Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.576
Filtrar
1.
Sci Rep ; 14(1): 18390, 2024 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117680

RESUMO

Ulcerative colitis (UC) is a chronic idiopathic inflammatory disease affecting the gastrointestinal tract. Although paeonol has been used for treating UC due to its anti-inflammatory and antioxidant effects, the underlying mechanisms remain unclear. In this study, we investigated the mechanisms of paeonol's action on UC by conducting in-vitro and in-vivo studies using NCM460 cells and RAW264.7 cells, and the DSS-induced mice colitis model. The in vitro studies demonstrate that paeonol exerts inhibitory effects on the activation of the NF-κB signaling pathway through upregulating PPARγ expression, thereby attenuating pro-inflammatory cytokine production, reducing reactive oxygen species levels, and promoting M2 macrophage polarization. These effects are significantly abrogated upon addition of the PPARγ inhibitor GW9662. Moreover, UC mice treated with paeonol showed increased PPARγ expression, which reduced inflammation and apoptosis to maintain intestinal epithelial barrier integrity. In conclusion, our findings suggest that paeonol inhibits the NF-κB signaling pathway by activating PPARγ, reducing inflammation and oxidative stress and improving Dss-induced colitis. This study provides a new insight into the mechanism of treating UC by paeonol.


Assuntos
Acetofenonas , Colite Ulcerativa , NF-kappa B , PPAR gama , Transdução de Sinais , Acetofenonas/farmacologia , Acetofenonas/uso terapêutico , PPAR gama/metabolismo , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/patologia , NF-kappa B/metabolismo , Camundongos , Transdução de Sinais/efeitos dos fármacos , Humanos , Células RAW 264.7 , Modelos Animais de Doenças , Masculino , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Sulfato de Dextrana/toxicidade , Camundongos Endogâmicos C57BL
2.
Sci Rep ; 14(1): 17623, 2024 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085287

RESUMO

Atopic dermatitis (AD) is a chronic, allergic inflammatory skin disorder that lacks a definite cure. Using a mouse DNCB-induced AD-like skin lesions model, this study evaluated the potential therapeutic utility of tHGA as an oral and topical treatment for AD. Male BALB/c mice were sensitised and challenged with 1% and 0.5% DNCB on their shaved dorsal skin. Mice in the treatment group were administered tHGA (20, 40, and 80 mg/kg) orally three times per week for 2 weeks, or tHGA (0.2%, 1%, and 5%) topically once daily for 12 days. On day 34, the mice were euthanized, and blood and dorsal skin samples were obtained for analysis. All doses of orally and topically administered tHGA significantly improved scratching, epidermal thickness, blood eosinophilia and mast cell infiltration. There was a minor discrepancy between the two routes of administration, with orally treated tHGA showing significant reductions in Scoring of Atopic Dermatitis (SCORAD), tissue eosinophil infiltration, serum IgE and skin IL-4 levels with treatment of 40 and 80 mg/kg tHGA, whereas topically applied tHGA showed significant reductions in all dosages. These findings suggest that tHGA exhibited therapeutic potential for AD as both oral and topical treatment ameliorates AD-like symptoms in the murine model.


Assuntos
Administração Tópica , Dermatite Atópica , Dinitroclorobenzeno , Imunoglobulina E , Camundongos Endogâmicos BALB C , Pele , Animais , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/patologia , Administração Oral , Masculino , Camundongos , Imunoglobulina E/sangue , Pele/efeitos dos fármacos , Pele/patologia , Pele/metabolismo , Modelos Animais de Doenças , Acetofenonas/administração & dosagem , Acetofenonas/farmacologia , Acetofenonas/uso terapêutico , Eosinófilos/efeitos dos fármacos , Interleucina-4/metabolismo , Mastócitos/efeitos dos fármacos
3.
Sci Rep ; 14(1): 16699, 2024 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030268

RESUMO

To investigate the role of miR-223-3p in the modulatory effect of paeonol (Pae) on high glucose (HG)-induced endothelial cell apoptosis. HG (25 mmol/L) was used to induce cellular damage and apoptosis in the mouse cardiac microvascular endothelial cells (MCMECs). Various concentration of Pae was tested and 60 µmol/L Pae was selected for the subsequent studies. MCMECs were transfected with exogenous miR-223-3p mimics or anti-miR-223-3p inhibitors. Cell viability was assessed by MTT assay and apoptosis was quantified by flow cytometry. The expression of miR-223-3p and NLRP3 mRNA was measured using real-time quantitative RT-PCR, and protein level of NLRP3 and apoptosis-related proteins was detected by immunoblotting. Pae significantly attenuated HG-induced apoptosis of MCMECs in a concentration-dependent manner. In addition, Pae (60 µmol/L) significantly reversed HG-induced down-regulation of miR-223-3p and up-regulation of NLRP3. Pae (60 µmol/L) also significantly blocked HG-induced up-regulation of Bax and Caspase-3 as well as down-regulation of Bcl-2. Moreover, exogenous miR-223-3p mimics not only significantly attenuated HG-induced apoptosis, but also significantly suppressed NRLP-3 and pro-apoptotic proteins in the MCMECs. In contrast, transfection of exogenous miR-223-3p inhibitors into the MCMECs resulted in not only significantly increased apoptosis of the cells, but also significant suppression of NLRP3 and pro-apoptotic proteins in the cells. Pae attenuated HG-induced apoptosis of MCMECs in a concentration-dependent manner. MiR-223-3p may mediate the modulatory effects of Pae on MCMEC survival or apoptosis through targeting NLRP3 and regulating apoptosis-associated proteins.


Assuntos
Acetofenonas , Apoptose , Células Endoteliais , Glucose , MicroRNAs , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/efeitos dos fármacos , Camundongos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucose/farmacologia , Acetofenonas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Regulação para Cima/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Microvasos/citologia , Microvasos/metabolismo , Microvasos/efeitos dos fármacos
4.
Future Med Chem ; 16(12): 1185-1203, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38989989

RESUMO

Aim: Synthesis of novel bis-Schiff bases having potent inhibitory activity against phosphodiesterase (PDE-1 and -3) enzymes, potentially offering therapeutic implications for various conditions. Methods: Bis-Schiff bases were synthesized by refluxing 2,4-dihydroxyacetophenone with hydrazine hydrate, followed by treatment of substituted aldehydes with the resulting hydrazone to obtain the product compounds. After structural confirmation, the compounds were screened for their in vitro PDE-1 and -3 inhibitory activities. Results: The prepared compounds exhibited noteworthy inhibitory efficacy against PDE-1 and -3 enzymes by comparing with suramin standard. To clarify the binding interactions between the drugs, PDE-1 and -3 active sites, molecular docking studies were carried out. Conclusion: The potent compounds discovered in this study may be good candidates for drug development.


[Box: see text].


Assuntos
Acetofenonas , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1 , Simulação de Acoplamento Molecular , Inibidores de Fosfodiesterase , Acetofenonas/química , Acetofenonas/farmacologia , Acetofenonas/síntese química , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfodiesterase/síntese química , Inibidores de Fosfodiesterase/química , Humanos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/metabolismo , Relação Estrutura-Atividade , Estrutura Molecular , Bases de Schiff/química , Bases de Schiff/farmacologia , Bases de Schiff/síntese química , Domínio Catalítico
5.
Biomed Pharmacother ; 177: 116957, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908198

RESUMO

Duchenne muscular dystrophy (DMD) is the most common muscular disorder affecting children. It affects nearly 1 male birth over 5000. Oxidative stress is a pervasive feature in the pathogenesis of DMD. Recent work shows that the main generators of ROS are NADPH oxidases (NOX), suggesting that they are an early and promising target in DMD. In addition, skeletal muscles of mdx mice, a murine model of DMD, overexpress NOXes. We investigated the impact of diapocynin, a dimer of the NOX inhibitor apocynin, on the chronic disease phase of mdx5Cv mice. Treatment of these mice with diapocynin from 7 to 10 months of age resulted in decreased hypertrophy of several muscles, prevented force loss induced by tetanic and eccentric contractions, improved muscle and respiratory functions, decreased fibrosis of the diaphragm and positively regulated the expression of disease modifiers. These encouraging results ensure the potential role of diapocynin in future treatment strategies.


Assuntos
Acetofenonas , Camundongos Endogâmicos mdx , Distrofia Muscular de Duchenne , Animais , Acetofenonas/farmacologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Masculino , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Modelos Animais de Doenças , Compostos de Bifenilo/farmacologia , Diafragma/efeitos dos fármacos , Diafragma/metabolismo , Contração Muscular/efeitos dos fármacos , Fibrose , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL
6.
J Ethnopharmacol ; 334: 118464, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908492

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Paeonol (PAE) and glycyrrhizic acid (GLY) are predominate components of 14 blood-entering ones of Piantongtang No. 1, which is a traditional Chinese medicine prescription for chronic migraine with minimal side effects. Both paeonol and glycyrrhizic acid exhibit analgesic, neuroprotective and anti-inflammatory properties individually. Our previous research has highlighted their combined effect (PAE + GLY) in ameliorating migraine symptoms. However, there are not yet any studies exploring the mechanism of action of PAE + GLY in the treatment of migraine. AIM OF THE STUDY: This research aimed to determine the mechanism of PAE + GLY in ameliorating the recurrent nitroglycerin-induced migraine-like phenotype in rats. MATERIALS AND METHODS: Using a nitroglycerin-induced migraine model via subcutaneous injection in the neck, we evaluated the effect of PAE + GLY on migraine-like symptoms. Behavioural tests and biomarkers analysis were employed, alongside transcriptome sequencing (RNA-seq). Mechanistic insights were further verified utilising reverse transcription quantitative PCR (RT-qPCR), Western blot (WB), ELISA and immunofluorescence (IF) techniques. RESULTS: Following treatment with PAE + GLY, hyperalgesia threshold and 5-hydroxytryptamine (5-HT) levels increased, and migraine-like head scratching, histamine and calcitonin gene-related peptide (CGRP) levels were reduced. RNA-Seq experiments revealed that PAE + GLY upregulated the expression of Glutamate decarboxylase 2 (GAD2) and γ-aminobutyric acid type B receptor subunit 2 (GABBR2) genes. This upregulation activated the GABAergic synapse pathway, effectively inhibiting migraine attacks. Further validation demonstrated an increase in γ-aminobutyric acid (GABA) content in cerebrospinal fluid post PAE + GLY treatment, coupled with increased expression of dural GAD2, GABBR2 and transient receptor potential channel M8 (TRPM8). Consequently, this inhibited the expression of dural cAMP-dependent protein kinase catalytic subunit alpha (PRKACA) and transient receptor potential channel type 1 (TRPV1), subsequently downregulating p-ERK1/2, p-AKT1, IL-1ß and TNF-α. CONCLUSIONS: Our findings underscore that PAE + GLY ameliorates inflammatory hyperalgesia migraine by upregulating inhibitory neurotransmitters and modulating the GABBR2/TRPM8/PRKACA/TRPV1 pathway.


Assuntos
Acetofenonas , Ácido Glicirrízico , Transtornos de Enxaqueca , Nitroglicerina , Canais de Cátion TRPM , Canais de Cátion TRPV , Animais , Masculino , Ratos , Acetofenonas/farmacologia , Modelos Animais de Doenças , Quimioterapia Combinada , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/metabolismo , Nitroglicerina/toxicidade , Nitroglicerina/farmacologia , Fenótipo , Proteína Quinase C-alfa/metabolismo , Proteína Quinase C-alfa/genética , Ratos Sprague-Dawley , Receptores de GABA/metabolismo , Receptores de GABA/genética , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/metabolismo , Canais de Cátion TRPM/genética , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética
8.
Sci Rep ; 14(1): 11132, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750088

RESUMO

Candida species have been responsible for a high number of invasive infections worldwide. In this sense, Rottlerin has demonstrated a wide range of pharmacological activities. Therefore, this study aimed to evaluate the antifungal, antibiofilm and antivirulence activity of Rottlerin in vitro against Candida spp. and its toxicity and antifungal activity in vivo. Rottlerin showed antifungal activity against all yeasts evaluated, presenting Minimum Inhibitory and Fungicidal Concentration (MIC and MFC) values of 7.81 to > 1000 µg/mL. Futhermore, it was able to significantly inhibit biofilm production, presenting Biofilm Inhibitory Concentration (MICB50) values that ranged from 15.62 to 250 µg/mL and inhibition of the cell viability of the biofilm by 50% (IC50) from 2.24 to 12.76 µg/mL. There was a considerable reduction in all hydrolytic enzymes evaluated, with emphasis on hemolysin where Rottlerin showed a reduction of up to 20%. In the scanning electron microscopy (SEM) analysis, Rottlerin was able to completely inhibit filamentation by C. albicans. Regarding in vivo tests, Rottlerin did not demonstrate toxicity at the therapeutic concentrations demonstrated here and was able to increase the survival of C. elegans larvae infected. The results herein presented are innovative and pioneering in terms of Rottlerin's multipotentiality against these fungal infections.


Assuntos
Acetofenonas , Antifúngicos , Benzopiranos , Biofilmes , Testes de Sensibilidade Microbiana , Biofilmes/efeitos dos fármacos , Antifúngicos/farmacologia , Benzopiranos/farmacologia , Animais , Acetofenonas/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Candida albicans/efeitos dos fármacos
9.
BMC Pulm Med ; 24(1): 224, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720270

RESUMO

BACKGROUND: Simvastatin (Sim), a hydroxy-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor, has been widely used in prevention and treatment of cardiovascular diseases. Studies have suggested that Sim exerts anti-fibrotic effects by interfering fibroblast proliferation and collagen synthesis. This study was to determine whether Sim could alleviate silica-induced pulmonary fibrosis and explore the underlying mechanisms. METHODS: The rat model of silicosis was established by the tracheal perfusion method and treated with Sim (5 or 10 mg/kg), AICAR (an AMPK agonist), and apocynin (a NOX inhibitor) for 28 days. Lung tissues were collected for further analyses including pathological histology, inflammatory response, oxidative stress, epithelial mesenchymal transformation (EMT), and the AMPK-NOX pathway. RESULTS: Sim significantly reduced silica-induced pulmonary inflammation and fibrosis at 28 days after administration. Sim could reduce the levels of interleukin (IL)-1ß, IL-6, tumor necrosis factor-α and transforming growth factor-ß1 in lung tissues. The expressions of hydroxyproline, α-SMA and vimentin were down-regulated, while E-cad was increased in Sim-treated rats. In addition, NOX4, p22pox, p40phox, p-p47phox/p47phox expressions and ROS levels were all increased, whereas p-AMPK/AMPK was decreased in silica-induced rats. Sim or AICAR treatment could notably reverse the decrease of AMPK activity and increase of NOX activity induced by silica. Apocynin treatment exhibited similar protective effects to Sim, including down-regulating of oxidative stress and inhibition of the EMT process and inflammatory reactions. CONCLUSIONS: Sim attenuates silica-induced pulmonary inflammation and fibrosis by downregulating EMT and oxidative stress through the AMPK-NOX pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Fibrose Pulmonar , Dióxido de Silício , Sinvastatina , Animais , Masculino , Ratos , Acetofenonas/farmacologia , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Modelos Animais de Doenças , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , NADPH Oxidase 4/metabolismo , NADPH Oxidases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Ribonucleotídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Silicose/tratamento farmacológico , Silicose/patologia , Silicose/metabolismo , Sinvastatina/farmacologia , Fator de Crescimento Transformador beta1/metabolismo
10.
J Pharmacol Sci ; 155(3): 101-112, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38797534

RESUMO

Pulmonary inflammation may lead to neuroinflammation resulting in neurological dysfunction, and it is associated with a variety of acute and chronic lung diseases. Paeonol is a herbal phenolic compound with anti-inflammatory and anti-oxidative properties. The aim of this study is to understand the beneficial effects of paeonol on cognitive impairment, pulmonary inflammation and its underlying mechanisms. Pulmonary inflammation-associated cognitive deficit was observed in TNFα-stimulated mice, and paeonol mitigated the cognitive impairment by reducing the expressions of interleukin (IL)-1ß, IL-6, and NOD-like receptor family pyrin domain-containing 3 (NLRP3) in hippocampus. Moreover, elevated plasma miR-34c-5p in lung-inflamed mice was also reduced by paeonol. Pulmonary inflammation induced by intratracheal instillation of TNFα in mice resulted in immune cells infiltration in bronchoalveolar lavage fluid, pulmonary edema, and acute fibrosis, and these inflammatory responses were alleviated by paeonol orally. In MH-S alveolar macrophages, tumor necrosis factor (TNF) α- and phorbol myristate acetate (PMA)-induced inflammasome activation was ameliorated by paeonol. In addition, the expressions of antioxidants were elevated by paeonol, and reactive oxygen species production was reduced. In this study, paeonol demonstrates protective effects against cognitive deficits and pulmonary inflammation by exerting anti-inflammatory and anti-oxidative properties, suggesting a powerful benefit as a potential therapeutic agent.


Assuntos
Acetofenonas , Disfunção Cognitiva , Pneumopatias , Pneumopatias/complicações , Acetofenonas/farmacologia , Acetofenonas/uso terapêutico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Macrófagos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Masculino , Animais , Camundongos , Fator de Necrose Tumoral alfa , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , MicroRNAs/sangue , MicroRNAs/genética , Espécies Reativas de Oxigênio/metabolismo
11.
Bioorg Med Chem Lett ; 108: 129802, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38777278

RESUMO

Twenty-five acetophenone/piperazin-2-one (APPA) hybrids were designed and synthesized based on key pharmacophores found in anti-breast cancer drugs Neratinib, Palbociclib, and Olaparib. Compound 1j exhibited good in vitro antiproliferative activity (IC50 = 6.50 µM) and high selectivity (SI = 9.2 vs HER2-positive breast cancer cells SKBr3; SI = 7.3 vs normal breast cells MCF-10A) against triple negative breast cancer (TNBC) cells MDA-MB-468. In addition, 1j could selectively cause DNA damage, inducing the accumulation of γH2AX and P53 in MDA-MB-468 cells. It also reduced the phosphorylation level of P38 and the expression of HSP70, which further prevented the repair of DNA damage and caused cells S/G2-arrest leading to MDA-MB-468 cells death.


Assuntos
Acetofenonas , Antineoplásicos , Proliferação de Células , Dano ao DNA , Ensaios de Seleção de Medicamentos Antitumorais , Piperazinas , Neoplasias de Mama Triplo Negativas , Humanos , Dano ao DNA/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Relação Estrutura-Atividade , Proliferação de Células/efeitos dos fármacos , Acetofenonas/farmacologia , Acetofenonas/química , Acetofenonas/síntese química , Linhagem Celular Tumoral , Piperazinas/farmacologia , Piperazinas/química , Piperazinas/síntese química , Estrutura Molecular , Relação Dose-Resposta a Droga , Descoberta de Drogas
12.
Osteoarthritis Cartilage ; 32(7): 952-962, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38697511

RESUMO

OBJECTIVE: Apocynin (AP) and paeonol (PA) are low molecular weight phenolic compounds with a broad array of anti-inflammatory and immunoregulatory effects. This study assessed of a fixed-dose combination of APPA in people with symptomatic knee osteoarthritis (OA). METHODS: A multi-center, randomized, placebo-controlled, double-blind phase 2a trial enrolled participants with radiographic knee OA (Kellgren-Lawrence, KL, grades 2-3) and pain ≥40/100 on WOMAC pain subscale, and evaluated the efficacy and safety of oral APPA over a 28-day period. APPA 800 mg or matching placebo was administered twice daily in a 1:1 ratio. Post-hoc analyses explored the response to APPA in sub-groups with more severe pain and structural severity. RESULTS: The two groups were comparable at baseline; 152 subjects were enrolled and 148 completed the trial. There was no statistically significant difference between groups with respect to the primary outcome, WOMAC pain (mean difference between groups was -0.89, 95% CI: -5.62, 3.84, p = 0.71), nor WOMAC function or WOMAC total. However, predefined subgroup analyses of subjects with symptoms compatible with nociplastic/neuropathic pain features showed a statistically significant effect of APPA compared to placebo. Adverse events (mainly gastrointestinal) were mild to moderate. CONCLUSION: Treatment with APPA 800 mg twice daily for 28 days in subjects with symptomatic knee OA was not associated with significant symptom improvement compared to placebo. The treatment was well-tolerated and safe. While the study was not powered for such analysis, pre-planned subgroup analyses showed a significant effect of APPA in subjects with nociplastic pain/severe OA, indicating that further research in the effects of APPA in appropriate patients is warranted.


Assuntos
Acetofenonas , Osteoartrite do Joelho , Medição da Dor , Humanos , Acetofenonas/administração & dosagem , Acetofenonas/uso terapêutico , Acetofenonas/efeitos adversos , Método Duplo-Cego , Masculino , Osteoartrite do Joelho/tratamento farmacológico , Feminino , Pessoa de Meia-Idade , Idoso , Resultado do Tratamento , Combinação de Medicamentos , Anti-Inflamatórios não Esteroides/administração & dosagem , Anti-Inflamatórios não Esteroides/uso terapêutico , Índice de Gravidade de Doença , Adulto
13.
Biochimie ; 223: 41-53, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38608750

RESUMO

The endogenous metabolite of estradiol, estradiol 17ß-D-glucuronide (E17G), is considered the main responsible of the intrahepatic cholestasis of pregnancy. E17G alters the activity of canalicular transporters through a signaling pathway-dependent cellular internalization, phenomenon that was attributed to oxidative stress in different cholestatic conditions. However, there are no reports involving oxidative stress in E17G-induced cholestasis, representing this the aim of our work. Using polarized hepatocyte cultures, we showed that antioxidant compounds prevented E17G-induced Mrp2 activity alteration, being this alteration equally prevented by the NADPH oxidase (NOX) inhibitor apocynin. The model antioxidant N-acetyl-cysteine prevented, in isolated and perfused rat livers, E17G-induced impairment of bile flow and Mrp2 activity, thus confirming the participation of reactive oxygen species (ROS) in this cholestasis. In primary cultured hepatocytes, pretreatment with specific inhibitors of ERK1/2 and p38MAPK impeded E17G-induced ROS production; contrarily, NOX inhibition did not affect ERK1/2 and p38MAPK phosphorylation. Both, knockdown of p47phox by siRNA and preincubation with apocynin in sandwich-cultured rat hepatocytes significantly prevented E17G-induced internalization of Mrp2, suggesting a crucial role for NOX in this phenomenon. Concluding, E17G-induced cholestasis is partially mediated by NOX-generated ROS through internalization of canalicular transporters like Mrp2, being ERK1/2 and p38MAPK necessary for NOX activation.


Assuntos
Estradiol , Hepatócitos , NADPH Oxidases , Espécies Reativas de Oxigênio , Animais , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ratos , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos , Estradiol/farmacologia , Estradiol/metabolismo , Estradiol/análogos & derivados , Feminino , Colestase/induzido quimicamente , Colestase/metabolismo , Colestase/patologia , Ratos Wistar , Acetofenonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Acetilcisteína/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Células Cultivadas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Colestase Intra-Hepática , Complicações na Gravidez , Transportadores de Cassetes de Ligação de ATP
14.
J Ethnopharmacol ; 329: 118147, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574779

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Non-alcoholic steatohepatitis (NASH) is a common metabolic liver injury disease that is closely associated with obesity and metabolic disorders. Paeonol, an active ingredient found in Moutan Cortex, a traditional Chinese medicine which exhibits significant therapeutic effect on liver protection, has shown promising effects in treating liver diseases, particularly NASH. However, the specific intervention mechanism of paeonol on NASH is still unknown. AIM OF THE STUDY: Our objective is to elucidate the pharmacological mechanism of paeonol in intervening NASH at the in vivo level, focusing on the impact on intestinal flora, tryptophan-related targeted metabolome, and related Aryl hydrocarbon receptor (AhR) pathways. MATERIALS AND METHODS: Here, we explored the intervention effect of paeonol on NASH by utilizing the NASH mouse model. The Illumina highthroughput sequencing technology was preformed to determine the differences of gut microbiota of model and paeonol treatment group. The concentration of Indoleacetic acid is determined by ELISA. The intervention effect of NASH mouse and AhR/NLRP3/Caspase-1 metabolic pathway is analyzed by HE staining, oil red O staining, Immunohistochemistry, Immunofluorescence, Western blot and qRT-PCR assays. Fecal microbiota transplantation experiment also was performed to verify the intervention effect of paeonol on NASH by affecting gut microbiota. RESULTS: Firstly, we discovered that paeonol effectively reduced liver pathology and blood lipid levels in NASH mice, thereby intervening in the progression of NASH. Subsequently, through 16S meta-analysis, we identified that paeonol can effectively regulate the composition of intestinal flora in NASH mice, transforming it to resemble that of normal mice. Specifically, paeonol decreased the abundance of certain Gram-negative tryptophan-metabolizing bacteria. Moreover, we discovered that paeonol significantly increased the levels of metabolites Indoleacetic acid, subsequently enhancing the expression of AhR-related pathway proteins. This led to the inhibition of the NOD-like receptor protein 3 (NLRP3) inflammasome production and inflammation generation in NASH. Lastly, we verified the efficacy of paeonol in intervening NASH by conducting fecal microbiota transplantation experiments, which confirmed its role in promoting the AhR/NLRP3/cysteinyl aspartate specific proteinase (Caspase-1) pathway. CONCLUSIONS: Our findings suggest that paeonol can increase the production of Indoleacetic acid by regulating the gut flora, and promote the AhR/NLRP3/Caspase-1 metabolic pathway to intervene NASH.


Assuntos
Acetofenonas , Caspase 1 , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR , Hepatopatia Gordurosa não Alcoólica , Receptores de Hidrocarboneto Arílico , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Acetofenonas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Caspase 1/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Modelos Animais de Doenças , Fígado/efeitos dos fármacos , Fígado/metabolismo , Transdução de Sinais/efeitos dos fármacos , Redes e Vias Metabólicas/efeitos dos fármacos
15.
Exp Neurol ; 377: 114795, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657855

RESUMO

Clinical studies have shown that traumatic brain injury (TBI) increases the onset of Parkinson's disease (PD) in later life by >50%. Oxidative stress, endoplasmic reticulum (ER) stress, and inflammation are the major drivers of both TBI and PD pathologies. We presently evaluated if curtailing oxidative stress and ER stress concomitantly using a combination of apocynin and tert-butylhydroquinone and salubrinal during the acute stage after TBI in mice reduces the severity of late-onset PD-like pathology. The effect of multiple low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on post-TBI neurodegeneration was also evaluated. The combo therapy elevated the level of phosphorylation at serine 129 (pS129) of α-Syn in the pericontusional cortex of male mice at 72 h post-TBI. Motor and cognitive deficits induced by TBI lasted at least 3 months and the combo therapy curtailed these deficits in both sexes. At 3 months post-TBI, male mice given combo therapy exhibited significantly lesser α-Syn aggregates in the SN and higher TH+ cells in the SNpc, compared to vehicle control. However, the aggregate number was not significantly different between groups of female mice. Moreover, TBI-induced loss of TH+ cells was negligible in female mice irrespective of treatment. The MPTP treatment aggravated PD-like pathology in male mice but had a negligible effect on the loss of TH+ cells in female mice. Thus, the present study indicates that mitigation of TBI-induced oxidative stress and ER stress at the acute stage could potentially reduce the risk of post-TBI PD-like pathology at least in male mice, plausibly by elevating pS129-α-Syn level.


Assuntos
Antioxidantes , Lesões Encefálicas Traumáticas , Estresse do Retículo Endoplasmático , Camundongos Endogâmicos C57BL , Animais , Masculino , Camundongos , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/tratamento farmacológico , Feminino , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/fisiologia , Fosforilação/efeitos dos fármacos , Antioxidantes/farmacologia , Caracteres Sexuais , Acetofenonas/farmacologia , Acetofenonas/uso terapêutico , Acetofenonas/administração & dosagem , Tioureia/análogos & derivados , Tioureia/farmacologia , Tioureia/uso terapêutico , Tioureia/administração & dosagem , Serina/metabolismo , Hidroquinonas/farmacologia , Hidroquinonas/administração & dosagem , Hidroquinonas/uso terapêutico , Quimioterapia Combinada , Estresse Oxidativo/efeitos dos fármacos
16.
Tissue Cell ; 88: 102371, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593570

RESUMO

BACKGROUND: Paeonol is a representative active ingredient of the traditional Chinese medicinal herbs Cortex Moutan, which has a well-established cardioprotective effect on ischemic heart disease. However, there is little evidence of the protective effect of paeonol, and its pharmacological mechanism is also unclear. This study aims to explore the protective effect and mechanism of Paeonol on myocardial infarction rat and hypoxic H9c2 cells. METHODS: Myocardial ischemia/reperfusion (I/R) was induced by occlusion of the left anterior descending coronary artery for 1 h followed by 3 h of reperfusion, and then gavage with Paeonol for 7 days. H9c2 cells were applied for the in vitro experiments and hypoxia/reoxygenation (H/R) model was established. CKIP-1 expression was evaluated by qPCR and western blot. The expression of genes involved in apoptosis, inflammation and ion channel was measured by western blot. The currents levels of Nav1.5 and Kir2.1 were measured by whole-cell patch-clamp recording. RESULTS: CKIP-1 expression was decreased in H/R-induced H9c2 cells, which was inversely increased after Paeonol treatment. Paeonol treatment could increase the viability of H/R-induced H9c2 cells and diminish the apoptosis and inflammation of H/R-induced H9c2 cells, while si-CKIP-1 treatment inhibited the phenomena. Moreover, the currents levels of Nav1.5 and Kir2.1 were reduced in H/R-induced H9c2 cells, which were inhibited after Paeonol treatment. Intragastric Paeonol can reduce the ventricular arrhythmias in rats with myocardial infarction. CONCLUSIONS: The protective effects of Paeonol on myocardial infarction rats and hypoxic H9c2 cells were achieved by up-regulating CKIP-1.


Assuntos
Acetofenonas , Hipóxia Celular , Regulação para Cima , Acetofenonas/farmacologia , Animais , Ratos , Regulação para Cima/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Canais Iônicos/metabolismo , Canais Iônicos/genética , Apoptose/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Masculino , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/patologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Ratos Sprague-Dawley
17.
Chemistry ; 30(32): e202400454, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38568868

RESUMO

Rivastigmine is one of the several pharmaceuticals widely prescribed for the treatment of Alzheimer's disease. However, its practical synthesis still faces many issues, such as the involvement of toxic metals and harsh reaction conditions. Herein, we report a chemo-enzymatic synthesis of Rivastigmine. The key chiral intermediate was synthesized by an engineered alcohol dehydrogenase from Lactobacillus brevis (LbADH). A semi-rational approach was employed to improve its catalytic activity and thermal stability. Several LbADH variants were obtained with a remarkable increase in activity and melting temperature. Exploration of the substrate scope of these variants demonstrated improved activities toward various ketones, especially acetophenone analogs. To further recycle and reuse the biocatalyst, one LbADH variant and glucose dehydrogenase were co-immobilized on nanoparticles. By integrating enzymatic and chemical steps, Rivastigmine was successfully synthesized with an overall yield of 66 %. This study offers an efficient chemo-enzymatic route for Rivastigmine and provides several efficient LbADH variants with a broad range of potential applications.


Assuntos
Álcool Desidrogenase , Enzimas Imobilizadas , Levilactobacillus brevis , Rivastigmina , Rivastigmina/química , Levilactobacillus brevis/enzimologia , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Biocatálise , Acetofenonas/química , Acetofenonas/metabolismo , Engenharia de Proteínas
18.
J Wound Care ; 33(Sup4a): cxviii-cxxix, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38588060

RESUMO

OBJECTIVE: Accurate assessment of burn depth and burn wound healing potential is essential to determine early treatments. Infrared thermography (IRT) is a non-invasive and objective tool to do this. This systematic review evaluated the accuracy of IRT to determine burn wound healing potential. METHOD: This systematic review and meta-analysis used MEDLINE, EMBASE, CINAHL, PEDro, DiTA and CENTRAL databases. IRT data were extracted from primary studies and categorised into four cells (i.e., true positives, false positives, true negatives and false negatives). Subgroup analysis was performed according to methods used to capture thermal images. RESULTS: The search strategy identified 2727 publications; however, 15 articles were selected for review and 11 for meta-analysis. In our meta-analysis, the accuracy of IRT was 84.8% (63% sensitivity and 81.9% specificity). CONCLUSION: IRT is a moderately accurate tool to identify burn depth and healing potential. Thus, IRT should be used carefully for evaluating burn wounds.


Assuntos
Queimaduras , Termografia , Humanos , Termografia/métodos , Cicatrização , Queimaduras/diagnóstico , Queimaduras/terapia , Acetofenonas
19.
Biochem Biophys Res Commun ; 708: 149788, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38518720

RESUMO

Atherosclerosis (AS) is the underlying cause of many severe vascular diseases and is primarily characterized by abnormal lipid metabolism. Paeonol (Pae), a bioactive compound derived from Paeonia Suffruticosa Andr., is recognized for its significant role in reducing lipid accumulation. Our research objective is to explore the link between lipid buildup in foam cells originating from macrophages and the process of ferroptosis, and explore the effect and mechanism of Pae on inhibiting AS by regulating ferroptosis. In our animal model, ApoE-deficient mice, which were provided with a high-fat regimen to provoke atherosclerosis, were administered Pae. The treatment was benchmarked against simvastatin and ferrostatin-1. The results showed that Pae significantly reduced aortic ferroptosis and lipid accumulation in the mice. In vitro experiments further demonstrated that Pae could decrease lipid accumulation in foam cells induced by oxidized low-density lipoprotein (LDL) and challenged with the ferroptosis inducer erastin. Crucially, the protective effect of Pae against lipid accumulation was dependent on the SIRT1/NRF2/GPX4 pathway, as SIRT1 knockdown abolished this effect. Our findings suggest that Pae may offer a novel therapeutic approach for AS by inhibiting lipid accumulation through the suppression of ferroptosis, mediated by the SIRT1/NRF2/GPX4 pathway. Such knowledge has the potential to inform the creation of novel therapeutic strategies aimed at regulating ferroptosis within the context of atherosclerosis.


Assuntos
Acetofenonas , Aterosclerose , Ferroptose , Animais , Camundongos , Células Espumosas , Fator 2 Relacionado a NF-E2 , Sirtuína 1 , Macrófagos , Aterosclerose/tratamento farmacológico , Transdução de Sinais
20.
Plant Sci ; 343: 112060, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38460554

RESUMO

Micronutrient manipulation can enhance crop resilience against pathogens, but the mechanisms are mostly unknown. We tested whether priming Capsicum annuum plants with zinc (5 µM Zn) or manganese (3 µM Mn) for six weeks increases their immunity against the generalist necrotroph Botrytis cinerea compared to deficient (0.1 µM Zn, 0.02 µM Mn) and control conditions (1 µM Zn, 0.6 µM Mn). Zinc priming reduced the pathogen biomass and lesion area and preserved CO2 assimilation and stomatal conductance. Zinc mobilization at the infection site, visualized by micro-X-ray fluorescence, was accompanied by increased Zn protein binding obtained by size exclusion HPLC-ICP/MS. A common metabolic response to fungal infection in Zn- and Mn-primed plants was an accumulation of corchorifatty acid F, a signaling compound, and the antifungal compound acetophenone. In vitro tests showed that the binding of Zn2+ increased, while Mn2+ binding decreased acetophenone toxicity against B. cinerea at concentrations far below the toxicity thresholds of both metals in unbound (aquo complex) form. The metal-specific response to fungal infection included the accumulation of phenolics and amino acids (Mn), and the ligand isocitrate (Zn). The results highlight the importance of Zn for pepper immunity through direct involvement in immunity-related proteins and low molecular weight Zn-complexes, while Mn priming was inefficient.


Assuntos
Capsicum , Micoses , Zinco , Capsicum/microbiologia , Botrytis/fisiologia , Acetofenonas , Doenças das Plantas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA