: We present the clinical profile of a 3-year-old girl with Ogden syndrome carrying a de novo NAA10 variant [NM_003491:c.247C>T, p.(Arg83Cys)]. During infancy, she exhibited features such as left ventricular hypertrophy, protruding eyeballs, and facial deformities. DIAGNOSIS: Clinical diagnosis included Ogden syndrome, congenital heart disease (obstructive hypertrophic cardiomyopathy, left ventricular outflow tract obstruction, mitral valve disease, tricuspid valve regurgitation), tonsillar and adenoidal hypertrophy, and speech and language delay. INTERVENTIONS: The girl was considered to have hypertrophic cardiomyopathy (HCM) and received oral metoprolol as a treatment for HCM at our hospital. The drug treatment effect was not ideal, and her hypertrophy myocardial symptoms were aggravated and she had to be hospitalized for surgery. OUTCOMES: The girl underwent a modified Morrow procedure under cardiopulmonary bypass and experienced a favorable postoperative recovery. No pulmonary infections or significant complications were observed during this period. The patient's family expressed satisfaction with the treatment process. LESSONS: The case emphasizes the HCM of Odgen syndrome, and early surgery should be performed if drug treatment is ineffective.


Assuntos
Cardiomiopatia Hipertrófica , Cardiopatias Congênitas , Humanos , Feminino , Criança , Pré-Escolar , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/diagnóstico , Valva Mitral , Miocárdio , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/genética , Hipertrofia , Acetiltransferase N-Terminal A , Acetiltransferase N-Terminal E
12.
Pathol Res Pract ; 255: 155191, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340582

RESUMO

INTRODUCTION: We aimed to investigate the expression and prognostic role of NAA10 in clear cell renal cell carcinoma (ccRCC). MATERIAL AND METHODS: We performed a gene expression and survival analysis based on the human cancer genome atlas database of ccRCC patients (TCGA-KIRC). RESULTS: The patients in the TCGA-KIRC (n = 537) were divided into two subgroups: NAA10-low and NAA10-high expression groups. NAA10-high ccRCC exhibited higher T stages (p = 0.002), a higher frequency of distant metastasis (p = 0.018), more advanced AJCC stages (p < 0.001), a lower overall survival time (p = 0.036), and a lower survival rate (p < 0.001). NAA10-high ccRCC was associated with increased activity of non-specific oncogenic pathways, including oxidative phosphorylation (p < 0.001) and cell cycle progression [G2 to M phase transition (p = 0.045) and E2F targets (p < 0.001)]. Additionally, the NAA10-high tumors showed reduced apoptosis via TRIAL pathways (p < 0.001) and increased levels of activity that promoted epithelial-mesenchymal transition (p = 0.026) or undifferentiation (p = 0.01). In ccRCC, NAA10 expression was found to be a negative prognostic factor in both non-metastatic (p < 0.001) and metastatic tumors (p = 0.032). CONCLUSIONS: In ccRCC, NAA10 expression was shown to be a negative prognostic factor related to tumor progression rather than tumor initiation, and high NAA10 expression promoted epithelial-mesenchymal transition and undifferentiation.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Prognóstico , Transição Epitelial-Mesenquimal/genética , Expressão Gênica , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E/genética
13.
Pathol Res Pract ; 253: 154990, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056132

RESUMO

N-acetyltransferase 10 (NAT10), a versatile enzyme, has gained considerable attention as a significant player in the complex realm of cancer biology. Its enigmatic role in tumorigenesis extends across a wide array of cellular processes, impacting cell growth, differentiation, survival, and genomic stability. Within the intricate network of oncogenic signaling, NAT10 emerges as a crucial agent in multiple cancer types, such as breast, lung, colorectal, and leukemia. This compelling research addresses the intricate complexity of the mechanistic role of NAT10 in cancer development. By elucidating its active participation in essential physiological processes, we investigate the regulatory role of NAT10 in cell cycle checkpoints, coordination of chromatin remodeling, and detailed modulation of the delicate balance between apoptosis and cell survival. Perturbations in NAT10 expression and function have been linked to oncogenesis, metastasis, and drug resistance in a variety of cancer types. Furthermore, the bewildering interactions between NAT10 and key oncogenic factors, such as p53 and c-Myc, are deciphered, providing profound insights into the molecular underpinnings of cancer pathogenesis. Equally intriguing, the paradoxical role of NAT10 as a potential tumor suppressor or oncogene is influenced by context-dependent factors and the cellular microenvironment. This study explores the fascinating interplay of genetic changes, epigenetic changes, and post-translational modifications that shape the dual character of NAT10, revealing the delicate balance between cancer initiation and suppression. Taken together, this overview delves deeply into the enigmatic role of NAT10 in cancer, elucidating its multifaceted roles and its complex interplay with oncogenic networks.


Assuntos
Acetiltransferases N-Terminal , Neoplasias , Humanos , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Neoplasias/genética , Processamento de Proteína Pós-Traducional , Microambiente Tumoral
16.
Biochim Biophys Acta Rev Cancer ; 1878(6): 188973, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37659460

RESUMO

Nα-acetyltransferase 10 protein (Naa10p) is known as the catalytic subunit of N-terminal acetyltransferases A (NatA) complex, associating with Naa15p to acetylate N-termini of the human proteome. Recent investigations have unveiled additional functions for Naa10p, encompassing lysine ε-acetylation and acetyltransferase-independent activities. Its pleiotropic roles have been implicated in diverse physiological and pathological contexts. Emerging evidence has implicated Naa10p in cancer progression, demonstrating dual attributes as an oncogene or a tumor suppressor contingent on the cancer type and acetyltransferase activity context. In this comprehensive review, we present a pan-cancer analysis aimed at elucidating the intricacies underlying Naa10p dysregulation in cancer. Our findings propose the potential involvement of c-Myc as a modulatory factor influencing Naa10p expression. Moreover, we provide a consolidated summary of recent advancements in understanding the intricate molecular underpinnings through which Naa10p contributes to cancer cell proliferation and metastasis. Furthermore, we delve into the multifaceted nature of Naa10p's roles in regulating cancer behaviors, potentially attributed to its interactions with a repertoire of partner proteins. Through an exhaustive exploration of Naa10p's functions, spanning its acetylation activity and acetyltransferase-independent functionalities, this review offers novel insights with implications for targeted therapeutic strategies involving this pivotal protein in the realm of cancer therapeutics.


Assuntos
Acetiltransferases , Neoplasias , Humanos , Acetiltransferases/genética , Acetiltransferases/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Processamento de Proteína Pós-Traducional , Neoplasias/tratamento farmacológico , Neoplasias/genética
17.
Nat Commun ; 14(1): 4517, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37500638

RESUMO

Protein N-terminal (Nt) acetylation is one of the most abundant modifications in eukaryotes, covering ~50-80 % of the proteome, depending on species. Cells with defective Nt-acetylation display a wide array of phenotypes such as impaired growth, mating defects and increased stress sensitivity. However, the pleiotropic nature of these effects has hampered our understanding of the functional impact of protein Nt-acetylation. The main enzyme responsible for Nt-acetylation throughout the eukaryotic kingdom is the N-terminal acetyltransferase NatA. Here we employ a multi-dimensional proteomics approach to analyze Saccharomyces cerevisiae lacking NatA activity, which causes global proteome remodeling. Pulsed-SILAC experiments reveals that NatA-deficient strains consistently increase degradation of ribosomal proteins compared to wild type. Explaining this phenomenon, thermal proteome profiling uncovers decreased thermostability of ribosomes in NatA-knockouts. Our data are in agreement with a role for Nt-acetylation in promoting stability for parts of the proteome by enhancing the avidity of protein-protein interactions and folding.


Assuntos
Acetiltransferases N-Terminal , Proteínas de Saccharomyces cerevisiae , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Acetiltransferase N-Terminal A/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteoma/metabolismo , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Acetiltransferase N-Terminal E/metabolismo
18.
J Neuropathol Exp Neurol ; 82(7): 650-658, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37253389

RESUMO

NAA10 is a novel biomarker of cancer progression. The oncogenic and biological mechanisms of NAA10 in human malignancies are controversial and remain to be elucidated. Herein, we investigated the biological and clinicopathological implications of NAA10 gene expression in adult gliomas. We collected data from The Human Cancer Genome Atlas (TCGA) database, including patients from TCGA-GBM and TCGA-LGG projects. In total, there were 666 patients from the 2 projects (513 and 153 from TCGA-LGG and TCGA-GBM, respectively). Different analyses (pathway, DNA methylation, and survival analyses) require further specific case eliminations. Based on NAA10 expression, we divided 666 tumors into 2 subgroups: NAA10-high and NAA10-low glioma. There were higher activities of cell proliferation, metabolic reprogramming, DNA repair, angiogenesis, epithelial-mesenchymal transition, TNF-α, IL6/JAK/STAT6, mTORC1 signaling, and MYC targets in NAA10-high glioma, while P53, TGF-ß, Wnt, and Hedgehog pathways were highly expressed by NAA10-low gliomas. t-distributed stochastic neighbors embedding dimension reduction of DNA methylation also showed a high distribution of NAA10-high gliomas in distinct clusters. Survival analyses showed that high NAA10 expression was an independent prognostic factor. NAA10 expression dictated epigenetic, genetic, and clinicopathological differences in adult glioma. Further studies are required to investigate the detailed NAA10 oncogenic mechanisms and to validate NAA10 immunohistochemistry.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Adulto , Neoplasias Encefálicas/patologia , Proteínas Hedgehog/genética , Glioma/patologia , Metilação de DNA , Epigênese Genética , Prognóstico , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo
19.
Eur J Hum Genet ; 31(7): 824-833, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37130971

RESUMO

Amino-terminal (Nt-) acetylation (NTA) is a common protein modification, affecting 80% of cytosolic proteins in humans. The human essential gene, NAA10, encodes for the enzyme NAA10, which is the catalytic subunit in the N-terminal acetyltransferase A (NatA) complex, also including the accessory protein, NAA15. The full spectrum of human genetic variation in this pathway is currently unknown. Here we reveal the genetic landscape of variation in NAA10 and NAA15 in humans. Through a genotype-first approach, one clinician interviewed the parents of 56 individuals with NAA10 variants and 19 individuals with NAA15 variants, which were added to all known cases (N = 106 for NAA10 and N = 66 for NAA15). Although there is clinical overlap between the two syndromes, functional assessment demonstrates that the overall level of functioning for the probands with NAA10 variants is significantly lower than the probands with NAA15 variants. The phenotypic spectrum includes variable levels of intellectual disability, delayed milestones, autism spectrum disorder, craniofacial dysmorphology, cardiac anomalies, seizures, and visual abnormalities (including cortical visual impairment and microphthalmia). One female with the p.Arg83Cys variant and one female with an NAA15 frameshift variant both have microphthalmia. The frameshift variants located toward the C-terminal end of NAA10 have much less impact on overall functioning, whereas the females with the p.Arg83Cys missense in NAA10 have substantial impairment. The overall data are consistent with a phenotypic spectrum for these alleles, involving multiple organ systems, thus revealing the widespread effect of alterations of the NTA pathway in humans.


Assuntos
Transtorno do Espectro Autista , Deficiência Intelectual , Microftalmia , Humanos , Feminino , Síndrome , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Genótipo , Deficiência Intelectual/genética , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal A/metabolismo
20.
Am J Med Genet A ; 191(5): 1293-1300, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36810866

RESUMO

Our study of 61 children with NAA10-related neurodevelopmental syndrome, an X-linked disorder due to NAA10 gene variants, demonstrated a high prevalence of growth failure, with weight and height percentiles often in the failure-to-thrive diagnostic range; however, dramatic weight fluctuations and phenotypic variability is evidenced in the growth parameters of this population. Although never previously explored in depth, the gastrointestinal pathology associated with NAA10-related neurodevelopmental syndrome includes feeding difficulties in infancy, dysphagia, GERD/silent reflux, vomiting, constipation, diarrhea, bowel incontinence, and presence of eosinophils on esophageal endoscopy, in order from most to least prevalent. Additionally, the gastrointestinal symptom profile for children with this syndrome has been expanded to include eosinophilic esophagitis, cyclic vomiting syndrome, Mallory Weiss tears, abdominal migraine, esophageal dilation, and subglottic stenosis. Although the exact cause of poor growth in NAA10-related neurodevelopmental syndrome probands is unclear and the degree of contribution to this problem by GI symptomatology remains uncertain, an analysis including nine G-tube or GJ-tube fed probands demonstrates that G/GJ-tubes are overall efficacious with respect to improvements in weight gain and caregiving. The choice to insert a gastrostomy or gastrojejunal tube to aid with weight gain is often a challenging decision to make for parents, who may alternatively choose to rely on oral feeding, caloric supplementation, calorie tracking, and feeding therapy. In this case, if NAA10-related neurodevelopmental syndrome children are not tracking above the failure to thrive (FTT) range past 1 year of age despite such efforts, the treating physicians should be consulted regarding possibly undergoing G-tube placement to avoid prolonged growth failure. If G-tubes are not immediately inducing weight gain after insertion, recommendations could include altering formula, increasing caloric input, or exchanging a G-tube for a GJ-tube by means of a minimally invasive procedure.


Assuntos
Nutrição Enteral , Refluxo Gastroesofágico , Criança , Humanos , Nutrição Enteral/métodos , Gastrostomia/métodos , Refluxo Gastroesofágico/cirurgia , Síndrome , Insuficiência de Crescimento/genética , Aumento de Peso , Variação Biológica da População , Acetiltransferase N-Terminal A/genética , Acetiltransferase N-Terminal E
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA