Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 302
Filtrar
1.
Invest Ophthalmol Vis Sci ; 61(4): 37, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32340030

RESUMO

Purpose: The purpose of this study was to investigate the acute effects of caffeine on retinal hemodynamics during dark to light adaptation using optical coherence tomography angiography (OCTA). Methods: Thirteen healthy individuals (13 eyes) underwent OCTA imaging after dark adaptation and at repeated intervals during the transition to ambient light in two imaging sessions: control and after ingesting 200 mg of caffeine. We analyzed the parafoveal vessel density (VD) and adjusted flow index (AFI) of the superficial capillary plexus (SCP), middle capillary plexus (MCP), and deep capillary plexus (DCP), as well as the vessel length density (VLD) of the SCP. After adjusting for age, refractive error, and scan quality, we compared parameters between control and caffeine conditions. Results: In the dark, MCP VD decreased significantly after caffeine (-2.63 ± 1.28%). During the transition to light, initially, DCP VD increased (12.55 ± 2.52%), whereas SCP VD decreased (-2.09 ± 0.91%) significantly with caffeine compared to control. By 15 minutes in light, DCP VD reversed and was significantly decreased (-5.45 ± 2.62%), whereas MCP VD increased (4.65 ± 1.74%). There were no differences in AFI or VLD. Conclusions: We show that, overall, caffeine causes a trend of delayed vascular response in all three macular capillary plexuses in response to ambient light. Whereas the MCP is constricted in the dark, during the transition from dark to light, there is initially delay followed by prolonged constriction of the DCP and constriction followed by slow dilation of the SCP. We posit that these delayed vascular responses may present potential risk of capillary ischemia.


Assuntos
Adaptação Ocular/efeitos dos fármacos , Cafeína/efeitos adversos , Adaptação à Escuridão/efeitos dos fármacos , Vasos Retinianos/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Adulto , Fatores Etários , Cafeína/administração & dosagem , Feminino , Angiofluoresceinografia/métodos , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Acoplamento Neurovascular , Sensibilidade e Especificidade , Fatores de Tempo
2.
Molecules ; 24(18)2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31514422

RESUMO

Anthocyanin (AC) is widely used as supplement of eye health in Europe and in East Asia. In this review, I describe AC effects to clarify the mechanism is important in order to understand the effects of AC on vision health. The bioavailability of AC is quite low but, reported as intact form and many kinds of metabolite. And AC passes through the blood-aqueous fluid barrier and blood-retinal barrier. In vitro study, AC had a relaxing effect on ciliary muscle which is important to treat both myopia and glaucoma. And AC stimulate the regeneration of rhodopsin in frog rod outer segment. Furthermore, AC could inhibit the axial length and ocular length elongation in a negative lens-induced chick myopia model. In addition, we summarized clinical studies of AC intake improved dark adaptation and transient myopic shift and the improvement on retinal blood circulation in normal tension glaucoma patients.


Assuntos
Antocianinas/farmacologia , Olho/efeitos dos fármacos , Visão Ocular/efeitos dos fármacos , Animais , Antocianinas/química , Disponibilidade Biológica , Adaptação à Escuridão/efeitos dos fármacos , Distribuição Tecidual/efeitos dos fármacos
3.
Psychopharmacology (Berl) ; 236(7): 2049-2058, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30820632

RESUMO

RATIONALE: The endocannabinoid system (ECS) comprises the cannabinoids anandamide and 2-arachidonoylglycerol and the cannabinoid receptors 1 and 2 (Cnr1 and Cnr2). The function of these receptors in relation to zebrafish larval behavior is poorly understood, even though the zebrafish larva has become a versatile animal model in biomedical research. OBJECTIVES: The objective of the present study is to characterize the function of Cnr1 and Cnr2 in relation to behavior in zebrafish. METHODS: Behavioral analysis of zebrafish larvae was performed using a visual motor response (VMR) test, which allows locomotor activity to be determined under basal conditions and upon a dark challenge. RESULTS: Treatment with the non-specific Cnr agonists WIN55,212-2 and CP55,940 resulted in a decrease in locomotion. This was observed for both basal and challenge-induced locomotion, although the potency for these two effects was different, which suggests different mechanisms of action. In addition, WIN55,212-2 increased the reaction time of the startle response after the dark challenge. Using the Cnr1 antagonist AM251 and a cnr1-/- mutant line, it was shown that the effects were mediated by Cnr1 and not Cnr2. Interestingly, administration of the antagonist AM251 alone does not have an effect on locomotion, which indicates that endogenous cannabinoid activity does not affect locomotor activity of zebrafish larvae. Upon repeated dark challenges, the WIN55,212-2 effect on the locomotor activity decreased, probably due to desensitization of Cnr1. CONCLUSIONS: Taken together, these results show that Cnr1 activation by exogenous endocannabinoids modulates both basal and challenge-induced locomotor activity in zebrafish larvae and that these behavioral effects can be used as a readout to monitor the Cnr1 responsiveness in the zebrafish larva model system.


Assuntos
Adaptação à Escuridão/fisiologia , Larva/metabolismo , Locomoção/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Animais , Ácidos Araquidônicos/farmacologia , Canabinoides/farmacologia , Adaptação à Escuridão/efeitos dos fármacos , Relação Dose-Resposta a Droga , Endocanabinoides/farmacologia , Glicerídeos/farmacologia , Larva/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Piperidinas/farmacologia , Alcamidas Poli-Insaturadas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas , Peixe-Zebra , Proteínas de Peixe-Zebra/agonistas
4.
Behav Brain Res ; 357-358: 88-97, 2019 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-29246772

RESUMO

Our previous study found that serotonin 1A receptor (5-HT1aR) is an endogenous suppressor of nNOS expression in the hippocampus, which accounts for anxiolytic effect of fluoxetine. However, the precise molecular mechanism remains unknown. By using 8-OH-DPAT, a selective 5-HT1aR agonist, NAN-190, a selective 5-HT1aR antagonist, and U0126, an Extracellular Regulated Protein Kinases (ERK) phosphorylation inhibitor, we investigated the role of ERK in 5-HT1aR-nNOS pathway. Western blots analysis demonstrated that 5-HT1aR activation up-regulated the level of phosphorylated ERK (P-ERK) beginning at 5 min and down-regulated the expression of nNOS beginning at 20 min. Meanwhile, blockage of 5-HT1aR resulted in a decrease in P-ERK beginning at 20 min and caused an increase in nNOS expression beginning at 6 h. Although U0126 itself did not alter nNOS expression and activity, NO level, and anxiety-related behaviors, the treatment totally reversed 8-OH-DPAT-induced reduction in nNOS expression and function, and anxiolytic effect. Besides, our data showed that ERK phosphorylation was essential for 5-HT1aR activation-induced cAMP responsive element binding protein (CREB) phosphorylation, hippocampal neurogenesis and synaptogenesis of newborn neuron. Our study suggests a crucial role of ERK phosphorylation in the regulation of nNOS expression by 5-HT1aR, which is helpful for understanding the mechanism of 5-HT1aR-based anxiolytic treatment.


Assuntos
Ansiedade/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Animais Recém-Nascidos , Ansiedade/tratamento farmacológico , Adaptação à Escuridão/efeitos dos fármacos , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Serotoninérgicos/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Sacarose/administração & dosagem
5.
Pain ; 160(2): 345-357, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30281531

RESUMO

Pain is associated with negative emotions such as anxiety, but the underlying neurocircuitry and modulators of the association of pain and anxiety remain unclear. The neuropeptide cholecystokinin (CCK) has both pronociceptive and anxiogenic properties, so we explored the role of CCK in anxiety and nociception in the central amygdala (CeA), a key area in control of emotions and descending pain pathways. Local infusion of CCK into the CeA of control rats increased anxiety, as measured in the light-dark box test, but had no effect on mechanical sensitivity. By contrast, intra-CeA CCK infusion 4 days after Complete Freund's Adjuvant (CFA) injection into the hindpaw resulted in analgesia, but also in loss of its anxiogenic capacity. Inflammatory conditions induced changes in the CeA CCK signaling system with an increase of CCK immunoreactivity and a decrease in CCK1, but not CCK2, receptor mRNA. In CFA rats, patch-clamp experiments revealed that CCK infusion increased CeA neuron excitability. It also partially blocked the discharge of wide dynamic range neurons in the dorsal spinal cord. These effects of CCK on CeA and spinal neurons in CFA rats were mimicked by the specific CCK2 receptor agonist, gastrin. This analgesic effect was likely mediated by identified CeA neurons projecting to the periaqueductal gray matter that express CCK receptors. Together, our data demonstrate that intra-CeA CCK infusion activated a descending CCK2 receptor-dependent pathway that inhibited spinal neuron discharge. Thus, persistent pain induces a functional switch to a newly identified analgesic capacity of CCK in the amygdala, indicating central emotion-related circuit controls pain transmission in spinal cord.


Assuntos
Tonsila do Cerebelo/metabolismo , Colecistocinina/metabolismo , Dor/patologia , Receptor de Colecistocinina B/metabolismo , Transdução de Sinais/fisiologia , Tonsila do Cerebelo/patologia , Animais , Adaptação à Escuridão/efeitos dos fármacos , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Adjuvante de Freund/toxicidade , Gastrinas/uso terapêutico , Glutamato Descarboxilase/metabolismo , Inflamação/induzido quimicamente , Inflamação/complicações , Masculino , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Nociceptividade/efeitos dos fármacos , Dor/etiologia , Limiar da Dor/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/fisiologia , Ratos , Ratos Sprague-Dawley , Receptor de Colecistocinina B/agonistas , Receptor de Colecistocinina B/antagonistas & inibidores , Receptor de Colecistocinina B/genética , Transdução de Sinais/efeitos dos fármacos , Sincalida/uso terapêutico , Tetragastrina/análogos & derivados , Tetragastrina/uso terapêutico
6.
Behav Brain Res ; 360: 312-322, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30521932

RESUMO

Early life immune challenges are risk factors for neurodevelopmental disorders. In adolescence, they elicit behavioral symptoms that resemble clinical disorders. Stressors during this time may alter signaling from the gut microbiome, which increases the risk for psychiatric disorders. It was hypothesized that adolescent immune challenges may interact with a gut bacterial product, the short-chain fatty acid, propionic acid (PPA), to potentiate symptoms of anxiety and sensory abnormality. The present study investigated the effects of repeated lipopolysaccharide (LPS) exposure during early adolescence, on the behavioral effects of PPA in late adolescence and adulthood. Male adolescent rats were injected with LPS (0.2 mg/kg i.p.) or the vehicle on postnatal days (P) 28, P30, P32, and P34. They were later administered either PPA (500 mg/kg i.p.) or the vehicle during late adolescence on P40 and P43, and were subsequently tested on the light-dark anxiety test and acoustic startle response, respectively. In adulthood, the rats were again injected with PPA or the vehicle and tested on the light-dark and acoustic startle tasks on P74 and P77. The results of this study showed that LPS and PPA both decreased locomotor activity. PPA reduced vertical activity, percent prepulse inhibition, and acoustic startle response magnitude. LPS increased anxiogenic behaviors and induced a delayed increase in acoustic startle response magnitude in adulthood. Although no LPS and PPA interactions were found, the results of this study suggest that early adolescent immune activation can induce long-term behavioral changes that resemble the complex phenotypes of clinical disorders.


Assuntos
Ácidos Graxos Voláteis/metabolismo , Comportamento de Doença/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Propionatos/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Estimulação Acústica , Fatores Etários , Análise de Variância , Animais , Animais Recém-Nascidos , Peso Corporal/efeitos dos fármacos , Adaptação à Escuridão/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Estudos Longitudinais , Masculino , Inibição Pré-Pulso/efeitos dos fármacos , Ratos , Ratos Long-Evans
7.
Exp Eye Res ; 177: 50-54, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30059666

RESUMO

Melatonin plays an important role in the regulation of retinal functions, and previous studies have also reported that the action of melatonin on photoreceptors is mediated by melatonin receptor heterodimers. Furthermore, it has been reported that the melatonin-induced increase in the amplitude of the a- and b-wave is significantly blunted by inhibition of PKC. Previous work has also shown that PKCζ is present in the photoreceptors, thus suggesting that PCKζ may be implicated in the modulation of melatonin signaling in photoreceptors. To investigate the role PKCζ plays in the modulation of the melatonin effect on the scotopic ERG, mice were injected with melatonin and with specific inhibitors of different PKC isoforms. PKCζ knockout mice were also used in this study. PKCζ activation in photoreceptors following melatonin injection was also investigated with immunocytochemistry. Inhibition of PKCζ by PKCζ-pseudosubstrate inhibitor (20 µM) significantly reduced the melatonin-induced increase in the amplitude of the a- and b-wave. To further investigate the role of different PKCs in the modulation of the ERGs, we tested whether intra-vitreal injection of Enzastaurin (a potent inhibitor of PCKα, PKCß, PKCγ, and PKCε) has any effect on the melatonin-induced increase in the a- and b-wave of the scotopic ERGs. Enzastaurin (100 nM) did not prevent the melatonin-induced increase in the amplitude of the a-wave, thus suggesting that PCKα, PKCß, PKCγ, and PKCε are not involved in this phenomenon. Finally, our data indicated that, in mice lacking PKCζ, melatonin injection failed to increase the amplitude of the a- and b-waves of the scotopic ERGs. An increase in PKCζ phosphorylation in the photoreceptors was also observed by immunocytochemistry. Our data indicate that melatonin signaling does indeed use the PKCζ pathway to increase the amplitude of the a- and b-wave of the scotopic ERG.


Assuntos
Adaptação à Escuridão/fisiologia , Isoenzimas/fisiologia , Melatonina/farmacologia , Células Fotorreceptoras/efeitos dos fármacos , Proteína Quinase C/fisiologia , Receptores de Melatonina/fisiologia , Retina/efeitos dos fármacos , Análise de Variância , Animais , Adaptação à Escuridão/efeitos dos fármacos , Eletrorretinografia , Isoenzimas/antagonistas & inibidores , Masculino , Camundongos , Camundongos Knockout , Proteína Quinase C/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
8.
Invest Ophthalmol Vis Sci ; 59(7): 2999-3010, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30025125

RESUMO

Purpose: New perspectives are needed to understand decades of contradictory reports on the neuroprotective effects of the Cav1.2 L-type calcium channel blocker d-cis-diltiazem in retinitis pigmentosa (RP) models. Here, we address, in vivo, the following two knowledge gaps regarding d-cis-diltiazem's actions in the murine outer retina: (1) do normal mouse rods contain d-cis-diltiazem-insensitive Cav1.2 L-type calcium channels? (2) Can d-cis-diltiazem modify the normal rod redox environment? Methods: First, transretinal Cav1.2 L-type calcium channels were noninvasively mapped with manganese-enhanced magnetic resonance imaging (MRI) following agonist Bay K 8644 in C57BL/6 (B6) and in Cav1.2 L-type calcium channel BAY K 8644-insensitive mutant B6 mice. Second, d-cis-diltiazem-treated oxidative stress-vulnerable (B6) or -resistant [129S6 (S6)] mice were examined in vivo (QUEnch-assiSTed [QUEST] MRI) and in whole retina ex vivo (lucigenin). Retinal thickness was measured using MRI. Results: The following results were observed: (1) manganese uptake patterns in BAY K 8644-treated controls and mutant mice identified in vivo Cav1.2 L-type calcium channels in inner and outer retina; and (2) d-cis-diltiazem induced rod oxidative stress in dark-adapted B6 mice but not in light-adapted B6 mice or dark-adapted S6 mice (QUEST MRI). Oxidative stress in vivo was limited to inferior outer retina in dark-adapted B6 mice approximately 1-hour post d-cis-diltiazem. By approximately 4 hours post, only superior outer retina oxidative stress was observed and whole retinal superoxide production was supernormal. All groups had unremarkable retinal thicknesses. Conclusions: D-cis-diltiazem's unexpectedly complex spatiotemporal outer retinal oxidative stress pattern in vivo was dependent on genetic background and rod membrane depolarization, but not apparently dependent on Cav1.2 L-type calcium channels, providing a potential rationale for contradictory results in different RP models.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Diltiazem/farmacologia , Estresse Oxidativo/fisiologia , Degeneração Retiniana/fisiopatologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Animais , Agonistas dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/metabolismo , Adaptação à Escuridão/efeitos dos fármacos , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Superóxidos/metabolismo , Tomografia de Coerência Óptica
9.
J Biol Chem ; 293(29): 11574-11588, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29871924

RESUMO

A primary pathological defect in the heritable eye disorder Stargardt disease is excessive accumulation of cytotoxic lipofuscin bisretinoids in the retina. Age-dependent accumulation of lipofuscin in the retinal pigment epithelium (RPE) matches the age-dependent increase in the incidence of the atrophic (dry) form of age-related macular degeneration (AMD) and therefore may be one of several pathogenic factors contributing to AMD progression. Lipofuscin bisretinoid synthesis in the retina depends on the influx of serum retinol from the circulation into the RPE. Formation of the tertiary retinol-binding protein 4 (RBP4)-transthyretin-retinol complex in the serum is required for this influx. Herein, we report the pharmacological effects of the non-retinoid RBP4 antagonist, BPN-14136. BPN-14136 dosing in the Abca4-/- mouse model of increased lipofuscinogenesis significantly reduced serum RBP4 levels and inhibited bisretinoid synthesis, and this inhibition correlated with a partial reduction in visual cycle retinoids such as retinaldehydes serving as bisretinoid precursors. BPN-14136 administration at doses inducing maximal serum RBP4 reduction did not produce changes in the rate of the visual cycle, consistent with minimal changes in dark adaptation. Abca4-/- mice exhibited dysregulation of the complement system in the retina, and BPN-14136 administration normalized the retinal levels of proinflammatory complement cascade components such as complement factors D and H, C-reactive protein, and C3. We conclude that BPN-14136 has several beneficial characteristics, combining inhibition of bisretinoid synthesis and reduction in retinaldehydes with normalization of the retinal complement system. BPN-14136, or a similar compound, may be a promising drug candidate to manage Stargardt disease and dry AMD.


Assuntos
Ácidos Carboxílicos/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Retina/efeitos dos fármacos , Proteínas Plasmáticas de Ligação ao Retinol/antagonistas & inibidores , Doença de Stargardt/tratamento farmacológico , Animais , Ácidos Carboxílicos/uso terapêutico , Adaptação à Escuridão/efeitos dos fármacos , Modelos Animais de Doenças , Lipofuscina/metabolismo , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Retina/metabolismo , Retina/patologia , Retinoides/metabolismo , Proteínas Plasmáticas de Ligação ao Retinol/metabolismo , Rodopsina/metabolismo , Doença de Stargardt/patologia
10.
Neuroscience ; 384: 131-138, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29859977

RESUMO

In the visual cortex, sensory deprivation causes global augmentation of the amplitude of AMPA receptor-mediated miniature EPSCs in layer 2/3 pyramidal cells and enhancement of NMDA receptor-dependent long-term potentiation (LTP) in cells activated in layer 4, effects that are both rapidly reversed by light exposure. Layer 2/3 pyramidal cells receive both feedforward input from layer 4 and intra-cortical lateral input from the same layer, LTP is mainly induced by the former input. Whether feedforward excitatory synaptic strength is affected by visual deprivation and light exposure, how this synaptic strength correlates with the magnitude of LTP in this pathway, and the underlying mechanism have not been explored. Here, we showed that in juvenile mice, both dark rearing and dark exposure reduced the feedforward excitatory synaptic strength, and the effects can be reversed completely by 10-12 h and 6-8 h light exposure, respectively. However, inhibition of NMDA receptors by CPP or mGluR5 by MPEP, prevented the effect of light exposure on the mice reared in the dark from birth, while only inhibition of NMDAR prevented the effect of light exposure on dark-exposed mice. These results suggested that the activation of both NMDAR and mGluR5 are essential in the light exposure reversal of feedforward excitatory synaptic strength in the dark reared mice from birth; while in the dark exposed mice, only activation of NMDAR is required.


Assuntos
Adaptação à Escuridão/fisiologia , Potenciação de Longa Duração/efeitos dos fármacos , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Visão Binocular/fisiologia , Córtex Visual/efeitos dos fármacos , Vias Visuais/efeitos dos fármacos , Animais , Adaptação à Escuridão/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciação de Longa Duração/fisiologia , Camundongos , Piridinas/farmacologia , Córtex Visual/fisiopatologia
11.
CNS Neurosci Ther ; 24(8): 712-720, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29392842

RESUMO

AIMS: The serotonin 7 receptor (5-HT7R) subtype, coded by Htr7 gene, is broadly expressed in the central nervous system (CNS) with clear involvement in behavioral functions such as learning/memory, regulation of mood, and circadian rhythms. In this study, we assessed effects of 5-HT7R stimulation by administration of its selective agonist, LP-211 (0.25 mg/kg i.p.), in adult Wistar-Han rats. METHODS: We used two different explorative-curiosity tests. Drug was administered either before one side-chamber familiarization (CF/V group) or immediately after it, to act on consolidation of familiarization (V/CF group). RESULTS: Exp. 1 for novelty seeking in black/white boxes (BWB), with door opening after 5 minutes in the familiar chamber, showed that (i) time spent in the novel environment (significantly higher than in familiar chamber for controls) is enhanced in V/CF group (potentiated recognition for a "visual" consolidation) and not different in CF/V group; (ii) activity and chamber transitions, made by CF/V rats, are significantly higher than for other groups (interference on recognition for a "spatial" acquisition). Exp. 2 for novelty preference in D- vs L-shaped chambers (D/L), with start from neutral center, gave different results: (i) time spent in the novel environment by CF/V group is significantly higher than other groups (potentiated "cognitive" acquisition); (ii) chamber transitions made by V/CF group are significantly higher than other groups (potentiated "emotional" consolidation). CONCLUSION: These apparently conflicting results may reflect LP-211 effects on visual vs spatial memory (D/L apparatus has more pronounced hippocampal components than BWB). However, further experiments are needed to analyze more in depth the mechanisms involved.


Assuntos
Comportamento Exploratório/efeitos dos fármacos , Piperazinas/farmacologia , Receptores de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Comportamento Espacial/efeitos dos fármacos , Animais , Adaptação à Escuridão/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Estimulação Luminosa , Ratos , Ratos Wistar , Estatísticas não Paramétricas , Fatores de Tempo
12.
Mol Psychiatry ; 23(1): 143-153, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27956747

RESUMO

The bed nucleus of the stria terminalis (BNST) is a brain region important for regulating anxiety-related behavior in both humans and rodents. Here we used a chemogenetic strategy to investigate how engagement of G protein-coupled receptor (GPCR) signaling cascades in genetically defined GABAergic BNST neurons modulates anxiety-related behavior and downstream circuit function. We saw that stimulation of vesicular γ-aminobutyric acid (GABA) transporter (VGAT)-expressing BNST neurons using hM3Dq, but neither hM4Di nor rM3Ds designer receptors exclusively activated by a designer drug (DREADD), promotes anxiety-like behavior. Further, we identified that activation of hM3Dq receptors in BNST VGAT neurons can induce a long-term depression-like state of glutamatergic synaptic transmission, indicating DREADD-induced changes in synaptic plasticity. Further, we used DREADD-assisted metabolic mapping to profile brain-wide network activity following activation of Gq-mediated signaling in BNST VGAT neurons and saw increased activity within ventral midbrain structures, including the ventral tegmental area and hindbrain structures such as the locus coeruleus and parabrachial nucleus. These results highlight that Gq-mediated signaling in BNST VGAT neurons can drive downstream network activity that correlates with anxiety-like behavior and points to the importance of identifying endogenous GPCRs within genetically defined cell populations. We next used a microfluidics approach to profile the receptorome of single BNST VGAT neurons. This approach yielded multiple Gq-coupled receptors that are associated with anxiety-like behavior and several potential novel candidates for regulation of anxiety-like behavior. From this, we identified that stimulation of the Gq-coupled receptor 5-HT2CR in the BNST is sufficient to elevate anxiety-like behavior in an acoustic startle task. Together, these results provide a novel profile of receptors within genetically defined BNST VGAT neurons that may serve as therapeutic targets for regulating anxiety states and provide a blueprint for examining how G-protein-mediated signaling in a genetically defined cell type can be used to assess behavior and brain-wide circuit function.


Assuntos
Ansiedade/genética , Ansiedade/patologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Neurônios/fisiologia , Núcleos Septais/patologia , Transdução de Sinais/fisiologia , Animais , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Mapeamento Encefálico , Antagonistas de Receptores de Canabinoides/farmacologia , Clozapina/análogos & derivados , Clozapina/farmacologia , Adaptação à Escuridão/efeitos dos fármacos , Adaptação à Escuridão/genética , Modelos Animais de Doenças , Estrenos/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/genética , Comportamento Exploratório/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Piperazinas/farmacologia , Pirrolidinonas/farmacologia , RNA Mensageiro/metabolismo , Receptores de Droga/efeitos dos fármacos , Receptores de Droga/fisiologia , Rimonabanto/farmacologia , Núcleos Septais/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/uso terapêutico , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
13.
Neuropharmacology ; 128: 448-459, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29109058

RESUMO

A history of binge-drinking decreases protein expression of the glutamate-related scaffolding protein Homer2 within the central nucleus of the amygdala (CEA), coinciding with behavioral signs of negative affect. To assess the functional relevance of this protein change for withdrawal-induced hyper-anxiety, adult (PND 56) and adolescent (PND 28) male C57BL/6J mice were administered an intra-CEA infusion of an adeno-associated viral vector (AAV) carrying either cDNA to express Homer2 (H2-cDNA) or GFP as control. Mice underwent 14 days of binge-drinking under multi-bottle, limited-access conditions and were assayed for behavioral signs of negative affect during withdrawal using the light-dark box, marble burying, and forced swim tests (FST). Following behavioral testing, all animals experienced 5 days of drinking to evaluate the effects of prior alcohol experience and Homer2 manipulation on subsequent alcohol consumption. During protracted (4 weeks) withdrawal, adolescent alcohol-experienced GFP controls showed increased signs of negative affect across all 3 assays, compared to water-drinking GFP animals, and also showed elevated alcohol consumption during the subsequent drinking period. Homer2-cDNA infusion in adolescent-onset alcohol-drinking animals was anxiolytic and reduced subsequent alcohol consumption. Conversely, Homer2-cDNA was anxiogenic and increased drinking in water-drinking adolescents. Unfortunately, the data from adult-onset alcohol-drinking animals were confounded by low alcohol consumption and negligible behavioral signs of anxiety. Nevertheless, the present results provide novel cause-effect evidence supporting a role for CEA Homer2 in the regulation of both basal anxiety and the time-dependent intensification of negative affective states in individuals with a history of binge-drinking during adolescence.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Ansiedade/etiologia , Ansiedade/patologia , Núcleo Central da Amígdala/metabolismo , Proteínas de Arcabouço Homer/metabolismo , Síndrome de Abstinência a Substâncias/complicações , Fatores Etários , Consumo de Bebidas Alcoólicas/psicologia , Animais , Núcleo Central da Amígdala/patologia , Comportamento de Escolha/fisiologia , Adaptação à Escuridão/efeitos dos fármacos , Adaptação à Escuridão/fisiologia , Modelos Animais de Doenças , Etanol/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Arcabouço Homer/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Transdução Genética
14.
Invest Ophthalmol Vis Sci ; 58(13): 5604-5615, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29094165

RESUMO

Purpose: The vertebrate rod photoreceptor undergoes daily growth and shedding to renew the rod outer segment (ROS), a modified cilium that contains the phototransduction machinery. It has been demonstrated that ROS shedding is regulated by the light-dark cycle; however, we do not yet have a satisfactory understanding of the molecular mechanisms that underlie this regulation. Given that phototransduction relies on the hydrolysis of cGMP via phosphodiesterase 6 (PDE6), we examined ROS growth and shedding in zebrafish treated with cGMP-specific PDE inhibitors. Methods: We used transgenic zebrafish that express an inducible, transmembrane-bound mCherry protein, which forms a stripe in the ROS following a heat shock pulse and serves as a marker of ROS renewal. Zebrafish were reared in constant darkness or treated with PDE inhibitors following heat shock. Measurements of growth and shedding were analyzed in confocal z-stacks collected from treated retinas. Results: As in dark-reared zebrafish, shedding was reduced in larvae and adults treated with the PDE5/6 inhibitors sildenafil and vardenafil but not with the PDE5 inhibitor tadalafil. In addition, vardenafil noticeably affected rod inner segment morphology. The inhibitory effect of sildenafil on shedding was reversible with drug removal. Finally, cones were more sensitive than rods to the toxic effects of sildenafil and vardenafil. Conclusions: We show that pharmacologic inhibition of PDE6 mimics the inhibition of shedding by prolonged constant darkness. The data show that the influence of the light-dark cycle on ROS renewal is regulated, in part, by initiating the shedding process through activation of the phototransduction machinery.


Assuntos
GMP Cíclico/metabolismo , Adaptação à Escuridão/fisiologia , Segmento Externo da Célula Bastonete/efeitos dos fármacos , Citrato de Sildenafila/farmacologia , Dicloridrato de Vardenafila/farmacologia , Animais , Animais Geneticamente Modificados , Linhagem Celular , Adaptação à Escuridão/efeitos dos fármacos , Modelos Animais , Inibidores da Fosfodiesterase 5/farmacologia , Segmento Externo da Célula Bastonete/metabolismo , Peixe-Zebra
15.
Curr Eye Res ; 42(11): 1518-1526, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28841046

RESUMO

PURPOSE: Longer-lasting electroretinographic recordings of the isolated murine retina were initially achieved by modification of a phosphate-buffered nutrient solution originally developed for the bovine retina. During experiments with a more sensitive mouse retina, apparent model-specific limitations were addressed and improvements were analyzed for their contribution to an optimized full electroretinogram (ERG). MATERIAL AND METHODS: Retinas were isolated from dark-adapted mice, transferred to a recording chamber and superfused with different solutions. Scotopic and photopic ERGs were recorded with white flashes every 3 minutes. The phosphate buffer (Sickel-medium) originally used was replaced by a carbonate-based system (Ames-medium), the pH of which was adjusted to 7.7-7.8. Moreover, addition of 0.1 mM BaCl2 was investigated to reduce b-wave contamination by the slow PIII component typically present in the murine ERG. RESULTS: B-wave amplitudes were increased by the pH-shift (pH 7.4 to pH 7.7) from 22.9 ± 1.9 µV to 37.5 ± 2.5 µV. Improved b-wave responses were also achieved by adding small amounts of Ba2+ (100 µM), which selectively suppressed slow PIII components, thereby unmasking more of the true b-wave amplitude (100.0% with vs. 22.2 ± 10.7% without Ba2+). Ames medium lacking amino acids and vitamins was unable to maintain retinal signaling, as evident in a reversible decrease of the b-wave to 31.8 ± 3.9% of its amplitude in complete Ames medium. CONCLUSIONS: Our findings provide optimized conditions for ex vivo ERGs from the murine retina and suggest that careful application of Ba2+ supports reliable isolation of b-wave responses in mice. Under our recording conditions, murine retinas show reproducible ERGs for up to six hours.


Assuntos
Adaptação à Escuridão/fisiologia , Eletrorretinografia/métodos , Estimulação Luminosa/métodos , Segmento Interno das Células Fotorreceptoras da Retina/fisiologia , Animais , Compostos de Bário/farmacologia , Cloretos/farmacologia , Adaptação à Escuridão/efeitos dos fármacos , Adaptação à Escuridão/efeitos da radiação , Eletrorretinografia/efeitos dos fármacos , Eletrorretinografia/efeitos da radiação , Camundongos , Modelos Animais , Perfusão , Segmento Interno das Células Fotorreceptoras da Retina/efeitos dos fármacos , Segmento Interno das Células Fotorreceptoras da Retina/efeitos da radiação , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos da radiação
16.
Eur Neuropsychopharmacol ; 27(8): 782-794, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28606743

RESUMO

Activity of the ventral tegmental area (VTA) and its terminals has been implicated in the Pavlovian associative learning of both stressful and rewarding stimuli. However, the role of the VTA noradrenergic signaling in fear responses remains unclear. We aimed to examine how alpha1-adrenergic receptor (α1-AR) signaling in the VTA affects conditioned fear. The role of α1-AR was assessed using the micro-infusions into the VTA of the selective antagonists (0.1-1µg/0.5µl prazosin and 1µg/0.5µl terazosin) in acquisition and expression of fear memory. In addition, we performed control experiments with α1-AR blockade in the mammillary bodies (MB) - a brain region with α1-AR expression adjacent to the VTA. Intra-VTA but not intra-MB α1-AR blockade prevented formation and retrieval of fear memories. Importantly, local administration of α1-AR antagonists did not influence footshock sensitivity, locomotion or anxiety-like behaviors. Similarly, α1-AR blockade in the VTA had no effects on negative affect measured as number of 22kHz ultrasonic vocalizations during fear conditioning training. We propose that noradrenergic signaling in the VTA via α1-AR regulates formation and retrieval of fear memories but not other behavioral responses to stressful environmental stimuli. It enhances the encoding of environmental stimuli by the VTA to form and retrieve conditioned fear memories and to predict future behavioral outcomes. Our results provide novel insight into the role of the VTA α1-AR signaling in the regulation of stress responsiveness and fear memory.


Assuntos
Memória/fisiologia , Receptores Adrenérgicos alfa 1/metabolismo , Estresse Psicológico/tratamento farmacológico , Área Tegmentar Ventral/metabolismo , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Análise de Variância , Animais , Condicionamento Clássico/efeitos da radiação , Adaptação à Escuridão/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Eletrochoque/efeitos adversos , Comportamento Exploratório/efeitos dos fármacos , Medo/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Memória/efeitos dos fármacos , Prazosina/análogos & derivados , Prazosina/farmacologia , Ratos , Ratos Sprague-Dawley , Área Tegmentar Ventral/efeitos dos fármacos , Vocalização Animal/efeitos dos fármacos
17.
Behav Brain Res ; 317: 311-318, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27693610

RESUMO

Neurotrimin (Ntm) belongs to the IgLON family of cell adhesion molecules with Lsamp, Obcam and kilon that regulate the outgrowth of neurites mostly by forming heterodimers. IgLONs have been associated with psychiatric disorders, intelligence, body weight, heart disease and tumours. This study provides an initial behavioural and pharmacological characterization of the phenotype of Ntm-deficient mice. We expected to see at least some overlap with the phenotype of Lsamp-deficient mice as Ntm and Lsamp are the main interaction partners in the IgLON family and are colocalized in some brain regions. However, Ntm-deficient mice displayed none of the deviations in behaviour that we have previously shown in Lsamp-deficient mice, but differently from Lsamp-deficient mice, had a deficit in emotional learning in the active avoidance task. The only overlap was decreased sensitivity to the locomotor stimulating effect of amphetamine in both knockout models. Thus, despite being interaction partners, on the behavioural level Lsamp seems to play a much more central role than Ntm and the roles of these two proteins seem to be complementary rather than overlapping.


Assuntos
Emoções/fisiologia , Deficiências da Aprendizagem/genética , Moléculas de Adesão de Célula Nervosa/deficiência , Anfetamina/farmacologia , Animais , Aprendizagem da Esquiva/fisiologia , Peso Corporal/efeitos dos fármacos , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Estimulantes do Sistema Nervoso Central/farmacologia , Condicionamento Psicológico/efeitos dos fármacos , Adaptação à Escuridão/efeitos dos fármacos , Adaptação à Escuridão/genética , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Jejum/fisiologia , Medo/efeitos dos fármacos , Proteínas Ligadas por GPI/deficiência , Proteínas Ligadas por GPI/genética , Locomoção/efeitos dos fármacos , Locomoção/genética , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/genética , Reflexo/genética
18.
Behav Brain Res ; 317: 461-469, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27725170

RESUMO

Anxiety disorders are highly prevalent and often result in poor quality of life. Available anxiolytics show significant adverse effects as well as partial efficacy in a sizable part of patients. Innovative treatments with more favorable risk-benefit ratio are sorely needed. A growing body of clinical data indicates the benefits of N-acetylcysteine (NAC) in psychiatric conditions. NAC modulates antioxidant, glutamatergic, inflammatory and neurotrophic pathways in the central nervous system, all of which are relevant to anxiety pathology. We evaluated the effects of NAC in mice models commonly used to characterize anxiolytic compounds. Male adult CF1 or BALB/c mice were treated (i.p.) acutely or subacutely (4 consecutive days) with NAC (60-150mg/kg) 60min before open field, light/dark, hole-board, social interaction, elevated T-maze or stress-induced hyperthermia tests. Diazepam (2mg/kg) was used as positive control. We found that NAC presents anxiolytic effects in all models, except for the elevated T-maze. Subacute treatments resulted in lower effective doses in comparison to acute treatment. The anxiolytic effects of NAC were comparable to diazepam. NAC is a safe and low cost medicine with suggested benefits in psychiatric conditions often presenting co-morbidity with anxiety. This study contributes evidence to support the validity of clinical trials with NAC in the context of anxiety disorders, especially considering the safety profile in comparison to the limitations of diazepam for long term treatment.


Assuntos
Acetilcisteína/uso terapêutico , Ansiolíticos/uso terapêutico , Ansiedade/tratamento farmacológico , Análise de Variância , Animais , Ansiedade/complicações , Temperatura Corporal/efeitos dos fármacos , Adaptação à Escuridão/efeitos dos fármacos , Diazepam/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Comportamento Exploratório/efeitos dos fármacos , Febre/etiologia , Relações Interpessoais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Fatores de Tempo
19.
Neurotoxicology ; 58: 103-109, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27866991

RESUMO

The pesticide rotenone is widely used to produce Parkinson's disease (PD)-like symptoms in rodents, but few studies have examined whether rotenone-treated zebrafish can serve as an animal model of PD. Here, we report that 4 weeks of rotenone treatment induced motor and non-motor PD-like symptoms in adult zebrafish. Compared with control fish, rotenone-treated fish spent less time swimming at a fast speed, indicating a deficit in motor function. In the light-dark box test, rotenone-treated fish exhibited longer latencies to enter the dark compartment and spent more time in the light compartment, reflecting anxiety- and depression-like behavior. Furthermore, rotenone-treated fish showed less of an olfactory preference for amino acid, indicating olfactory dysfunction. These behavioral symptoms were associated with decreased levels of dopamine in the brains of rotenone-treated fish. Taken together, these results suggest that rotenone-treated zebrafish are a suitable model of PD.


Assuntos
Ansiedade/etiologia , Inseticidas/toxicidade , Transtornos do Olfato/etiologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/complicações , Rotenona/toxicidade , Animais , Adaptação à Escuridão/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Neurotransmissores/metabolismo , RNA Mensageiro/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
20.
Invest Ophthalmol Vis Sci ; 57(14): 6305-6312, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27893096

RESUMO

Purpose: The purpose of this study was to investigate the impact of activating melanopsin-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) on dark-adapted (scotopic) electroretinograms (ERG). Methods: We used mice (Opn4Cre/+) expressing cre recombinase in melanopsin-expressing cells for a targeted gene delivery of a chemogenetic Gq-coupled receptor, hM3Dq, to ipRGCs. Intraperitoneal injection of clozapine N-oxide (CNO) at 5 mg/kg was used for acute activation of hM3Dq and thus excitation of ipRGCs in darkness. Dark-adapted flash ERGs were recorded across a 9-fold range of irradiances from hM3Dq Opn4Cre/+ and control Opn4Cre/+ mice before and after intraperitoneal injection of CNO. A- and b-wave amplitudes and implicit times and oscillatory potentials (OPs) were analyzed. Paired-flash stimuli were used to isolate cone-driven responses. Results: Clozapine N-oxide application suppressed a- and b-wave amplitudes of the dark-adapted ERG across the flash intensity range in hM3Dq Opn4Cre/+ mice compared to control mice. Examination of the normalized irradiance-response functions revealed a shift in b-wave but not a-wave sensitivity. No changes in a- and b-wave implicit times were detected. Total OP amplitudes were also reduced in hM3Dq Opn4Cre/+ mice compared to controls following CNO administration. The paired-flash method revealed reduction in both the first (rods and cones) and second (cones only) flash response. Conclusions: Acute and selective activation of ipRGCs modulates the amplitude of both a- and b-waves of the scotopic ERG, indicating that the influence of this ganglion cell class on the retinal physiology extends to the photoreceptors as well as their downstream pathways.


Assuntos
Adaptação à Escuridão/fisiologia , Eletrorretinografia/métodos , Integrases/biossíntese , Células Ganglionares da Retina/fisiologia , Animais , Clozapina/análogos & derivados , Clozapina/farmacologia , Adaptação à Escuridão/efeitos dos fármacos , Eletrorretinografia/efeitos dos fármacos , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Modelos Animais , Estimulação Luminosa , Células Fotorreceptoras Retinianas Cones/fisiologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/fisiologia , Opsinas de Bastonetes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA