Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Biochem Soc Trans ; 51(6): 2005-2016, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38095060

RESUMO

The PDZ and LIM domain (PDLIM) proteins are associated with the actin cytoskeleton and have conserved in roles in metazoan actin organisation and function. They primarily function as scaffolds linking various proteins to actin and its binding partner α-actinin via two conserved domains; an N-terminal postsynaptic density 95, discs large and zonula occludens-1 (PDZ) domain, and either single or multiple C-terminal LIN-11, Isl-1 and MEC-3 (LIM) domains in the actinin-associated LIM protein (ALP)- and Enigma-related proteins, respectively. While their role in actin organisation, such as in stress fibres or in the Z-disc of muscle fibres is well known, emerging evidence also suggests a role in actin-dependent membrane trafficking in the endosomal system. This is mediated by a recently identified interaction with the sorting nexin 17 (SNX17) protein, an adaptor for the trafficking complex Commander which is itself intimately linked to actin-directed formation of endosomal recycling domains. In this review we focus on the currently understood structural basis for PDLIM function. The PDZ domains mediate direct binding to distinct classes of PDZ-binding motifs (PDZbms), including α-actinin and other actin-associated proteins, and a highly specific interaction with the type III PDZbm such as the one found in the C-terminus of SNX17. The structures of the LIM domains are less well characterised and how they engage with their ligands is completely unknown. Despite the lack of experimental structural data, we find that recently developed machine learning-based structure prediction methods provide insights into their potential interactions and provide a template for further studies of their molecular functions.


Assuntos
Actinina , Actinas , Animais , Actinas/metabolismo , Actinina/química , Actinina/metabolismo , Domínios PDZ , Citoesqueleto de Actina/metabolismo , Proteínas com Domínio LIM/metabolismo , Ligação Proteica
2.
Hum Mutat ; 43(12): 1745-1756, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36116040

RESUMO

ACTN2 encodes alpha-actinin-2, a protein expressed in human cardiac and skeletal muscle. The protein, located in the sarcomere Z-disk, functions as a link between the anti-parallel actin filaments. This important structural protein also binds N-terminal titins, and thus contributes to sarcomere stability. Previously, ACTN2 mutations have been solely associated with cardiomyopathy, without skeletal muscle disease. Recently, however, ACTN2 mutations have been associated with novel congenital and distal myopathy. Previously reported variants are in varying locations across the gene, but the potential clustering effect of pathogenic locations is not clearly understood. Further, the genotype-phenotype correlations of these variants remain unclear. Here we review the previously reported ACTN2-related molecular and clinical findings and present an additional variant, c.1840-2A>T, that further expands the mutation and phenotypic spectrum. Our results show a growing body of clinical, genetic, and functional evidence, which underlines the central role of ACTN2 in the muscle tissue and myopathy. However, limited segregation and functional data are available to support the pathogenicity of most previously reported missense variants and clear-cut genotype-phenotype correlations are currently only demonstrated for some ACTN2-related myopathies.


Assuntos
Actinina , Coração , Humanos , Actinina/genética , Actinina/química , Mutação , Músculo Esquelético/metabolismo , Mutação de Sentido Incorreto
3.
Acta Histochem ; 124(7): 151935, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35932544

RESUMO

α-actinin superfamily houses the family of parvins, comprising α, ß and γ isoforms in the vertebrates and a single orthologue in the invertebrates. Parvin as an adaptor protein is a member of the ternary IPP-complex including Integrin Linked Kinase (ILK) and particularly-interesting-Cys-His-rich protein (PINCH). Each of the complex proteins showed a conserved lineage and was principally used by the evolutionarily primitive integrin-adhesome machinery to regulate cellular behaviour and signalling pathways. Parvin facilitated integrin mediated integration of the extracellular matrix with cytoskeletal framework culminating in regulation of cellular adhesion and spreading, cytoskeleton reorganisation and cell survival. Studies have established role of parvin in pregnancy, lactation, matrix degradation, blood vessel formation and in several diseases such as cancer, NAFLD and cardiac diseases etc. This review narrates the history of parvin discovery, its elaborate gene structure and conservation across phyla including cellular expression, localisation and interacting partners in vertebrates as well as invertebrates. The review further discusses how parvin acts as an epicentre of signalling pathways, its associated mutants and diseased conditions.


Assuntos
Actinina , Proteínas dos Microfilamentos , Actinina/química , Actinina/genética , Actinina/metabolismo , Animais , Progressão da Doença , Feminino , Humanos , Integrinas , Proteínas dos Microfilamentos/genética , Transdução de Sinais
4.
Cell ; 184(8): 2135-2150.e13, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765442

RESUMO

Sarcomeres are force-generating and load-bearing devices of muscles. A precise molecular picture of how sarcomeres are built underpins understanding their role in health and disease. Here, we determine the molecular architecture of native vertebrate skeletal sarcomeres by electron cryo-tomography. Our reconstruction reveals molecular details of the three-dimensional organization and interaction of actin and myosin in the A-band, I-band, and Z-disc and demonstrates that α-actinin cross-links antiparallel actin filaments by forming doublets with 6-nm spacing. Structures of myosin, tropomyosin, and actin at ~10 Å further reveal two conformations of the "double-head" myosin, where the flexible orientation of the lever arm and light chains enable myosin not only to interact with the same actin filament, but also to split between two actin filaments. Our results provide unexpected insights into the fundamental organization of vertebrate skeletal muscle and serve as a strong foundation for future investigations of muscle diseases.


Assuntos
Músculo Esquelético/metabolismo , Sarcômeros/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinina/química , Actinina/metabolismo , Actomiosina/química , Actomiosina/metabolismo , Animais , Microscopia Crioeletrônica , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Moleculares , Ligação Proteica , Sarcômeros/metabolismo , Sarcômeros/ultraestrutura , Tropomiosina/química , Tropomiosina/metabolismo
5.
Nat Chem Biol ; 17(5): 540-548, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33603247

RESUMO

Precision tools for spatiotemporal control of cytoskeletal motor function are needed to dissect fundamental biological processes ranging from intracellular transport to cell migration and division. Direct optical control of motor speed and direction is one promising approach, but it remains a challenge to engineer controllable motors with desirable properties such as the speed and processivity required for transport applications in living cells. Here, we develop engineered myosin motors that combine large optical modulation depths with high velocities, and create processive myosin motors with optically controllable directionality. We characterize the performance of the motors using in vitro motility assays, single-molecule tracking and live-cell imaging. Bidirectional processive motors move efficiently toward the tips of cellular protrusions in the presence of blue light, and can transport molecular cargo in cells. Robust gearshifting myosins will further enable programmable transport in contexts ranging from in vitro active matter reconstitutions to microfabricated systems that harness molecular propulsion.


Assuntos
Actinina/química , Células Epiteliais/metabolismo , Miosinas/química , Neurônios/metabolismo , Engenharia de Proteínas/métodos , Espectrina/química , Actinina/genética , Actinina/metabolismo , Animais , Avena , Linhagem Celular , Chara , Galinhas , Clonagem Molecular , Dictyostelium , Células Epiteliais/citologia , Células Epiteliais/efeitos da radiação , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Luz , Modelos Moleculares , Movimento (Física) , Miosinas/genética , Miosinas/metabolismo , Neurônios/citologia , Neurônios/efeitos da radiação , Óptica e Fotônica/métodos , Cultura Primária de Células , Ratos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espectrina/genética , Espectrina/metabolismo , Nicotiana
6.
Nat Commun ; 11(1): 4476, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32900995

RESUMO

Mechanically stable specific heterodimerization between small protein domains have a wide scope of applications, from using as a molecular anchorage in single-molecule force spectroscopy studies of protein mechanics, to serving as force-bearing protein linker for modulation of mechanotransduction of cells, and potentially acting as a molecular crosslinker for functional materials. Here, we explore the possibility to develop heterodimerization system with a range of mechanical stability from a set of recently engineered helix-heterotetramers whose mechanical properties have yet to be characterized. We demonstrate this possibility using two randomly chosen helix-heterotetramers, showing that their mechanical properties can be modulated by changing the stretching geometry and the number of interacting helices. These helix-heterotetramers and their derivatives are sufficiently stable over physiological temperature range. Using it as mechanically stable anchorage, we demonstrate the applications in single-molecule manipulation studies of the temperature dependent unfolding and refolding of a titin immunoglobulin domain and α-actinin spectrin repeats.


Assuntos
Engenharia de Proteínas , Multimerização Proteica , Estabilidade Proteica , Actinina/química , Fenômenos Biomecânicos , Conectina/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica em alfa-Hélice , Domínios Proteicos , Dobramento de Proteína , Estrutura Quaternária de Proteína , Desdobramento de Proteína , Imagem Individual de Molécula , Temperatura
7.
Proc Natl Acad Sci U S A ; 117(36): 22101-22112, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32848067

RESUMO

The actin cytoskeleton, a dynamic network of actin filaments and associated F-actin-binding proteins, is fundamentally important in eukaryotes. α-Actinins are major F-actin bundlers that are inhibited by Ca2+ in nonmuscle cells. Here we report the mechanism of Ca2+-mediated regulation of Entamoeba histolytica α-actinin-2 (EhActn2) with features expected for the common ancestor of Entamoeba and higher eukaryotic α-actinins. Crystal structures of Ca2+-free and Ca2+-bound EhActn2 reveal a calmodulin-like domain (CaMD) uniquely inserted within the rod domain. Integrative studies reveal an exceptionally high affinity of the EhActn2 CaMD for Ca2+, binding of which can only be regulated in the presence of physiological concentrations of Mg2+ Ca2+ binding triggers an increase in protein multidomain rigidity, reducing conformational flexibility of F-actin-binding domains via interdomain cross-talk and consequently inhibiting F-actin bundling. In vivo studies uncover that EhActn2 plays an important role in phagocytic cup formation and might constitute a new drug target for amoebic dysentery.


Assuntos
Actinina/metabolismo , Cálcio/farmacologia , Entamoeba histolytica/metabolismo , Actinina/química , Actinina/genética , Domínio Catalítico , Entamoeba histolytica/genética , Regulação da Expressão Gênica , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
8.
Proc Natl Acad Sci U S A ; 116(33): 16192-16197, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31346091

RESUMO

In cells, actin-binding proteins (ABPs) sort to different regions to establish F-actin networks with diverse functions, including filopodia used for cell migration and contractile rings required for cell division. Recent experimental work uncovered a competition-based mechanism that may facilitate spatial localization of ABPs: binding of a short cross-linker protein to 2 actin filaments promotes the binding of other short cross-linkers and inhibits the binding of longer cross-linkers (and vice versa). We hypothesize this sorting arises because F-actin is semiflexible and cannot bend over short distances. We develop a mathematical theory and lattice models encompassing the most important physical parameters for this process and use coarse-grained simulations with explicit cross-linkers to characterize and test our predictions. Our theory and data predict an explicit dependence of cross-linker separation on bundle polymerization rate. We perform experiments that confirm this dependence, but with an unexpected cross-over in dominance of one cross-linker at high growth rates to the other at slow growth rates, and we investigate the origin of this cross-over with further simulations. The nonequilibrium mechanism that we describe can allow cells to organize molecular material to drive biological processes, and our results can guide the choice and design of cross-linkers for engineered protein-based materials.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Proteínas dos Microfilamentos/química , Modelos Teóricos , Citoesqueleto de Actina/genética , Actinina/química , Actinina/genética , Actinas/genética , Animais , Proteínas de Transporte/química , Proteínas de Transporte/genética , Divisão Celular/genética , Movimento Celular/genética , Cinética , Proteínas dos Microfilamentos/genética , Ligação Proteica/genética , Transporte Proteico/genética , Pseudópodes/química , Pseudópodes/genética
9.
Hum Mutat ; 40(12): 2258-2269, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31237726

RESUMO

The ACTN1 gene has been implicated in inherited macrothrombocytopenia. To decipher the spectrum of variants and phenotype of ACTN1-related thrombocytopenia, we sequenced the ACTN1 gene in 272 cases of unexplained chronic or familial thrombocytopenia. We identified 15 rare, monoallelic, nonsynonymous and likely pathogenic ACTN1 variants in 20 index cases from 20 unrelated families. Thirty-one family members exhibited thrombocytopenia. Targeted sequencing was carried out on 12 affected relatives, which confirmed presence of the variant. Twenty-eight of 32 cases with monoallelic ACTN1 variants had mild to no bleeding complications. Eleven cases harbored 11 different unreported ACTN1 variants that were monoallelic and likely pathogenic. Nine variants were located in the α-actinin-1 (ACTN1) rod domain and were predicted to hinder dimer formation. These variants displayed a smaller increase in platelet size compared with variants located outside the rod domain. In vitro expression of the new ACTN1 variants induced actin network disorganization and led to increased thickness of actin fibers. These findings expand the repertoire of ACTN1 variants associated with thrombocytopenia and highlight the high frequency of ACTN1-related thrombocytopenia cases. The rod domain, like other ACTN1 functional domains, may be mutated resulting in actin disorganization in vitro and thrombocytopenia with normal platelet size in most cases.


Assuntos
Actinina/química , Actinina/genética , Mutação , Análise de Sequência de DNA/métodos , Trombocitopenia/genética , Adolescente , Adulto , Idoso , Criança , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutagênese Sítio-Dirigida , Linhagem , Domínios Proteicos , Adulto Jovem
10.
Ann Neurol ; 85(6): 899-906, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30900782

RESUMO

OBJECTIVE: To clinically and pathologically characterize a cohort of patients presenting with a novel form of distal myopathy and to identify the genetic cause of this new muscular dystrophy. METHODS: We studied 4 families (3 from Spain and 1 from Sweden) suffering from an autosomal dominant distal myopathy. Affected members showed adult onset asymmetric distal muscle weakness with initial involvement of ankle dorsiflexion later progressing also to proximal limb muscles. RESULTS: In all 3 Spanish families, we identified a unique missense variant in the ACTN2 gene cosegregating with the disease. The affected members of the Swedish family carry a different ACTN2 missense variant. INTERPRETATION: ACTN2 encodes for alpha actinin2, which is highly expressed in the sarcomeric Z-disk with a major structural and functional role. Actininopathy is thus a new genetically determined distal myopathy. ANN NEUROL 2019;85:899-906.


Assuntos
Actinina/genética , Miopatias Distais/diagnóstico , Miopatias Distais/genética , Genes Dominantes/genética , Mutação de Sentido Incorreto/genética , Actinina/química , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Estrutura Secundária de Proteína
11.
Cell Mol Life Sci ; 76(12): 2299-2328, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30877334

RESUMO

The appearance of modular proteins is a widespread phenomenon during the evolution of proteins. The combinatorial arrangement of different functional and/or structural domains within a single polypeptide chain yields a wide variety of activities and regulatory properties to the modular proteins. In this review, we will discuss proteins, that in addition to their catalytic, transport, structure, localization or adaptor functions, also have segments resembling the helix-loop-helix EF-hand motifs found in Ca2+-binding proteins, such as calmodulin (CaM). These segments are denoted CaM-like domains (CaM-LDs) and play a regulatory role, making these CaM-like proteins sensitive to Ca2+ transients within the cell, and hence are able to transduce the Ca2+ signal leading to specific cellular responses. Importantly, this arrangement allows to this group of proteins direct regulation independent of other Ca2+-sensitive sensor/transducer proteins, such as CaM. In addition, this review also covers CaM-binding proteins, in which their CaM-binding site (CBS), in the absence of CaM, is proposed to interact with other segments of the same protein denoted CaM-like binding site (CLBS). CLBS are important regulatory motifs, acting either by keeping these CaM-binding proteins inactive in the absence of CaM, enhancing the stability of protein complexes and/or facilitating their dimerization via CBS/CLBS interaction. The existence of proteins containing CaM-LDs or CLBSs substantially adds to the enormous versatility and complexity of Ca2+/CaM signaling.


Assuntos
Calmodulina/química , Motivos EF Hand , Proteínas/química , Actinina/química , Actinina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Calcineurina/química , Calcineurina/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio , Calmodulina/metabolismo , Calpaína/química , Calpaína/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Proteínas/metabolismo
12.
Neuron ; 97(5): 1094-1109.e9, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29429936

RESUMO

Despite the central role PSD-95 plays in anchoring postsynaptic AMPARs, how PSD-95 itself is tethered to postsynaptic sites is not well understood. Here we show that the F-actin binding protein α-actinin binds to the very N terminus of PSD-95. Knockdown (KD) of α-actinin phenocopies KD of PSD-95. Mutating lysine at position 10 or lysine at position 11 of PSD-95 to glutamate, or glutamate at position 53 or glutamate and aspartate at positions 213 and 217 of α-actinin, respectively, to lysine impairs, in parallel, PSD-95 binding to α-actinin and postsynaptic localization of PSD-95 and AMPARs. These experiments identify α-actinin as a critical PSD-95 anchor tethering the AMPAR-PSD-95 complex to postsynaptic sites.


Assuntos
Actinina/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Potenciais Pós-Sinápticos Excitadores/fisiologia , Hipocampo/metabolismo , Actinina/química , Actinina/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Proteína 4 Homóloga a Disks-Large/química , Proteína 4 Homóloga a Disks-Large/genética , Feminino , Células HEK293 , Humanos , Masculino , Estrutura Secundária de Proteína , Ratos
13.
Methods Mol Biol ; 1721: 95-103, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29423850

RESUMO

When it comes to crystallization each protein is unique. It can never be predicted beforehand in which condition the particular protein will crystallize or even if it is possible to crystallize. Still, by following some simple checkpoints the chances of obtaining crystals are increased. The primary checkpoints are purity, stability, concentration, and homogeneity. High-quality protein crystals are needed. This protocol will allow an investigator to: clone, express, and crystallize a protein of interest.


Assuntos
Actinina , Clonagem Molecular , Expressão Gênica , Actinina/biossíntese , Actinina/química , Actinina/genética , Actinina/isolamento & purificação , Cristalografia por Raios X/métodos , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
14.
Int J Biochem Cell Biol ; 95: 73-84, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29274473

RESUMO

Tyro3, a member of TAM receptor tyrosine kinase family, has been implicated in the regulation of melanoma progression and survival. In this study, we sought the molecular mechanism of Tyro3 effects avoiding endogenous background by overexpression of Tyro3 in fibroblasts that have negligible levels of Tyro3. This introduction triggers the tyrosyl-phosphorylation of ACTN4, a member of actin binding protein family involved in motility, a behavior critical for invasive progression, as shown by siRNA to Tyro3 limiting melanoma cell migration and invasion. Tyro3-mediated phosphorylation of ACTN4 required FAK activation at tyrosine 397 and the EGF receptor cascade, but not EGFR ligand binding. Using PCR-based mutagenesis, the sites of Tyro3-mediated ACTN4 phosphorylation were mapped to ACTN4 tyrosine 11 and 13, and this occurs in conjunction with EGF-mediated phosphorylation on Y4 and Y31. Interestingly, Tyro3-mediated phosphorylation only slightly decreases the actin binding activity of ACTN4. However, this rendered the phosphorylated ACTN4 resistant to the m-calpain cleavage between Y13 and G14, a limited proteolysis that prevents growth factor regulation of ACTN4 interaction with F-actin. Overexpression of both WT ACTN4 and ACTN4Y11/13E, a mimic of ACTN4 phosphorylated at tyrosine 11 and 13, in melanoma WM983b cells resulted in a likely mesenchymal to amoeboidal transition. ACTN4Y11/13E-expressing cells were more amoeboidal, less migratory on collagen I gel coated surface but more invasive through collagen networks. In parallel, expression of ACTN4Y11/13E, in ACTN4 knockdown melanoma WM1158 cells resulted in an increase of invasion compared to WT ACTN4. These findings suggest that Tyro3-mediated phosphorylation of ACTN4 is involved in invasion of melanoma cells.


Assuntos
Actinina/metabolismo , Calpaína/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Melanoma/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais , Actinina/química , Actinina/genética , Substituição de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular , Ativação Enzimática , Quinase 1 de Adesão Focal/química , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/química , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Melanoma/enzimologia , Melanoma/patologia , Mutação , Invasividade Neoplásica/patologia , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosforilação , Estabilidade Proteica , Proteólise , Interferência de RNA , Receptores Proteína Tirosina Quinases/antagonistas & inibidores , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Tirosina/metabolismo
15.
Cell Rep ; 21(10): 2714-2723, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29212020

RESUMO

α-Actinins, a family of critical cytoskeletal actin-binding proteins that usually exist as anti-parallel dimers, play crucial roles in organizing the framework of the cytoskeleton through crosslinking the actin filaments, as well as in focal adhesion maturation. However, the molecular mechanisms underlying its functions are unclear. Here, by mechanical manipulation of single human α-actinin 1 using magnetic tweezers, we determined the mechanical stability and kinetics of the functional domains in α-actinin 1. Moreover, we identified the force-dependence of vinculin binding to α-actinin 1, with the demonstration that force is required to expose the high-affinity binding site for vinculin binding. Further, a role of the α-actinin 1 as molecular shock absorber for the cytoskeleton network is revealed. Our results provide a comprehensive analysis of the force-dependent stability and interactions of α-actinin 1, which sheds important light on the molecular mechanisms underlying its mechanotransmission and mechanosensing functions.


Assuntos
Actinina/metabolismo , Actinina/química , Citoesqueleto/metabolismo , Humanos , Cinética , Nanopartículas de Magnetita/química , Mecanotransdução Celular/genética , Mecanotransdução Celular/fisiologia , Vinculina/química
17.
J Biochem ; 162(2): 93-102, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338873

RESUMO

A contractile ring (CR) is involved in cytokinesis in animal and yeast cells. Although several types of actin-bundling proteins associate with F-actin in the CR, their individual roles in the CR have not yet been elucidated in detail. Ain1 is the sole α-actinin homologue in the fission yeast Schizosaccharomyces pombe and specifically localizes to the CR with a high turnover rate. S. pombe cells lacking the ain1+ gene show defects in cytokinesis under stress conditions. We herein investigated the biochemical activity and cellular localization mechanisms of Ain1. Ain1 showed weaker affinity to F-actin in vitro than other actin-bundling proteins in S. pombe. We identified a mutation that presumably loosened the interaction between two calponin-homology domains constituting the single actin-binding domain (ABD) of Ain1, which strengthened the actin-binding activity of Ain1. This mutant protein induced a deformation in the ring shape of the CR. Neither a truncated protein consisting only of an N-terminal ABD nor a truncated protein lacking a C-terminal region containing an EF-hand motif localized to the CR, whereas the latter was involved in the bundling of F-actin in vitro. We herein propose detailed mechanisms for how each part of the molecule is involved in the proper cellular localization and function of Ain1.


Assuntos
Actinina/metabolismo , Actinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Actinina/química , Actinina/genética , Actinas/química , Sítios de Ligação , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
18.
Parasit Vectors ; 10(1): 83, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209207

RESUMO

BACKGROUND: Human trichomoniasis caused by Trichomonas vaginalis is one of the most common sexually transmitted diseases with more than 200 million cases worldwide. It has caused a series of health problems to patients. For prevention and control of infectious diseases, vaccines are usually considered as one of the most cost-efficient tools. However, until now, work on the development of T. vaginalis vaccines is still mainly focused on the screening of potential immunogens. Alpha-actinin characterized by high immunogenicity in T. vaginalis was suggested as a promising candidate. Therefore, the purpose of this study was to evaluate the protective potency of recombinant α-actinin against T. vaginalis infection in a mouse intraperitoneal model. METHODS: Two selected coding regions of α-actinin (ACT-F, 14-469 aa and ACT-T, 462-844 aa) amplified from cDNA were cloned into pET-32a (+) expression vector and transfected into BL21 cells. After induction with IPTG and purification with electroelution, the two recombinant fusion proteins were emulsified in Freund's adjuvant (FA) and used to immunize BALB/C mice. Following intraperitoneal inoculation with T. vaginalis, the survival rate of mice was monitored for the assessment of protective potency. After immunization, the antibody level in mouse serum was assessed by ELISA, splenocyte proliferation response was detected with CCK8 and cytokines in the supernatant of splenocytes were quantified with a cytometric bead-based assay. RESULTS: We successfully obtained purified ACT-F (70.33 kDa) and ACT-T (61.7kDa). Both recombinant proteins could provide significant protection against T. vaginalis challenge, especially ACT-T (with 100% protection within one month). Meanwhile, high levels of specific total IgG and subtypes (IgG1 > IgG2a) were detected in sera from the immunized mice. Our results also revealed a statistically significant increase in splenocyte proliferation and related cytokine (IFN-γ, IL-6, IL-17A and IL-10) production after repeated stimulation with the corresponding antigens in vitro. CONCLUSIONS: Immunization with both ACT-F and ACT-T could confer partial to complete protection and trigger strong Th1/Th2 mixed humoral and cellular immune responses in the mouse host. This suggested that recombinant α-actinin subunit antigens may be promising vaccine candidates against trichomoniasis.


Assuntos
Actinina/metabolismo , Antígenos de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Tricomoníase/prevenção & controle , Trichomonas vaginalis/metabolismo , Actinina/química , Actinina/imunologia , Animais , Antígenos de Protozoários/química , Clonagem Molecular , Citocinas/genética , Citocinas/metabolismo , Feminino , Regulação da Expressão Gênica/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Coelhos , Baço
19.
Proc Natl Acad Sci U S A ; 114(5): 1015-1020, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096424

RESUMO

Stable anchoring of titin within the muscle Z-disk is essential for preserving muscle integrity during passive stretching. One of the main candidates for anchoring titin in the Z-disk is the actin cross-linker α-actinin. The calmodulin-like domain of α-actinin binds to the Z-repeats of titin. However, the mechanical and kinetic properties of this important interaction are still unknown. Here, we use a dual-beam optical tweezers assay to study the mechanics of this interaction at the single-molecule level. A single interaction of α-actinin and titin turns out to be surprisingly weak if force is applied. Depending on the direction of force application, the unbinding forces can more than triple. Our results suggest a model where multiple α-actinin/Z-repeat interactions cooperate to ensure long-term stable titin anchoring while allowing the individual components to exchange dynamically.


Assuntos
Actinina/metabolismo , Conectina/metabolismo , Actinina/química , Sequência de Aminoácidos , Animais , Conectina/química , Cisteína/química , Cistina/química , Humanos , Mutagênese Sítio-Dirigida , Pinças Ópticas , Domínios Proteicos , Mapeamento de Interação de Proteínas , Coelhos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Sequências Repetitivas de Aminoácidos , Sarcômeros/química , Sarcômeros/ultraestrutura , Estresse Mecânico
20.
Biochim Biophys Acta Mol Cell Res ; 1864(4): 674-686, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28130124

RESUMO

Adenosine receptors are G protein-coupled receptors that sense extracellular adenosine to transmit intracellular signals. One of the four adenosine receptor subtypes, the adenosine A2A receptor (A2AR), has an exceptionally long intracellular C terminus (A2AR-ct) that mediates interactions with a large array of proteins, including calmodulin and α-actinin. Here, we aimed to ascertain the α-actinin 1/calmodulin interplay whilst binding to A2AR and the role of Ca2+ in this process. First, we studied the A2AR-α-actinin 1 interaction by means of native polyacrylamide gel electrophoresis, isothermal titration calorimetry, and surface plasmon resonance, using purified recombinant proteins. α-Actinin 1 binds the A2AR-ct through its distal calmodulin-like domain in a Ca2+-independent manner with a dissociation constant of 5-12µM, thus showing an ~100 times lower affinity compared to the A2AR-calmodulin/Ca2+ complex. Importantly, calmodulin displaced α-actinin 1 from the A2AR-ct in a Ca2+-dependent fashion, disrupting the A2AR-α-actinin 1 complex. Finally, we assessed the impact of Ca2+ on A2AR internalization in living cells, a function operated by the A2AR-α-actinin 1 complex. Interestingly, while Ca2+ influx did not affect constitutive A2AR endocytosis, it abolished agonist-dependent internalization. In addition, we demonstrated that the A2AR/α-actinin interaction plays a pivotal role in receptor internalization and function. Overall, our results suggest that the interplay of A2AR with calmodulin and α-actinin 1 is fine-tuned by Ca2+, a fact that might power agonist-mediated receptor internalization and function.


Assuntos
Actinina/química , Agonistas do Receptor A2 de Adenosina/química , Adenosina/análogos & derivados , Cálcio/metabolismo , Calmodulina/química , Fenetilaminas/química , Receptor A2A de Adenosina/química , Actinina/genética , Actinina/metabolismo , Adenosina/química , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Motivos de Aminoácidos , Sítios de Ligação , Calmodulina/genética , Calmodulina/metabolismo , Clonagem Molecular , Endocitose/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Células HEK293 , Humanos , Cinética , Fenetilaminas/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA