Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
1.
Nat Commun ; 15(1): 7979, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266557

RESUMO

The use of monoclonal antibodies for the control of drug resistant nosocomial bacteria may alleviate a reliance on broad spectrum antimicrobials for treatment of infection. We identify monoclonal antibodies that may prevent infection caused by carbapenem resistant Acinetobacter baumannii. We use human immune repertoire mice (Kymouse platform mice) as a surrogate for human B cell interrogation to establish an unbiased strategy to probe the antibody-accessible target landscape of clinically relevant A. baumannii. After immunisation of the Kymouse platform mice with A. baumannii derived outer membrane vesicles (OMV) we identify 297 antibodies and analyse 26 of these for functional potential. These antibodies target lipooligosaccharide (OCL1), the Oxa-23 protein, and the KL49 capsular polysaccharide. We identify a single monoclonal antibody (mAb1416) recognising KL49 capsular polysaccharide to demonstrate prophylactic in vivo protection against a carbapenem resistant A. baumannii lineage associated with neonatal sepsis mortality in Asia. Our end-to-end approach identifies functional monoclonal antibodies with prophylactic potential against major lineages of drug resistant bacteria accounting for phylogenetic diversity and clinical relevance without existing knowledge of a specific target antigen. Such an approach might be scaled for a additional clinically important bacterial pathogens in the post-antimicrobial era.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Anticorpos Monoclonais , Camundongos Transgênicos , Acinetobacter baumannii/imunologia , Acinetobacter baumannii/genética , Animais , Humanos , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/prevenção & controle , Infecções por Acinetobacter/microbiologia , Camundongos , Antibacterianos/farmacologia , Anticorpos Antibacterianos/imunologia , Feminino , Carbapenêmicos/farmacologia , Farmacorresistência Bacteriana/imunologia , Farmacorresistência Bacteriana/genética , Lipopolissacarídeos/imunologia
2.
Org Lett ; 26(38): 8069-8073, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39284123

RESUMO

Acinetobacter baumannii poses a serious threat to human health. Pathogenic bacterial lipopolysaccharides (LPSs) are potent immunogens for the development of antibacterial vaccines. To investigate the antigenic properties of A. baumannii LPS, five well-defined core oligosaccharide fragments from the LPS of A. baumannii SMAL and ATCC 19606 were synthesized. A divergent synthesis strategy based on orthogonally protected α-(2 → 5)-linked Kdo dimer 6 was developed. Selective exposure of different positions in this key precursor and then elongation of sugar chains via stereocontrolled formation of both 1,2-trans and 1,2-cis-2-aminoglycosidic linkages permitted the efficient synthesis of the targets. The synthetic route also highlights a 4-O and then 7-O glycosylation sequence for assembly of the novel 4,7-branched Kdo framework. Antigenicity assay using the glycan microarray technique disclosed that tetrasaccharide 3 featuring both 4,7-branch and α-(2 → 5)-Kdo-Kdo structural elements was a potential antigenic determinant.


Assuntos
Acinetobacter baumannii , Lipopolissacarídeos , Oligossacarídeos , Acinetobacter baumannii/química , Acinetobacter baumannii/imunologia , Lipopolissacarídeos/química , Lipopolissacarídeos/imunologia , Oligossacarídeos/química , Oligossacarídeos/síntese química , Glicosilação , Estrutura Molecular , Sequência de Carboidratos , Humanos
3.
Int Immunopharmacol ; 141: 112972, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39186832

RESUMO

A. baumannii is a deadly antimicrobial resistance pathogen that acquires drug resistance through different mechanisms. Therefore, it is necessary to investigate all its virulence factors and design effective vaccines against it. For this purpose, OprB, an outer membrane porin, was investigated in this study, and its secondary and tertiary structures, physicochemical properties, and B-T epitopes were determined. The vaccine potential of this protein and its linear, non-continuous, and chimeric epitopes were also in-vivo analyzed. Based on the results, two surface epitopes and one non-continuous epitope were identified. Surface contiguous epitopes were produced recombinantly and non-continuous epitope sequences were synthesized and then produced. The chimeric epitope was also produced via the SOE-PCR technique. Active and passive immunization of mice with the whole OprB protein, non-continuous epitope, contiguous epitopes, two epitopes in chimeric form, as well as the mixture of two purified epitopes showed that the survival level and total IgG titer of the mice compared to non-vaccinated mice or mice that were vaccinated with an internal fragment increased significantly. The bacterial load in the immunized mice's lung, liver, kidney, and spleen was much lower than in the control groups, and the TNF-α, IFN-γ, and IL-6 cytokines levels were also lower in these groups and were similar to the naive mice. On the other hand, subunit vaccines showed acceptable safety and due to their minimal cross-activity, their use is much safer.


Assuntos
Acinetobacter baumannii , Vacinas Bacterianas , Camundongos Endogâmicos BALB C , Porinas , Animais , Porinas/imunologia , Vacinas Bacterianas/imunologia , Camundongos , Feminino , Acinetobacter baumannii/imunologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Vacinação , Citocinas/metabolismo , Carga Bacteriana , Epitopos de Linfócito B/imunologia , Humanos
4.
Vaccine ; 42(22): 126204, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39126830

RESUMO

The ESKAPE family, comprising Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp., poses a significant global threat due to their heightened virulence and extensive antibiotic resistance. These pathogens contribute largely to the prevalence of nosocomial or hospital-acquired infections, resulting in high morbidity and mortality rates. To tackle this healthcare problem urgent measures are needed, including development of innovative vaccines and therapeutic strategies. Designing vaccines involves a complex and resource-intensive process of identifying protective antigens and potential vaccine candidates (PVCs) from pathogens. Reverse vaccinology (RV), an approach based on genomics, made this process more efficient by leveraging bioinformatics tools to identify potential vaccine candidates. In recent years, artificial intelligence and machine learning (ML) techniques has shown promise in enhancing the accuracy and efficiency of reverse vaccinology. This study introduces a supervised ML classification framework, to predict potential vaccine candidates specifically against ESKAPE pathogens. The model's training utilized biological and physicochemical properties from a dataset containing protective antigens and non-protective proteins of ESKAPE pathogens. Conventional autoencoders based strategy was employed for feature encoding and selection. During the training process, seven machine learning algorithms were trained and subjected to Stratified 5-fold Cross Validation. Random Forest and Logistic Regression exhibited best performance in various metrics including accuracy, precision, recall, WF1 score, and Area under the curve. An ensemble model was developed, to take collective strengths of both the algorithms. To assess efficacy of our final ensemble model, a high-quality benchmark dataset was employed. VacSol-ML(ESKAPE) demonstrated outstanding discrimination between protective vaccine candidates (PVCs) and non-protective antigens. VacSol-ML(ESKAPE), proves to be an invaluable tool in expediting vaccine development for these pathogens. Accessible to the public through both a web server and standalone version, it encourages collaborative research. The web-based and standalone tools are available at http://vacsolml.mgbio.tech/.


Assuntos
Antígenos de Bactérias , Vacinas Bacterianas , Aprendizado de Máquina , Antígenos de Bactérias/imunologia , Humanos , Vacinas Bacterianas/imunologia , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/patogenicidade , Enterococcus faecium/imunologia , Enterococcus faecium/genética , Staphylococcus aureus/imunologia , Staphylococcus aureus/genética , Acinetobacter baumannii/imunologia , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Biologia Computacional/métodos , Enterobacter/imunologia , Enterobacter/genética , Vacinologia/métodos
5.
BMC Genomics ; 25(1): 791, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160492

RESUMO

Acinetobacter baumannii is a gram-negative bacillus prevalent in nature, capable of thriving under various environmental conditions. As an opportunistic pathogen, it frequently causes nosocomial infections such as urinary tract infections, bacteremia, and pneumonia, contributing to increased morbidity and mortality in clinical settings. Consequently, developing novel vaccines against Acinetobacter baumannii is of utmost importance. In our study, we identified 10 highly conserved antigenic proteins from the NCBI and UniProt databases for epitope mapping. We subsequently screened and selected 8 CTL, HTL, and LBL epitopes, integrating them into three distinct vaccines constructed with adjuvants. Following comprehensive evaluations of immunological and physicochemical parameters, we conducted molecular docking and molecular dynamics simulations to assess the efficacy and stability of these vaccines. Our findings indicate that all three multi-epitope mRNA vaccines designed against Acinetobacter baumannii are promising; however, further animal studies are required to confirm their reliability and effectiveness.


Assuntos
Acinetobacter baumannii , Vacinas Bacterianas , Biologia Computacional , Acinetobacter baumannii/imunologia , Acinetobacter baumannii/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Biologia Computacional/métodos , Epitopos/imunologia , Epitopos/química , Simulação de Acoplamento Molecular , Infecções por Acinetobacter/prevenção & controle , Infecções por Acinetobacter/imunologia , Mapeamento de Epitopos , Vacinas de mRNA , Simulação de Dinâmica Molecular , Humanos , RNA Mensageiro/genética , RNA Mensageiro/imunologia , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/química
6.
Vaccine ; 42(18): 3802-3810, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38719690

RESUMO

Due to its antimicrobial resistance characteristics, the World Health Organization (WHO) classifies A. baumannii as one of the critical priority pathogens for the development of new therapeutic strategies. Vaccination has been approached as an interesting strategy to overcome the lack of effective antimicrobials and the long time required to develop and approve new drugs. In this study, we aimed to evaluate as a vaccine the hypothetical adhesin protein CAM87009.1 in its recombinant format (rCAM87009.1) associated with aluminum hydroxide (Alhydrogel®) or biogenic silver nanoparticles (bio-AgNP) as adjuvant components against lethal infection by A. baumannii MDR strain. Both vaccine formulations were administered in three doses intramuscularly in BALB/c murine models and the vaccinated animals were tested in a challenge assay with A. baumannii MDR strain (DL100). rCAM87009.1 protein associated with both adjuvants was able to protect 100 % of animals challenged with the lethal strain during the challenge period. After the euthanasia of the animals, no A. baumannii colonies were detected in the lungs of animals vaccinated with the rCAM87009.1 protein in both formulations. Since the first immunization, high IgG antibody titers were observed (1:819,200), with results being statistically similar in both vaccine formulations evaluated. rCAM87009.1 associated with both adjuvants was capable of inducing at least one class of isotypes associated with the processes of neutralization (IgG2b and IgA for bio-AgNP and Alhydrogel®, respectively), opsonization (IgG1 in both vaccines) and complement activation (IgM and IgG3 for bio-AgNP and Alhydrogel®, respectively). Furthermore, reduced tissue damage was observed in animals vaccinated with rCAM87009.1 + bio-AgNP when compared to animals vaccinated with Alhydrogel®. Our results indicate that the rCAM87009.1 protein associated with both bio-AgNP and Alhydrogel® are combinations capable of promoting immunity against infections caused by A. baumannii MDR. Additionally, we demonstrate the potential of silver nanoparticles as alternative adjuvant molecules to the use of aluminum salts.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Adesinas Bacterianas , Adjuvantes Imunológicos , Anticorpos Antibacterianos , Nanopartículas Metálicas , Camundongos Endogâmicos BALB C , Prata , Animais , Prata/administração & dosagem , Prata/farmacologia , Acinetobacter baumannii/imunologia , Acinetobacter baumannii/efeitos dos fármacos , Camundongos , Infecções por Acinetobacter/prevenção & controle , Infecções por Acinetobacter/imunologia , Adesinas Bacterianas/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Farmacorresistência Bacteriana Múltipla , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/administração & dosagem , Compostos de Alúmen/administração & dosagem , Feminino , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Modelos Animais de Doenças
7.
Microbes Infect ; 26(5-6): 105347, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38679227

RESUMO

Acinetobacter baumannii is an opportunistic bacterium that causes infection in several sites. Carbapenem-resistant A. baumannii strains (CRAb) lead the World Health Organization's list of 12 pathogens considered a priority for developing new antimicrobials. The pathogenicity of A. baumannii is related to the different virulence factors employed in the colonization of biotic and abiotic surfaces, biofilm formation and multidrug resistance. We analyze the outer membrane protein FilF from A. baumannii in silico and produce it in recombinant form (rFilF). rFilF protein was successfully expressed in Escherichia coli BL21 Star in an insoluble form. Immunization with rFilF induced significant anti-rFilF IgG antibody production in mice, detected by indirect enzyme-linked immunosorbent assay, since the first evaluation until 49th. On the last experimentation day, the predominant immunoglobulin found was IgG1 followed by IgG2a, IgG2b, IgM, IgG3, and IgA. We observe that interleukins 4 and 10 show significant production after the 28th day of experimentation in mice immunized with rFilF. Anti-rFilF pAbs were able to inhibit biofilm formation in nine CRAb strains evaluated, and in the standard strain ATCC® 19606. These results demonstrate the anti-biofilm activity of anti-rFilF antibodies, promising in the development of a non-antibiotic approach based on the control of CRAb strains.


Assuntos
Acinetobacter baumannii , Anticorpos Antibacterianos , Biofilmes , Carbapenêmicos , Biofilmes/efeitos dos fármacos , Acinetobacter baumannii/imunologia , Acinetobacter baumannii/efeitos dos fármacos , Animais , Anticorpos Antibacterianos/imunologia , Carbapenêmicos/farmacologia , Camundongos , Imunoglobulina G/imunologia , Antibacterianos/farmacologia , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/microbiologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/genética , Camundongos Endogâmicos BALB C , Feminino , Escherichia coli/genética , Escherichia coli/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genética
8.
Virus Res ; 345: 199370, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614253

RESUMO

Non-infectious virus-like nanoparticles mimic native virus structures and can be modified by inserting foreign protein fragments, making them immunogenic tools for antigen presentation. This study investigated, for the first time, the immunogenicity of long and flexible polytubes formed by yeast-expressed tail tube protein gp39 of bacteriophage vB_EcoS_NBD2 and evaluated their ability to elicit an immune response against the inserted protein fragments. Protein gp39-based polytubes induced humoral immune response in mice, even without the use of adjuvant. Bioinformatics analysis guided the selection of protein fragments from Acinetobacter baumannii for insertion into the C-terminus of gp39. Chimeric polytubes, displaying 28-amino acid long OmpA protein fragment, induced IgG response against OmpA protein fragment in immunized mice. These polytubes demonstrated their effectiveness both as antigen carrier and an adjuvant, when the OmpA fragments were either displayed on chimeric polytubes or used alongside with the unmodified polytubes. Our findings expand the potential applications of long and flexible polytubes, contributing to the development of novel antigen carriers with improved immunogenicity and antigen presentation capabilities.


Assuntos
Proteínas da Membrana Bacteriana Externa , Bacteriófagos , Vacinas de Subunidades Antigênicas , Animais , Camundongos , Proteínas da Membrana Bacteriana Externa/imunologia , Bacteriófagos/genética , Bacteriófagos/imunologia , Vacinas de Subunidades Antigênicas/imunologia , Feminino , Acinetobacter baumannii/imunologia , Camundongos Endogâmicos BALB C , Adjuvantes Imunológicos/administração & dosagem , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Proteínas da Cauda Viral/imunologia , Proteínas da Cauda Viral/genética , Proteínas da Cauda Viral/química , Imunidade Humoral , Imunização , Anticorpos Antibacterianos/imunologia
9.
Infect Genet Evol ; 96: 105138, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34793968

RESUMO

In the last decade, Multi-drug resistance (MDR)-associated infections of Acinetobacter baumannii have grown worldwide. A cost-effective preventative strategy against this bacterium is vaccination. This study has presented five novel vaccine candidates against A. baumannii produced using the reverse vaccinology method. BLASTn was done to identify the most conserved antigens. PSORTb 3.0.2 was run to predict the subcellular localization of the proteins. The initial screening and antigenicity evaluation were performed using Vaxign. The ccSOL omics was also employed to predict protein solubility. The cross-membrane localization of the protein was predicted using PRED-TMBB. B cell epitope prediction was made for immunogenicity using the IEDB and BepiPred-2.0 database. Eventually, BLASTp was done to verify the extent of similarity to the human proteome to exclude the possibility of autoimmunity. Proteins failing to comply with the set parameters were filtered at each step. In silico, potential vaccines against 21 A. baumannii strains were identified using reverse vaccinology and subtractive genomic techniques. Based on the above criteria, out of the initial 15 A. baumannii proteins selected for screening, nine exposed/secreted/membrane proteins, i.e., Pfsr, LptE, OmpH, CarO, CsuB, CdiB, MlaA, FhuE, and were the most promising candidates. Their solubility and antigenicity were also examined and found to be more than 0.45 and 0.6, respectively. Based on the results, LptE was selected with the highest average antigenic score of 1.043 as the best protein, followed by FimF and Pfsr with scores of 1.022 and 1.014, respectively. In the end, five proteins were verified as promising candidates. Overall, the targets identified herein may be utilized in future strategies to control A. baumannii worldwide.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Vacinas Bacterianas/imunologia , Genômica , Humanos , Sorogrupo , Vacinologia
10.
Iran J Allergy Asthma Immunol ; 20(5): 537-549, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34664813

RESUMO

Nosocomial infections caused by Acinetobacter baumannii (A. baumannii) nosocomial infections caused by Acinetobacter baumannii (A. baumannii) are considered as a global serious problem in hospitalized patients because of emerging antibiotic resistance. Immunotherapy approaches are promising to prevent such infections. In our previous study, five antigenic epitopes of outer membrane protein A (OmpA), as the most dangerous virulence molecule in A. baumanii, were predicted in silico. In this study, the investigators evaluated some immunological aspects of the peptides. Five peptides were separately injected into C5BL/6 mice; then the cytokine production (interleukin-4 and interferon-gamma) of splenocytes and opsonophagocytic activity of immunized serum were assessed. To identify the protective function of the peptides, animal models of sepsis and pneumonia infections were actively and passively immunized with selected peptides and pooled sera of immunized mice, respectively. Then, survival rates of them were compared with the non-infected controls. Based on the results, activated spleen cells in P127 peptide-immunized mice exhibited an increase level of IFN-γ compared with the other experimental groups, but not about the IL-4 concentration. The results of opsonophagocytic assay revealed an appropriate killing activity of produced antibodies against A. baumannii in a dose-dependent manner. Further, the survival rates of the mice under passive immunization with the immunized sera or active immunization with P127 peptide were significantly more than those in the control group. Moreover, the survival rate of the P127 peptide immunized group was considerably higher than that among the other peptide-immunized group. In conclusion, findings indicated that peptides derived from outer membrane protein-A can be used as a promising tool for designing the epitope-based vaccines against infections caused by A. baumannii.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Vacinas Bacterianas/imunologia , Epitopos/imunologia , Pneumonia Bacteriana/prevenção & controle , Sepse/prevenção & controle , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/mortalidade , Animais , Antígenos de Bactérias/imunologia , Vacinas Bacterianas/administração & dosagem , Citocinas/metabolismo , Modelos Animais de Doenças , Interações Hospedeiro-Patógeno/imunologia , Imunização , Camundongos , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/mortalidade , Prognóstico , Sepse/imunologia , Sepse/mortalidade , Resultado do Tratamento
11.
J Immunol Methods ; 499: 113169, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34666009

RESUMO

BACKGROUND: Infection caused by Acinetobacter baumannii has emerged as a significant clinical problem with unacceptably high mortality rate due to the increase in antibiotic-resistant strains. Producing novel monoclonal antibody (MAb) against outer membrane protein A (OmpA) could be considered as a potential tool to improve treatment of A. baumannii infections. OBJECTIVES: In this study, we aimed to produce murine MAbs against OmpA peptide of A. baumannii. MATERIALS AND METHODS: BALB/c mice were immunized with 18-mer amino acid peptide as a part of the OmpA protein. Four antibody-secreting hybridomas were obtained using hybridoma technology and then characterized according to isotypes, affinity constant, reactivity in ELISA, flow cytometry, indirect immunofluorescence (IFA) and opsonophagocytic killing assays. RESULTS: All four produced MAbs (1A1-D10, 1G1-E7, 2C11-F10, and 4H2-H9) had IgG1 isotype with Kappa light chain. One of these MAbs, 1G1-E7 was purified and selected for further characterizations. 1G1-E7 showed a high reactivity with both immunogenic peptide and A. baumannii in ELISA. Our results indicated that 1G1-E7 MAb reacted with 95.3% of A. baumannii in flow cytometry as well as IFA. Moreover, the affinity of the 1G1-E7 MAb was measured 1.37 × 108 M-1. The 1G1-E7 significantly improved opsonophagocytic killing of a clinical isolate of A. baumannii. CONCLUSION: Our findings showed that the OmpA can be identified by produced MAbs. The efficacy of novel anti-OmpA antibodies in A. baumannii targeting needs to be further investigated in challenging models, and then could be subjected for genetic engineering to produce therapeutic antibody against A. baumannii.


Assuntos
Acinetobacter baumannii/química , Anticorpos Monoclonais/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Acinetobacter baumannii/imunologia , Animais , Ensaio de Imunoadsorção Enzimática , Feminino , Camundongos , Camundongos Endogâmicos BALB C
12.
Mol Immunol ; 140: 22-34, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34649027

RESUMO

Acinetobacter baumannii is an opportunistic multidrug-resistant pathogen that causes a significant mortality rate. The proteins containing Tetratrico Peptide Repeats (TPRs) are involved in the pathogenicity and virulence of bacteria and have different roles such as transfer of bacterial virulence factors to host cells, binding to the host cells and inhibition of phagolysosomal maturation. So, in this study, physicochemical properties of a new protein containing TPRs in A. baumannii which was named PcTPRs1 by this study were characterized and its 3D structure was predicted by in-silico tools. The protein B and T cell epitopes were mapped and its vaccine potential was in-silico and in-vivo investigated. Domain analysis indicated that the protein contains the Flp pilus assembly protein TadD domain which has three TPRs. The helix is dominant in the protein structure, and this protein is an outer membrane antigen which, is extremely conserved among A. baumannii strains; thus, has good properties to be applied as a recombinant vaccine. The best-predicted and refined model was applied in ligand-binding sites and conformational epitopes prediction. Based on epitope mapping results, several epitopes were characterized which could stimulate both immune systems. BLAST results showed the introduced epitopes are completely conserved among A. baumannii strains. The in-vivo analysis indicates that a 101 amino acid fragment of the protein which contains the best selected epitope, can produce a good protectivity against A. baumannii as well as the whole TPR protein and thus could be investigated as an effective subunit and potential vaccines.


Assuntos
Acinetobacter baumannii/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/imunologia , Fenômenos Químicos , Simulação por Computador , Mapeamento de Epitopos , Repetições de Tetratricopeptídeos , Sequência de Aminoácidos , Animais , Antígenos de Bactérias/imunologia , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/imunologia , Camundongos Endogâmicos BALB C , Modelos Moleculares , Peptídeos/química , Peptídeos/imunologia , Domínios Proteicos , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Frações Subcelulares/metabolismo , Análise de Sobrevida , Virulência
13.
Elife ; 102021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544549

RESUMO

Vaccination strategies for rapid protection against multidrug-resistant bacterial infection are very important, especially for hospitalized patients who have high risk of exposure to these bacteria. However, few such vaccination strategies exist due to a shortage of knowledge supporting their rapid effect. Here, we demonstrated that a single intranasal immunization of inactivated whole cell of Acinetobacter baumannii elicits rapid protection against broad A. baumannii-infected pneumonia via training of innate immune response in Rag1-/- mice. Immunization-trained alveolar macrophages (AMs) showed enhanced TNF-α production upon restimulation. Adoptive transfer of immunization-trained AMs into naive mice mediated rapid protection against infection. Elevated TLR4 expression on vaccination-trained AMs contributed to rapid protection. Moreover, immunization-induced rapid protection was also seen in Pseudomonas aeruginosa and Klebsiella pneumoniae pneumonia models, but not in Staphylococcus aureus and Streptococcus pneumoniae model. Our data reveal that a single intranasal immunization induces rapid and efficient protection against certain Gram-negative bacterial pneumonia via training AMs response, which highlights the importance and the possibility of harnessing trained immunity of AMs to design rapid-effecting vaccine.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Vacinas Bacterianas/administração & dosagem , Infecções por Klebsiella/prevenção & controle , Klebsiella pneumoniae/imunologia , Macrófagos Alveolares/efeitos dos fármacos , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/prevenção & controle , Pseudomonas aeruginosa/imunologia , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/microbiologia , Administração Intranasal , Transferência Adotiva , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Proteínas de Homeodomínio/genética , Imunidade Inata/efeitos dos fármacos , Infecções por Klebsiella/imunologia , Infecções por Klebsiella/microbiologia , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/transplante , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia Bacteriana/imunologia , Pneumonia Bacteriana/microbiologia , Infecções por Pseudomonas/imunologia , Infecções por Pseudomonas/microbiologia , Fatores de Tempo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Vacinação , Vacinas de Produtos Inativados/administração & dosagem
14.
Front Immunol ; 12: 705533, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34394105

RESUMO

Antibody therapy may be an alternative treatment option for infections caused by the multi-drug resistant (MDR) bacterium Acinetobacter baumannii. As A. baumannii has multiple capsular serotypes, a universal antibody therapy would need to target conserved protein antigens rather than the capsular polysaccharides. We have immunized mice with single or multiple A. baumannii strains to induce antibody responses to protein antigens, and then assessed whether these responses provide cross-protection against a collection of genetically diverse clinical A. baumannii isolates. Immunized mice developed antibody responses to multiple protein antigens. Flow cytometry IgG binding assays and immunoblots demonstrated improved recognition of both homologous and heterologous clinical strains in sera from mice immunized with multiple strains compared to a single strain. The capsule partially inhibited bacterial recognition by IgG and the promotion of phagocytosis by human neutrophils. However, after immunization with multiple strains, serum antibodies to protein antigens promoted neutrophil phagocytosis of heterologous A. baumannii strains. In an infection model, mice immunized with multiple strains had lower bacterial counts in the spleen and liver following challenge with a heterologous strain. These data demonstrate that antibodies targeting protein antigens can improve immune recognition and protection against diverse A. baumannii strains, providing support for their use as an antibody therapy.


Assuntos
Acinetobacter baumannii/imunologia , Anticorpos Antibacterianos/imunologia , Formação de Anticorpos , Vacinas Bacterianas/imunologia , Vacinação , Animais , Feminino , Humanos , Camundongos
15.
J Bacteriol ; 203(21): e0028121, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34398661

RESUMO

Competition is a critical aspect of bacterial life, as it enables niche establishment and facilitates the acquisition of essential nutrients. Warfare between Gram-negative bacteria is largely mediated by the type VI secretion system (T6SS), a dynamic nanoweapon that delivers toxic effector proteins from an attacking cell to adjacent bacteria in a contact-dependent manner. Effector-encoding bacteria prevent self-intoxication and kin cell killing by the expression of immunity proteins, which neutralize effector toxicity by specifically binding their cognate effector and either occluding its active site or preventing the structural rearrangements necessary for effector activation. In this study, we investigate Tsi3, a previously uncharacterized T6SS immunity protein present in multiple strains of the human pathogen Acinetobacter baumannii. We show that Tsi3 is the cognate immunity protein of an antibacterial effector of unknown function, Tse3. Our bioinformatic analyses indicate that Tsi3 homologs are widespread among Gram-negative bacteria, often encoded within T6SS effector-immunity modules. Surprisingly, we found that Tsi3 homologs are predicted to possess a characteristic formylglycine-generating enzyme (FGE) domain, which is present in various enzymatic proteins. Our data show that Tsi3-mediated immunity is dependent on Tse3-Tsi3 protein-protein interactions and that Tsi3 homologs from various bacteria do not provide immunity against nonkin Tse3. Thus, we conclude that Tsi3 homologs are unlikely to be functional enzymes. Collectively, our work identifies FGE domain-containing proteins as important mediators of immunity against T6SS attacks and indicates that the FGE domain can be coopted as a scaffold in multiple proteins to carry out diverse functions. IMPORTANCE Despite the wealth of knowledge on the diversity of biochemical activities carried out by T6SS effectors, comparably little is known about the various strategies that bacteria employ to prevent susceptibility to T6SS-dependent bacterial killing. Our work establishes a novel family of T6SS immunity proteins with a characteristic FGE domain. This domain is present in enzymatic proteins with various catalytic activities. Our characterization of Tsi3 expands the known functions carried out by FGE-like proteins to include defense during T6SS-mediated bacterial warfare. Moreover, it highlights the evolution of FGE domain-containing proteins to carry out diverse biological functions.


Assuntos
Acinetobacter baumannii/metabolismo , Proteínas de Bactérias/metabolismo , Glicina/análogos & derivados , Sistemas de Secreção Tipo VI/metabolismo , Acinetobacter baumannii/imunologia , Proteínas de Bactérias/genética , Western Blotting/classificação , Western Blotting/métodos , Glicina/metabolismo , Modelos Moleculares , Conformação Proteica , Sistemas de Secreção Tipo VI/imunologia
16.
Infect Immun ; 89(10): e0016221, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34310884

RESUMO

Extremely drug-resistant (XDR) Acinetobacter baumannii is a notorious and frequently encountered pathogen demanding novel therapeutic interventions. An initial monoclonal antibody (MAb), C8, raised against A. baumannii capsule, proved a highly effective treatment against a minority of clinical isolates. To overcome this limitation, we broadened coverage by developing a second antibody for use in a combination regimen. We sought to develop an additional anti-A. baumannii MAb through hybridoma technology by immunizing mice with sublethal inocula of virulent, XDR clinical isolates not bound by MAb C8. We identified a new antibacterial MAb, 65, which bound to strains in a pattern distinct from and complementary to that of MAb C8. MAb 65 enhanced macrophage opsonophagocytosis of targeted strains and markedly improved survival in lethal bacteremic sepsis and aspiration pneumonia murine models of A. baumannii infection. MAb 65 was also synergistic with colistin, substantially enhancing protection compared to monotherapy. Treatment with MAb 65 significantly reduced blood bacterial density, ameliorated cytokine production (interleukin-1ß [IL-1ß], IL-6, IL-10, and tumor necrosis factor), and sepsis biomarkers. We describe a novel MAb targeting A. baumannii that broadens immunotherapeutic strain coverage, is highly potent and effective, and synergistically improves outcomes in combination with antibiotics.


Assuntos
Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/imunologia , Anticorpos Monoclonais/imunologia , Infecções por Acinetobacter/sangue , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos/imunologia , Anticorpos Antibacterianos/imunologia , Biomarcadores/sangue , Colistina/imunologia , Citocinas/sangue , Citocinas/imunologia , Farmacorresistência Bacteriana Múltipla/imunologia , Camundongos , Testes de Sensibilidade Microbiana/métodos , Sepse/sangue , Sepse/imunologia , Sepse/microbiologia
17.
Sci Rep ; 11(1): 13213, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34168196

RESUMO

Acinetobacter baumannii (A. baumannii), an opportunistic, gram-negative pathogen, has evoked the interest of the medical community throughout the world because of its ability to cause nosocomial infections, majorly infecting those in intensive care units. It has also drawn the attention of researchers due to its evolving immune evasion strategies and increased drug resistance. The emergence of multi-drug-resistant-strains has urged the need to explore novel therapeutic options as an alternative to antibiotics. Due to the upsurge in antibiotic resistance mechanisms exhibited by A. baumannii, the current therapeutic strategies are rendered less effective. The aim of this study is to explore novel therapeutic alternatives against A. baumannii to control the ailed infection. In this study, a computational framework is employed involving, pan genomics, subtractive proteomics and reverse vaccinology strategies to identify core promiscuous vaccine candidates. Two chimeric vaccine constructs having B-cell derived T-cell epitopes from prioritized vaccine candidates; APN, AdeK and AdeI have been designed and checked for their possible interactions with host BCR, TLRs and HLA Class I and II Superfamily alleles. These vaccine candidates can be experimentally validated and thus contribute to vaccine development against A. baumannii infections.


Assuntos
Acinetobacter baumannii/imunologia , Vacinas Bacterianas/imunologia , Infecções por Acinetobacter/imunologia , Sequência de Aminoácidos , Antibacterianos/imunologia , Biologia Computacional/métodos , Infecção Hospitalar/imunologia , Epitopos/imunologia , Genoma Bacteriano/imunologia , Genômica/métodos , Proteômica/métodos , Vacinologia/métodos
18.
Front Immunol ; 12: 666742, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936107

RESUMO

Vaccines and monoclonal antibodies are promising approaches for preventing and treating infections caused by multidrug resistant Acinetobacter baumannii. However, only partial protection has been achieved with many previously tested protein antigens, which suggests that vaccines incorporating multiple antigens may be necessary in order to obtain high levels of protection. Several aspects that use the wealth of omic data available for A. baumannii have not been fully exploited for antigen identification. In this study, the use of fractionated proteomic and computational data from ~4,200 genomes increased the number of proteins potentially accessible to the humoral response to 8,824 non-redundant proteins in the A. baumannii panproteome. Among them, 59% carried predicted B-cell epitopes and T-cell epitopes recognized by two or more alleles of the HLA class II DP supertype. Potential cross-reactivity with human proteins was detected for 8.9% of antigens at the protein level and 2.7% at the B-cell epitope level. Individual antigens were associated with different infection types by genomic, transcriptomic or functional analyses. High intra-clonal genome density permitted the identification of international clone II as a "vaccitype", in which 20% of identified antigens were specific to this clone. Network-based centrality measurements were used to identify multiple immunologic nodes. Data were formatted, unified and stored in a data warehouse database, which was subsequently used to identify synergistic antigen combinations for different vaccination strategies. This study supports the idea that integration of multi-omic data and fundamental knowledge of the pathobiology of drug-resistant bacteria can facilitate the development of effective multi-antigen vaccines against these challenging infections.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/imunologia , Vacinas Bacterianas/imunologia , Farmacorresistência Bacteriana/imunologia , Epitopos/imunologia , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/genética , Antígenos de Bactérias/imunologia , Epitopos/química , Epitopos/genética , Genes Bacterianos , Genoma Bacteriano , Genômica/métodos , Humanos
19.
Mol Immunol ; 135: 276-284, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33940514

RESUMO

Type VI Secretion System (T6SS) contributes to both virulence and antimicrobial resistance in Acinetobacter baumannii. Valine-glycine repeat protein G (VgrG) is the core component of T6SS that exists in many bacterial pathogens that have emerged as a potent mediator of pathogenicity in A. baumannii. Two conserved sequences of vgrG 1263-2295 and vgrG1263-1608 were identified antigenic in various strains of Acinetobacter baumannii. The vgrg1263-1608 sequence was implanted in the Loopless C lobe (LCL) from N. meningitidis for surface display and exposure to functional epitopes. The VgrG and LCL-VgrG were expressed and purified. Groups of BALB/c mice were immunized with these proteins and challenged with A. baumannii. Specific IgG titers, whole-cell ELISA, animal survival rates in active and passive immunizations, the bacterial burden in mice tissues, and cytotoxicity of the proteins were determined. The specific IgG suppressed bacterial burdens in the organs, and increased survival rates were noted in the immunized mice. LCL-VgrG immunization provided better protection against A. baumannii infection than the VgrG immunization. The conserved region of VgrG is probably a safe immunogen to effective vaccine development or an antiserum to control A. baumannii infections.


Assuntos
Infecções por Acinetobacter/prevenção & controle , Acinetobacter baumannii/imunologia , Anticorpos Antibacterianos/imunologia , Vacinas Bacterianas/imunologia , Oligopeptídeos/imunologia , Células A549 , Acinetobacter baumannii/patogenicidade , Animais , Anticorpos Antibacterianos/sangue , Carga Bacteriana/imunologia , Vacinas Bacterianas/administração & dosagem , Linhagem Celular , Feminino , Glicina/química , Humanos , Imunização , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Oligopeptídeos/administração & dosagem , Sistemas de Secreção Tipo VI , Valina/química , Virulência/fisiologia
20.
J Infect Dis ; 224(12): 2133-2147, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34036366

RESUMO

Monoclonal antibodies (mAbs) are gaining significant momentum as novel therapeutics for infections caused by antibiotic-resistant bacteria. We evaluated the mechanism by which antibacterial mAb therapy protects against Acinetobacter baumannii infections. Anticapsular mAb enhanced macrophage opsonophagocytosis and rescued mice from lethal infections by harnessing complement, macrophages, and neutrophils; however, the degree of bacterial burden did not correlate with survival. Furthermore, mAb therapy reduced proinflammatory (interleukin-1ß [IL-1ß], IL-6, tumor necrosis factor-α [TNF-α]) and anti-inflammatory (IL-10) cytokines, which correlated inversely with survival. Although disrupting IL-10 abrogated the survival advantage conferred by the mAb, IL-10-knockout mice treated with mAb could still survive if TNF-α production was suppressed directly (via anti-TNF-α neutralizing antibody) or indirectly (via macrophage depletion). Thus, even for a mAb that enhances microbial clearance via opsonophagocytosis, clinical efficacy required modulation of pro- and anti-inflammatory cytokines. These findings may inform future mAb development targeting bacteria that trigger the sepsis cascade.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Imunomodulação , Infecções por Acinetobacter/microbiologia , Animais , Antibacterianos , Citocinas/sangue , Citocinas/imunologia , Interleucina-10 , Camundongos , Opsonização , Inibidores do Fator de Necrose Tumoral , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA