Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 455
Filtrar
1.
J Agric Food Chem ; 72(20): 11405-11414, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38717990

RESUMO

This study investigated the multiple herbicide resistance (MHR) mechanism of one Echinochloa crus-galli population that was resistant to florpyrauxifen-benzyl (FPB), cyhalofop-butyl (CHB), and penoxsulam (PEX). This population carried an Ala-122-Asn mutation in the acetolactate synthase (ALS) gene but no mutation in acetyl-CoA carboxylase (ACCase) and transport inhibitor response1 (TIR1) genes. The metabolism rate of PEX was 2-fold higher, and the production of florpyrauxifen-acid and cyhalofop-acid was lower in the resistant population. Malathion and 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) could reverse the resistance, suggesting that cytochrome P450 (CYP450) and glutathione S-transferase (GST) contribute to the enhanced metabolism. According to RNA-seq and qRT-PCR validation, two CYP450 genes (CYP71C42 and CYP71D55), one GST gene (GSTT2), two glycosyltransferase genes (rhamnosyltransferase 1 and IAAGLU), and two ABC transporter genes (ABCG1 and ABCG25) were induced by CHB, FPB, and PEX in the resistant population. This study revealed that the target mutant and enhanced metabolism were involved in the MHR mechanism in E. crus-galli.


Assuntos
Sistema Enzimático do Citocromo P-450 , Echinochloa , Resistência a Herbicidas , Herbicidas , Mutação , Proteínas de Plantas , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Herbicidas/metabolismo , Echinochloa/genética , Echinochloa/efeitos dos fármacos , Echinochloa/metabolismo , Echinochloa/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Plantas Daninhas/efeitos dos fármacos , Plantas Daninhas/genética , Plantas Daninhas/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Butanos , Nitrilas , Sulfonamidas , Uridina/análogos & derivados
2.
Biochem Biophys Res Commun ; 718: 150087, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38735139

RESUMO

Flooding deprives plants of oxygen and thereby causes severe stress by interfering with energy production, leading to growth retardation. Enzymes and metabolites may help protect plants from waterlogging and hypoxic environmental conditions. Acetolactate synthase (ALS) is a key enzyme in the biosynthesis of branched-chain amino acids (BCAAs), providing the building blocks for proteins and various secondary metabolites. Additionally, under energy-poor conditions, free BCAAs can be used as an alternative energy source by mitochondria through a catabolic enzyme chain reaction. In this study, we characterized ALS-INTERACTING PROTEIN 1 (OsAIP1), which encodes the regulatory subunit of ALS in rice (Oryza sativa). This gene was expressed in all parts of the rice plant, and its expression level was significantly higher in submerged and low-oxygen environments. Rice transformants overexpressing OsAIP1 showed a higher survival rate under hypoxic stress than did non-transgenic control plants under the same conditions. The OsAIP1-overexpressing plants accumulated increased levels of BCAAs, demonstrating that OsAIP1 is an important factor in the hypoxia resistance mechanism. These results suggest that ALS proteins are part of a defense mechanism that improves the tolerance of plants to low-oxygen environments.


Assuntos
Acetolactato Sintase , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/enzimologia , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Estresse Fisiológico/genética , Aminoácidos de Cadeia Ramificada/metabolismo , Oxigênio/metabolismo , Subunidades Proteicas/metabolismo , Subunidades Proteicas/genética
3.
Plant Physiol Biochem ; 210: 108597, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38598868

RESUMO

BACKGROUND: Shortawn foxtail (Alopecurus aequalis Sobol.) is a noxious weed in China. The resistance of A. aequalis developed rapidly due to the long-term application of acetolactate synthase (ALS)-inhibiting herbicides. Here, a suspected mesosulfuron-methyl-resistant A. aequalis population, Aa-R, was collected from a wheat field in China. RESULTS: A dose‒response test showed that the Aa-R population has evolved a high level of resistance to mesosulfuron-methyl, and its growth was suppressed by imazamox, pyroxsulam and bispyribac-sodium. ALS gene sequence analysis revealed that a known resistance-related mutation (Pro-197-Thr) was present in the Aa-R population. Moreover, ALS gene overexpression was detected in the Aa-R population. The mesosulfuron-methyl resistance could be reversed by cytochrome P450 monooxygenase (CYP450) and glutathione S-transferase (GST) inhibitors. In addition, enhanced metabolism of mesosulfuron-methyl was detected in the Aa-R population compared with the susceptible population. NADPH-cytochrome P450 reductase and GST activities were strongly inducible in the Aa-R population. One CYP450 gene, CYP74A2, and one GST gene, GST4, were constitutively upregulated in the Aa-R population. Molecular docking results showed the binding affinity of CYP74A2 and GST4 for the tested ALS-inhibiting herbicides, respectively. CONCLUSION: This study confirmed that target-site resistance and non-target-site resistance involving CYP450 and GST were the main mechanisms involved in resistance in the mesosulfuron-methyl-resistant A. aequalis population.


Assuntos
Acetolactato Sintase , Resistência a Herbicidas , Herbicidas , Poaceae , Compostos de Sulfonilureia , Resistência a Herbicidas/genética , Compostos de Sulfonilureia/farmacologia , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Herbicidas/farmacologia , Poaceae/genética , Poaceae/efeitos dos fármacos , Poaceae/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/genética , Imidazóis/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação , Simulação de Acoplamento Molecular , Benzoatos , Pirimidinas
4.
Pestic Biochem Physiol ; 201: 105882, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685248

RESUMO

White mustard, (Sinapis alba), a problematic broadleaf weed in many Mediterranean countries in arable fields has been detected as resistant to tribenuron-methyl in Tunisia. Greenhouse and laboratory studies were conducted to characterize Target-Site Resistance (TSR) and the Non-Target Site Resistance (NTSR) mechanisms in two suspected white mustard biotypes. Herbicide dose-response experiments confirmed that the two S. alba biotypes were resistant to four dissimilar acetolactate synthase (ALS)-pinhibiting herbicide chemistries indicating the presence of cross-resistance mechanisms. The highest resistance factor (>144) was attributed to tribenuron-methyl herbicide and both R populations survived up to 64-fold the recommended field dose (18.7 g ai ha-1). In this study, the metabolism experiments with malathion (a cytochrome P450 inhibitor) showed that malathion reduced resistance to tribenuron-methyl and imazamox in both populations, indicating that P450 may be involved in the resistance. Sequence analysis of the ALS gene detected target site mutations in the two R biotypes, with amino acid substitutions Trp574Leu, the first report for the species, and Pro197Ser. Molecular docking analysis showed that ALSPro197Ser enzyme cannot properly bind to tribenuron-methyl's aromatic ring due to a reduction in the number of hydrogen bonds, while imazamox can still bind. However, Trp574Leu can weaken the binding affinity between the mutated ALS enzyme and both herbicides with the loss of crucial interactions. This investigation provides substantial evidence for the risk of evolving multiple resistance in S. alba to auxin herbicides while deciphering the TSR and NTSR mechanisms conferring cross resistance to ALS inhibitors.


Assuntos
Acetolactato Sintase , Resistência a Herbicidas , Herbicidas , Malation , Mutação , Sinapis , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Acetolactato Sintase/antagonistas & inibidores , Herbicidas/farmacologia , Resistência a Herbicidas/genética , Sinapis/efeitos dos fármacos , Sinapis/genética , Malation/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sulfonatos de Arila/farmacologia , Simulação de Acoplamento Molecular , Imidazóis/farmacologia
5.
Pestic Biochem Physiol ; 199: 105794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38458688

RESUMO

Japanese brome (Bromus japonicus) has become one of the main weeds in wheat fields in Hebei province of China and causes a large decrease of wheat production. A total of 44 putative resistant and 2 susceptible Japanese brome populations were collected in the 2021/2022 crop season from Hebei province of China to determine resistance levels to flucarbazone­sodium and to investigate the diversity of acetolactate synthase (ALS) mutations, as well as to confirm the cross-and multiple-resistance levels to ALS and EPSPS (5-enolpyruvate shikimate-3-phosphate synthetase) inhibitors. Whole plant bioassay results showed that 15 out of 44 populations tested or 34% were resistant to flucarbazone­sodium. The resistance indices of Japanese brome to flucarbazone­sodium ranged from 43 to 1977. The resistant populations were mainly distributed in Baoding and Shijiazhuang districts, and there was only one resistant population in Langfang district. Resistant Japanese brome had diverse ALS mutations, including Pro-197-Ser, -Thr, -Arg and Asp-376-Glu. The incidence of Pro-197-Ser mutation was the highest at 68%. Application of the CYP450 inhibitor malathion suggested that CYP450 was involved in metabolic resistance in a population without an ALS mutation. The population with Pro-197-Thr mutation evolved weak cross-resistance to mesosulfuron-methyl and pyroxsulam, and it is in the process of evolving multiple-resistance to glyphosate.


Assuntos
Acetolactato Sintase , Herbicidas , Sulfonamidas , Triazóis , Bromus/metabolismo , Herbicidas/farmacologia , Mutação , China , Resistência a Herbicidas/genética , Acetolactato Sintase/metabolismo
6.
Pestic Biochem Physiol ; 198: 105708, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225062

RESUMO

Descurainia sophia (flixweed) is a troublesome weed in winter wheat fields in North China. Resistant D. sophia populations with different acetolactate synthetase (ALS) mutations have been reported in recent years. In addition, metabolic resistance to ALS-inhibiting herbicides has also been identified. In this study, we collected and purified two resistant D. sophia populations (R1 and R2), which were collected from winter wheat fields where tribenuron-methyl provided no control of D. sophia at 30 g a.i. ha-1. Whole plant bioassay and ALS activity assay results showed the R1 and R2 populations had evolved high-level resistance to tribenuron-methyl and florasulam and cross-resistance to imazethapyr and pyrithiobac­sodium. The two ALS genes were cloned from the leaves of R1 and R2 populations, ALS1 (2004 bp) and ALS2 (1998 bp). A mutation of Trp 574 to Leu in ALS1 was present in both R1 and R2. ALS1 and ALS2 were cloned from R1 and R2 populations respectively and transferred into Arabidopsis thaliana. Homozygous T3 transgenic seedlings with ALS1 of R1 or R2 were resistant to ALS-inhibiting herbicides and the resistant levels were the same. Transgenic seedlings with ALS2 from R1 or R2 were susceptible to ALS-inhibiting herbicides. Treatment with cytochrome P450 inhibitor malathion decreased the resistant levels to tribenuron-methyl in R1 and R2. RNA-Seq was used to identify target cytochrome P450 genes possibly involved in resistance to ALS-inhibiting herbicides. There were five up-regulated differentially expressed cytochrome P450 genes: CYP72A15, CYP83B1, CYP81D8, CYP72A13 and CYP71A12. Among of them, CYP72A15 had the highest expression level in R1 and R2 populations. The R1 and R2 populations of D. sophia have evolved resistance to ALS-inhibiting herbicides due to Trp 574 Leu mutation in ALS1 and possibly other mechanisms. The resistant function of CYP72A15 needs further research.


Assuntos
Acetolactato Sintase , Sulfonatos de Arila , Brassicaceae , Herbicidas , Acetolactato Sintase/antagonistas & inibidores , Acetolactato Sintase/metabolismo , Brassicaceae/efeitos dos fármacos , Brassicaceae/genética , Sistema Enzimático do Citocromo P-450/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Mutação
7.
Pestic Biochem Physiol ; 197: 105683, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072540

RESUMO

Wild Brassica juncea is a troublesome weed that infests wheat fields in China. Two suspected wild B. juncea populations (19-5 and 19-6) resistant to acetolactate synthase (ALS) inhibitors were collected from wheat fields in China. To clarify their resistance profiles and resistance mechanism, the resistance levels of populations 19-5 and 19-6 to ALS-inhibiting herbicides and their underlying target-site resistance mechanism were investigated. The results showed that the 19-5 population exhibited resistance to tribenuron-methyl, pyrithiobac­sodium and florasulam, while the 19-6 population was resistant to tribenuron-methyl, pyrithiobac­sodium, imazethapyr and florasulam. Using the homologous cloning method, two ALS genes were identified in wild B. juncea, with one gene (ALS1) encoding 652 amino acids and the other (ALS2) encoding 655 amino acids. Pro-197-Arg mutation on ALS2 and Trp-574-Leu mutation on ALS1, together with the combination of these two mutations in a single plant, were observed in both 19-5 and 19-6 populations. ALS2 enzymes carrying the Pro-197-Arg mutation were cross-resistant to tribenuron-methyl, pyrithiobac­sodium, imazerthapyr and florasulam, with resistance index (RI) values of 6.23, 32.81, 7.97 and 1162.50, respectively. Similarly, ALS1 enzymes with Trp-574-leu substitutions also displayed high resistance to these four herbicides (RI values ranging from 132.61 to 3375.00). In addition, the combination of Pro-197-Arg (ALS2) and Trp-574-Leu (ALS1) mutations increased the resistance level of the ALS enzyme to ALS inhibitors, with its RI values 3.83-214.19, 6.88-37.34, 1.91-31.82 and 2.03-5.90-fold higher than a single mutation for tribenuron-methyl, pyrithiobac­sodium, imazerthapyr and florasulam, respectively. Collectively, Pro-197-Arg mutation on ALS2, Trp-574-Leu mutation on ALS1 and the combination of Pro-197-Arg (ALS2) and Trp-574-Leu (ALS1) mutations in wild B. juncea could endow broad-spectrum resistance to ALS inhibitors, which might provide guides for establishing effective strategies to prevent or delay such resistance evolution in this weed.


Assuntos
Acetolactato Sintase , Herbicidas , Acetolactato Sintase/metabolismo , Mostardeira/genética , Mostardeira/metabolismo , Herbicidas/farmacologia , Mutação , Aminoácidos , Sódio , Resistência a Herbicidas/genética
8.
J Agric Food Chem ; 71(51): 20532-20548, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38100716

RESUMO

New fungicide modes of action are needed for fungicide resistance management strategies. Several commercial herbicide targets found in fungi that are not utilized by commercial fungicides are discussed as possible fungicide molecular targets. These are acetyl CoA carboxylase, acetolactate synthase, 5-enolpyruvylshikimate-3-phosphate synthase, glutamine synthase, phytoene desaturase, protoporphyrinogen oxidase, long-chain fatty acid synthase, dihydropteroate synthase, hydroxyphenyl pyruvate dioxygenase, and Ser/Thr protein phosphatase. Some of the inhibitors of these herbicide targets appear to be either good fungicides or good leads for new fungicides. For example, some acetolactate synthase and dihydropteroate inhibitors are excellent fungicides. There is evidence that some herbicides have indirect benefits to certain crops due to their effects on fungal crop pathogens. Using a pesticide with both herbicide and fungicide activities based on the same molecular target could reduce the total amount of pesticide used. The limitations of such a product are discussed.


Assuntos
Acetolactato Sintase , Fungicidas Industriais , Herbicidas , Herbicidas/farmacologia , Fungicidas Industriais/farmacologia , Resistência a Herbicidas , Protoporfirinogênio Oxidase , 3-Fosfoshikimato 1-Carboxiviniltransferase , Acetolactato Sintase/metabolismo
9.
J Agric Food Chem ; 71(46): 17742-17751, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934576

RESUMO

Echinochloa phyllopogon, a malignant weed in Northeast China's paddy fields, is currently presenting escalating resistance concerns. Our study centered on the HJHL-715 E. phyllopogon population, which showed heightened resistance to penoxsulam, through a whole-plant bioassay. Pretreatment with a P450 inhibitor malathion significantly increased penoxsulam sensitivity in resistant plants. In order to determine the resistance mechanism of the resistant population, we purified the resistant population from individual plants and isolated target-site resistance (TSR) and nontarget-site resistance (NTSR) materials. Pro-197-Thr and Trp-574-Leu mutations in acetolactate synthase (ALS) 1 and ALS2 of the resistant population drove reduced sensitivity of penoxsulam to the target-site ALS, the primary resistance mechanisms. To fully understand the NTSR mechanism, NTSR materials were investigated by using RNA-sequencing (RNA-seq) combined with a reference genome. High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) analysis further supported the enhanced penoxsulam metabolism in NTSR materials. Gene expression data and quantitative reverse transcription polymerase chain reaction (qRT-PCR) validation confirmed 29 overexpressed genes under penoxsulam treatment, with 16 genes concurrently upregulated with quinclorac and metamifop treatment. Overall, our study confirmed coexisting TSR and NTSR mechanisms in E. phyllopogon's resistance to ALS inhibitors.


Assuntos
Acetolactato Sintase , Echinochloa , Herbicidas , Echinochloa/genética , Echinochloa/metabolismo , Resistência a Herbicidas/genética , Espectrometria de Massas em Tandem , Herbicidas/farmacologia , Herbicidas/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo
10.
Pest Manag Sci ; 79(12): 5333-5340, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37615238

RESUMO

BACKGROUND: Control of prickly lettuce has become increasingly difficult for lentil growers in southern Australia because of widespread resistance to common herbicides, a lack of alternative herbicide options and the prolific production of highly mobile seed. This study aimed to quantify acetolactate synthase (ALS)-inhibiting herbicide resistance in the Mid North (MN) and Yorke Peninsula (YP) of South Australia, characterize the resistance mutations present and investigate population structure and gene flow in this species. RESULTS: Resistance was identified in all populations tested, with average survival of 92% to chlorsulfuron and 95% to imazamox + imazapyr. Five different amino acid substitutions were identified at proline 197 of the ALS gene. There was no significant difference in the median lethal dose (LD50 ) between plants with these five different substitutions when treated with metsulfuron-methyl; however, the imidazolinone resistance level was higher in plants with a phenylalanine substitution and lower in plants with a serine. Population structure based on 701 single nucleotide polymorphisms and 271 individuals provided evidence for both independent evolution of the same mutation in different populations, as well as frequent short- to medium-distance dispersal accompanied by occasional long-distance dispersal events. The overall inbreeding coefficient (FIS ) was calculated at 0.5174, indicating an intermediate level of outcrossing despite the cross-pollination experiment showing only low outcrossing. In the structure analyses, most individuals from YP were assigned to a single cluster, whereas most individuals from MN were assigned 50% to each of two clusters, indicating some genetic differences between these two regions, but also evidence for dispersal between them. CONCLUSIONS: Use of imidazolinone herbicides has selected for mutations conferring higher levels of resistance, such as the Pro-197-Phe mutation, and resulted in further spread of resistance in this species. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Acetolactato Sintase , Herbicidas , Humanos , Mutação Puntual , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Herbicidas/farmacologia , Mutação , Resistência a Herbicidas/genética , Fenilalanina/genética , Austrália , Prolina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Pestic Biochem Physiol ; 194: 105510, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532326

RESUMO

Wild panicgrass (Panicum miliaceum L. var. ruderale kit.) is an annual grass weed that primarily occurs in maize fields. Nicosulfuron is a widely used selective herbicide that effectively controls gramineous weeds in maize fields. However, owing to its long-term and extensive application, the control of P. miliaceum has been substantially reduced. The objective of this study was to determine the resistance pattern to ALS inhibitors in P. miliaceum and investigate the underlying resistance mechanisms. These are important for guiding the prevention and eradication of resistant weeds. Whole plant bioassays showed P. miliaceum had evolved high levels of resistance to nicosulfuron and multiple resistance to atrazine and mesotrione. The ALS gene sequence results indicated the absence of mutations in the resistant population. Additionally, there was no significant difference found in the inhibition rate of the ALS enzyme activity (I50) between the resistant and sensitive populations. Following the application of malathion the resistant P. miliaceum population became more sensitive to nicosulfuron. At 96 h after application of nicosulfuron, glutathione-S-transferase activity in the resistant population was significantly higher than that in the susceptible population. The study reveals that the main cause of resistance to ALS inhibitor herbicide in P. miliaceum is likely increased metabolism of herbicides. These findings may assist in devising effective strategies for preventing and eliminating resistant P. miliaceum.


Assuntos
Acetolactato Sintase , Herbicidas , Panicum , Panicum/metabolismo , Herbicidas/farmacologia , Compostos de Sulfonilureia/farmacologia , Piridinas/farmacologia , Zea mays , Resistência a Herbicidas/genética , Acetolactato Sintase/metabolismo , Proteínas de Plantas/genética
12.
Pestic Biochem Physiol ; 194: 105488, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532350

RESUMO

Digitaria sanguinalis is a competitive and annual grass weed that commonly infests crops across the world. In recent years, the control of D. sanguinalis by nicosulfuron has declined in Hebei Province, China. To determine the resistance mechanisms of D. sanguinalis to nicosulfuron, a population of D. sanguinalis where nicosulfuron had failed was collected from a maize field of Hebei Province, China. Whole-plant dose-response experiments demonstrated that the resistant population (HBMT-15) displayed 6.9-fold resistance to nicosulfuron compared with the susceptible population (HBMT-5). Addition of the glutathione S-transferase (GSTs) inhibitor 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) significantly reduced the resistance level of the HBMT-15 population to nicosulfuron, and the GSTs activity of the HBMT-15 population was higher than the HBMT-5 population after nicosulfuron treatment. In vitro acetolactate synthase (ALS) enzyme experiments revealed that the nicosulfuron I50 value for the HBMT-15 population was 41 times higher than that of the HBMT-5 population. An Asp376 to Glu substitution in the ALS gene was identified in the HBMT-15 population. The HBMT-15 population had a moderate (2- to 4-fold) level of cross-resistance to three other ALS inhibitors (imazethapyr, pyroxsulam, and flucarbazone­sodium), but was susceptible to pyrithiobac­sodium. This study demonstrated that both an Asp376 to Glu substitution in the ALS gene and GSTs-involved metabolic resistance to ALS inhibitors coexisted in a D. sanguinalis population.


Assuntos
Acetolactato Sintase , Herbicidas , Digitaria/genética , Compostos de Sulfonilureia/farmacologia , Piridinas , Mutação , Acetolactato Sintase/metabolismo , Inibidores Enzimáticos/farmacologia , Herbicidas/farmacologia , Resistência a Herbicidas/genética
13.
J Mol Model ; 29(8): 241, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37436478

RESUMO

CONTEXT: The design and synthesis of safe and highly active sulfonylurea herbicides is still a challenge. Therefore, following some principles of structure-activity relationship (SAR) of sulfonylurea herbicides, this work focuses on evaluating two sulfonylurea derivatives bearing electron-withdrawing substituents, namely, -(CO)OCH3 and -NO2 on the aryl group, on herbicidal activity. To understand the effects caused by the substituent groups, the molecular and electronic structures of the sulfonylureas were evaluated by density functional theory. Likewise, the crystalline supramolecular arrangements of both compounds were analyzed by Hirshfeld surface, QTAIM, and NBO, with the aim of verifying changes in intermolecular interactions caused by substituent groups. Finally, through a toxicophoric analysis, we were able to predict the interacting groups in their biological target, acetolactate synthase, and verify the interactions with the binding site. METHODS: All theoretical calculations were conducted using the highly parameterized empirical exchange-correlation functional M06-2X accompanied by the diffuse and polarized basis set 6-311++G(d,p). The atomic coordinates were obtained directly from the crystalline structures, and from the energies of the frontier molecular orbitals (HOMO and LUMO), chemical descriptors were obtained that indicated the influence of the functional groups in the sulfonylureas on the reactivity of the molecules. The intermolecular interactions in the crystals were analyzed using the Hirshfeld, QTAIM, and NBO surfaces. Toxicophoric modeling was performed by the PharmaGist webserver and molecular docking calculations were performed by the GOLD 2022.1.0 software package so that the ligand was fitted to the binding site in a 10 Å sphere. For this, genetic algorithm parameters were used using the ChemPLP scoring function for docking and ASP for redocking.


Assuntos
Acetolactato Sintase , Herbicidas , Simulação de Acoplamento Molecular , Modelos Moleculares , Acetolactato Sintase/química , Acetolactato Sintase/metabolismo , Herbicidas/química , Herbicidas/farmacologia , Compostos de Sulfonilureia/química , Compostos de Sulfonilureia/farmacologia , Pirimidinas
14.
Int J Biol Macromol ; 242(Pt 4): 125166, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37270139

RESUMO

The elastomeric properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), a biodegradable copolymer, strongly depend on the molar composition of 3-hydroxyvalerate (3HV). This paper reports an improved artificial pathway for enhancing the 3HV component during PHBV biosynthesis from a structurally unrelated carbon source by Cupriavidus necator H16. To increase the intracellular accumulation of propionyl-CoA, a key precursor of the 3HV monomer, we developed a recombinant strain by genetically manipulating the branched-chain amino acid (e.g., valine, isoleucine) pathways. Overexpression of the heterologous feedback-resistant acetolactate synthase (alsS), (R)-citramalate synthase (leuA), homologous 3-ketothiolase (bktB), and the deletion of 2-methylcitrate synthase (prpC) resulted in biosynthesis of 42.5 % (g PHBV/g dry cell weight) PHBV with 64.9 mol% 3HV monomer from fructose as the sole carbon source. This recombinant strain also accumulated the highest PHBV content of 54.5 % dry cell weight (DCW) with 24 mol% 3HV monomer from CO2 ever reported. The lithoautotrophic cell growth and PHBV production by the recombinant C. necator were promoted by oxygen stress. The thermal properties of PHBV showed a decreasing trend of the glass transition and melting temperatures with increasing 3HV fraction. The average molecular weights of PHBV with modulated 3HV fractions were between 20 and 26 × 104 g/mol.


Assuntos
Acetolactato Sintase , Cupriavidus necator , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Poliésteres/química , Hidroxibutiratos/metabolismo , Carbono/metabolismo
15.
J Agric Food Chem ; 71(47): 18171-18187, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37350671

RESUMO

We report on the development of a novel class of diaryl ether herbicides. After the discovery of a phenoxybenzoic acid with modest herbicidal activity, optimization led to several molecules with improved control of broadleaf and grass weeds. To facilitate this process, we first employed a three-step combinatorial approach, then pivoted to a one-step Ullmann-type coupling that provided faster access to new analogs. After determining that the primary target site of our benchmark diaryl ethers was acetolactate synthase (ALS), we further leveraged this copper-catalyzed methodology to conduct a scaffold hopping campaign in the hope of uncovering an additional mode of action with fewer documented cases of resistance. Our comprehensive and systematic investigation revealed that while the herbicidal activity of this area seems to be exclusively linked to ALS inhibition, our molecules represent a structurally distinct class of Group 2 herbicides. The structure-activity relationships that led us to this conclusion are described herein.


Assuntos
Acetolactato Sintase , Herbicidas , Herbicidas/farmacologia , Éter , Relação Estrutura-Atividade , Éteres/farmacologia , Plantas Daninhas/metabolismo , Etil-Éteres , Acetolactato Sintase/metabolismo , Resistência a Herbicidas
16.
Hereditas ; 160(1): 28, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344897

RESUMO

BACKGROUND: Shattercane [Sorghum bicolor (L.) Moench ssp. Arundinaceum (Desv.)] is a competitive weed in North America's corn, soybean, sorghum, and other agronomic crops. Control of shattercane with POST herbicides in corn became possible with the introduction of acetolactate synthase (ALS)-inhibiting herbicides in the 1980s, and their extensive use resulted in the evolution of ALS-inhibitors resistant shattercane. RESULTS: Shattercane seeds were collected from 16 south-eastern and south-central Nebraska fields that were treated with primisulfuron for three consecutive years. Three resistant plants were found in greenhouse evaluations of more than 30,000 plants. Results from a greenhouse bioassay conducted to assess the response of each shattercane biotype to ALS-inhibiting herbicides showed a differential response to ALS inhibitors within and between chemical classes. Biotype P8-30 was resistant or partially resistant to all ALS-inhibiting herbicides applied and displayed a unique amino acid sequence substitution (Trp574 to Leu) relative to the other two resistant biotypes, P2-205 and P9-102. Whole plant dose-response studies confirmed a 4- to the 12-fold level of primisulfuron resistance in three shattercane biotypes compared with the known primisulfuron-susceptible shattercane biotype. The ALS gene was sequenced using primers designed from the corn ALS sequence to identify mutations in the ALS gene that confer resistance. A total of seven nucleotide substitutions were detected in the three herbicide-resistant biotypes P2-205, P8-30, and P9-102. These biotypes are being crossed to adapted sorghum lines (grain, sweet, and forage) to broaden germplasm with resistance to ALS-inhibiting herbicides. CONCLUSION: The discovery of these mutants should accelerate the development of sorghum genotypes that tolerate ALS-based herbicides, which provide additional choices for sorghum farmers to control weeds, especially grasses, in their fields.


Assuntos
Acetolactato Sintase , Herbicidas , Sorghum , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Herbicidas/farmacologia , Resistência a Herbicidas/genética , Mutação , Proteínas de Plantas/genética
17.
J Agric Food Chem ; 71(20): 7654-7668, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37191232

RESUMO

Nicosulfuron is the leading herbicide in the global sulfonylurea (SU) herbicide market; it was jointly developed by DuPont and Ishihara. Recently, the widespread use of nicosulfuron has led to increasingly prominent agricultural production hazards, such as environmental harm and influence on subsequent crops. The use of herbicide safeners can significantly alleviate herbicide injury to protect crop plants and expand the application scope of existing herbicides. A series of novel aryl-substituted formyl oxazolidine derivatives were designed using the active group combination method. Title compounds were synthesized using an efficient one-pot method and characterized by infrared (IR) spectrometry, 1H and 13C nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS). The chemical structure of compound V-25 was further identified by X-ray single crystallography. The bioactivity assay and structure-activity relationship proved that nicosulfuron phytotoxicity to maize could be reduced by most title compounds. The glutathione S-transferase (GST) activity and acetolactate synthase (ALS) in vivo were determined, and compound V-12 showed inspiring activity comparable to that of the commercial safener isoxadifen-ethyl. The molecular docking model indicated that compound V-12 competed with nicosulfuron for the acetolactate synthase active site and that this is the protective mechanism of safeners. Absorption, distribution, metabolism, excretion, and toxicity (ADMET) predictions demonstrated that compound V-12 exhibited superior pharmacokinetic properties to the commercialized safener isoxadifen-ethyl. The target compound V-12 shows strong herbicide safener activity in maize; thus, it may be a potential candidate compound that can help further protect maize from herbicide damage.


Assuntos
Acetolactato Sintase , Herbicidas , Herbicidas/química , Simulação de Acoplamento Molecular , Acetolactato Sintase/metabolismo , Relação Estrutura-Atividade , Zea mays/química
18.
Pestic Biochem Physiol ; 193: 105444, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248013

RESUMO

Weed resistance to acetohydroxyacid synthase (AHAS) inhibiting herbicides has been a critical issue for rice growers worldwide since the early 1990's. In California, resistance to bensulfuron-methyl was first detected in Cyperus difformis in 1993. Since then, populations of most major weeds of rice in California have been reported to show resistance to at least one AHAS inhibitor. We sought to describe the magnitude and mechanisms of AHAS inhibitor cross-resistance in California populations of C. difformis. Sixty-two populations were collected and screened for cross-resistance to bensulfuron-methyl (BEN), halosulfuron-methyl (HAL), bispyribac­sodium (BIS), and penoxsulam (PEN), revealing six major patterns of cross-resistance. Representative C. difformis populations from each cross-resistance pattern were then subjected to dose-response, cytochrome P450 inhibition, AHAS gene sequencing, and metabolic studies with the same herbicides as in the screening. Dose-response confirmed the detected resistances in the representative populations, and suggested that the majority of observed resistance was dose-dependent. Cytochrome P450 inhibition via malathion revealed evidence of increased metabolic activity in resistant populations to BEN, BIS, and PEN. AHAS gene sequencing revealed amino acid substitutions in five of six populations: R3 (Pro197-Ser), R4 (Pro97-His), R10 (Asp376), R41 (Ala122-Asn), and R18 (Trp574-Leu). Metabolic studies confirmed evidence of increased activity of cytochrome P450s in all populations. Metabolic BEN and HAL analysis did not yield similar results to malathion inhibition, suggesting different P450's or other pathways. Taken together, the results of the studies confirm the complexity of AHAS inhibitor cross-resistance in C. difformis, and the presence of both target-site and metabolic resistance in most of the representative populations underscores the importance of proper herbicide selection, rotation, and scouting in fields.


Assuntos
Acetolactato Sintase , Cyperus , Herbicidas , Cyperus/genética , Cyperus/metabolismo , Resistência a Herbicidas/genética , Acetolactato Sintase/metabolismo , Malation , Herbicidas/farmacologia
19.
Microb Cell Fact ; 22(1): 105, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217979

RESUMO

BACKGROUND: Previously, we isolated a riboflavin-overproducing Ashbya gossypii mutant (MT strain) and discovered some mutations in genes encoding flavoproteins. Here, we analyzed the riboflavin production in the MT strain, in view of flavoproteins, which are localized in the mitochondria. RESULTS: In the MT strain, mitochondrial membrane potential was decreased compared with that in the wild type (WT) strain, resulting in increased reactive oxygen species. Additionally, diphenyleneiodonium (DPI), a universal flavoprotein inhibitor, inhibited riboflavin production in the WT and MT strains at 50 µM, indicating that some flavoproteins may be involved in riboflavin production. The specific activities of NADH and succinate dehydrogenases were significantly reduced in the MT strain, but those of glutathione reductase and acetohydroxyacid synthase were increased by 4.9- and 25-fold, respectively. By contrast, the expression of AgGLR1 gene encoding glutathione reductase was increased by 32-fold in the MT strain. However, that of AgILV2 gene encoding the catalytic subunit of acetohydroxyacid synthase was increased by only 2.1-fold. These results suggest that in the MT strain, acetohydroxyacid synthase, which catalyzes the first reaction of branched-chain amino acid biosynthesis, is vital for riboflavin production. The addition of valine, which is a feedback inhibitor of acetohydroxyacid synthase, to a minimal medium inhibited the growth of the MT strain and its riboflavin production. In addition, the addition of branched-chain amino acids enhanced the growth and riboflavin production in the MT strain. CONCLUSION: The significance of branched-chain amino acids for riboflavin production in A. gossypii is reported and this study opens a novel approach for the effective production of riboflavin in A. gossypii.


Assuntos
Acetolactato Sintase , Eremothecium , Flavoproteínas , Mutação , Riboflavina , Riboflavina/biossíntese , Riboflavina/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Eremothecium/efeitos dos fármacos , Eremothecium/enzimologia , Eremothecium/genética , Eremothecium/crescimento & desenvolvimento , Eremothecium/metabolismo , Flavoproteínas/genética , Flavoproteínas/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aminoácidos de Cadeia Ramificada/farmacologia
20.
Pestic Biochem Physiol ; 191: 105370, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963939

RESUMO

A sensing mechanism in mammals perceives xenobiotics and induces the transcription of genes encoding proteins that detoxify these molecules. However, it is unclear if plants sense xenobiotics, and activate an analogous signalling system leading to their detoxification. Using the liverwort Marchantia polymorpha, we tested the hypothesis that there is a sensing system in plants that perceives herbicides resulting in the increased transcription of genes encoding proteins that detoxify these herbicides. Consistent with the hypothesis, we show that chlorsulfuron-treatment induces changes in the M. polymorpha transcriptome. However, these transcriptome changes do not occur in chlorsulfuron (CS)-treated target site resistant mutants, where the gene encoding the target carries a mutation that confers resistance to chlorsulfuron. Instead, we show that inactivation of the chlorsulfuron target, acetolactate synthase (ALS) (also known as acetohydroxyacid synthase (AHAS)), is required for the transcriptome response. These data demonstrate that the transcriptome changes in chlorsulfuron-treated plants are caused by disrupted amino acid synthesis and metabolism resulting from acetolactate synthase inhibition, and indicate that the transcriptome changes are not caused by a herbicide sensing mechanism.


Assuntos
Acetolactato Sintase , Herbicidas , Marchantia , Herbicidas/toxicidade , Acetolactato Sintase/metabolismo , Marchantia/genética , Marchantia/metabolismo , Transcriptoma , Resistência a Herbicidas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA