Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.077
Filtrar
1.
Elife ; 122024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775132

RESUMO

The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.


Assuntos
Adipócitos Bege , Adipogenia , Envelhecimento , Temperatura Baixa , Animais , Adipogenia/genética , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Camundongos , Adipócitos Bege/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Adipócitos/metabolismo , Diferenciação Celular , Reprogramação Celular , Reprogramação Metabólica
2.
FASEB J ; 38(10): e23664, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38775797

RESUMO

Adipogenesis, a pivotal cellular process involving the differentiation of mesenchymal stem cells (MSCs) to mature adipocytes, plays a significant role in various physiological functions. Dysregulation of adipogenesis is implicated in conditions such as obesity. However, the complete molecular understanding of adipogenesis remains elusive. This study aimed to uncover the novel role of lamina-associated polypeptide 2 alpha (LAP2α) in human adipose-derived stem cells (hASCs) adipogenesis and its impact on high-fat diet (HFD)-induced obesity and associated metabolic disturbances. LAP2α expression was assessed during the adipogenic differentiation of hASCs using RT-qPCR and western blotting. The functional role of LAP2α in adipogenesis was explored both in vitro and in vivo through loss- and gain-of-function studies. Moreover, mice with HFD-induced obesity received lentivirus injection to assess the effect of LAP2α knockdown on fat accumulation. Molecular mechanisms underlying LAP2α in adipogenic differentiation were investigated using RT-qPCR, Western blotting, immunofluorescence staining, and Oil Red O staining. LAP2α expression was upregulated during hASCs adipogenic differentiation. LAP2α knockdown hindered adipogenesis, while LAP2α overexpression promoted adipogenic differentiation. Notably, LAP2α deficiency resisted HFD-induced obesity, improved glucose intolerance, mitigated insulin resistance, and prevented fatty liver development. Mechanistically, LAP2α knockdown attenuated signal transducer and activator of transcription 3 (STAT3) activation by reducing the protein level of phosphorylated STAT3. A STAT3 activator (Colivelin) counteracted the negative impact of LAP2α deficiency on hASCs adipogenic differentiation. Taken together, our current study established LAP2α as a crucial regulator of hASCs adipogenic differentiation, unveiling a new therapeutic target for obesity prevention.


Assuntos
Adipogenia , Dieta Hiperlipídica , Células-Tronco Mesenquimais , Obesidade , Humanos , Dieta Hiperlipídica/efeitos adversos , Obesidade/metabolismo , Obesidade/genética , Obesidade/etiologia , Animais , Camundongos , Células-Tronco Mesenquimais/metabolismo , Masculino , Diferenciação Celular , Camundongos Endogâmicos C57BL , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Adipócitos/metabolismo , Células Cultivadas , Técnicas de Silenciamento de Genes , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteínas de Ligação a DNA , Proteínas de Membrana
3.
JCI Insight ; 9(9)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38716728

RESUMO

The importance of the proper localization of most receptors at the cell surface is often underestimated, although this feature is essential for optimal receptor response. Endospanin 1 (Endo1) (also known as OBRGRP or LEPROT) is a protein generated from the same gene as the human leptin receptor and regulates the trafficking of proteins to the surface, including the leptin receptor. The systemic role of Endo1 on whole-body metabolism has not been studied so far. Here, we report that general Endo1-KO mice fed a high-fat diet develop metabolically healthy obesity with lipid repartitioning in organs and preferential accumulation of fat in adipose tissue, limited systematic inflammation, and better controlled glucose homeostasis. Mechanistically, Endo1 interacts with the lipid translocase CD36, thus regulating its surface abundance and lipid uptake in adipocytes. In humans, the level of Endo1 transcripts is increased in the adipose tissue of patients with obesity, but low levels rather correlate with a profile of metabolically healthy obesity. We suggest here that Endo1, most likely by controlling CD36 cell surface abundance and lipid uptake in adipocytes, dissociates obesity from diabetes and that its absence participates in metabolically healthy obesity.


Assuntos
Tecido Adiposo , Antígenos CD36 , Dieta Hiperlipídica , Camundongos Knockout , Obesidade , Animais , Feminino , Humanos , Masculino , Camundongos , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Antígenos CD36/metabolismo , Antígenos CD36/genética , Dieta Hiperlipídica/efeitos adversos , Glucose/metabolismo , Metabolismo dos Lipídeos/genética , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Obesidade/genética
4.
Development ; 151(9)2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722097

RESUMO

Bez is a Class B scavenger receptor in Drosophila that is yet to be characterised. In a new study, Margret Bülow and colleagues uncover a role for Bez in mobilising lipids from Drosophila adipocytes into the ovary for oocyte maturation. To find out more about the people behind the paper, we caught up with first author, Pilar Carrera, and corresponding author, Margret Bülow, Group Leader at the University of Bonn.


Assuntos
Proteínas de Drosophila , Animais , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Feminino , Drosophila , História do Século XXI , Humanos , Adipócitos/citologia , Adipócitos/metabolismo , História do Século XX , Biologia do Desenvolvimento/história , Oócitos/metabolismo , Oócitos/citologia , Drosophila melanogaster , Ovário/metabolismo , Ovário/citologia
5.
J Diabetes Res ; 2024: 5511454, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38736904

RESUMO

Adipose tissue dysfunction is seen among obese and type 2 diabetic individuals. Adipocyte proliferation and hypertrophy are the root causes of adipose tissue expansion. Solute carrier family 25 member 28 (SLC25A28) is an iron transporter in the inner mitochondrial membrane. This study is aimed at validating the involvement of SLC25A28 in adipose accumulation by tail vein injection of adenovirus (Ad)-SLC25A28 and Ad-green fluorescent protein viral particles into C57BL/6J mice. After 16 weeks, the body weight of the mice was measured. Subsequently, morphological analysis was performed to establish a high-fat diet (HFD)-induced model. SLC25A28 overexpression accelerated lipid accumulation in white and brown adipose tissue (BAT), enhanced body weight, reduced serum triglyceride (TG), and impaired serum glucose tolerance. The protein expression level of lipogenesis, lipolysis, and serum adipose secretion hormone was evaluated by western blotting. The results showed that adipose TG lipase (ATGL) protein expression was reduced significantly in white and BAT after overexpression SLC25A28 compared to the control group. Moreover, SLC25A28 overexpression inhibited the BAT formation by downregulating UCP-1 and the mitochondrial biosynthesis marker PGC-1α. Serum adiponectin protein expression was unregulated, which was consistent with the expression in inguinal white adipose tissue (iWAT). Remarkably, serum fibroblast growth factor (FGF21) protein expression was negatively related to the expansion of adipose tissue after administrated by Ad-SLC25A28. Data from the current study indicate that SLC25A28 overexpression promotes diet-induced obesity and accelerates lipid accumulation by regulating hormone secretion and inhibiting lipolysis in adipose tissue.


Assuntos
Adipogenia , Tecido Adiposo Marrom , Tecido Adiposo Branco , Dieta Hiperlipídica , Lipase , Camundongos Endogâmicos C57BL , Animais , Camundongos , Masculino , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Lipase/metabolismo , Lipase/genética , Obesidade/metabolismo , Lipólise , Proteína Desacopladora 1/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Adipócitos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Lipogênese , Aciltransferases
6.
Anim Biotechnol ; 35(1): 2346223, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38739480

RESUMO

Adipocyte play an important role in human health and meat quality by influencing the tenderness, flavor, and juiciness of mutton It has been shown that neuron-derived neurotrophic factor (NENF) is closely related to energy metabolism and adipocyte differentiation in bovine. However, the role of NENF in the goats remains unclear. The aim of this study was to detect the expression of NENF in goat subcutaneous and intramuscular adipocytes, temporal expression profiles of the NENF, and overexpressed NENF on the differentiation of different adipocytes. In this study, PCR amplification successfully cloned the goat NENF gene with a fragment length of 521 bp. In addition, the time point of highest expression of NENF differed between these two adipocytes differentiation processes. Overexpression of NENF in intramuscular and subcutaneous adipocytes promoted the expression levels of differentiation markers CEBPß and SREBP, which in turn promoted the differentiation of intramuscular and subcutaneous adipocytes. This study will provide basic data for further study of the role of goats in goat adipocyte differentiation and for the final elucidation of its molecular mechanisms in regulating goat adipocyte deposition.


Assuntos
Adipócitos , Diferenciação Celular , Cabras , Animais , Cabras/genética , Adipócitos/citologia , Adipócitos/metabolismo , Diferenciação Celular/fisiologia , Gordura Subcutânea/citologia , Gordura Subcutânea/metabolismo
7.
Nutrients ; 16(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732509

RESUMO

Isoeugenol (IEG), a natural component of clove oil, possesses antioxidant, anti-inflammatory, and antibacterial properties. However, the effects of IEG on adipogenesis have not yet been elucidated. Here, we showed that IEG blocks adipogenesis in 3T3-L1 cells at an early stage. IEG inhibits lipid accumulation in adipocytes in a concentration-dependent manner and reduces the expression of mature adipocyte-related factors including PPARγ, C/EBPα, and FABP4. IEG treatment at different stages of adipogenesis showed that IEG inhibited adipocyte differentiation by suppressing the early stage, as confirmed by lipid accumulation and adipocyte-related biomarkers. The early stage stimulates growth-arrested preadipocytes to enter mitotic clonal expansion (MCE) and initiates their differentiation into adipocytes by regulating cell cycle-related factors. IEG arrested 3T3-L1 preadipocytes in the G0/G1 phase of the cell cycle and attenuated cell cycle-related factors including cyclinD1, CDK6, CDK2, and cyclinB1 during the MCE stage. Furthermore, IEG suppresses reactive oxygen species (ROS) production during MCE and inhibits ROS-related antioxidant enzymes, including superoxide dismutase1 (SOD1) and catalase. The expression of cell proliferation-related biomarkers, including pAKT and pERK1/2, was attenuated by the IEG treatment of 3T3-L1 preadipocytes. These findings suggest that it is a potential therapeutic agent for the treatment of obesity.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Eugenol , Mitose , Espécies Reativas de Oxigênio , Animais , Adipogenia/efeitos dos fármacos , Camundongos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Mitose/efeitos dos fármacos , Eugenol/farmacologia , Eugenol/análogos & derivados , Espécies Reativas de Oxigênio/metabolismo , Diferenciação Celular/efeitos dos fármacos , PPAR gama/metabolismo , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Antioxidantes/farmacologia
8.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38702075

RESUMO

Excess abdominal fat is a sexually dimorphic risk factor for cardio-metabolic disease and is approximated by the waist-to-hip ratio adjusted for body mass index (WHRadjBMI). Whereas this trait is highly heritable, few causal genes are known. We aimed to identify novel drivers of WHRadjBMI using systems genetics. We used two independent cohorts of adipose tissue gene expression and constructed sex- and depot-specific Bayesian networks to model gene-gene interactions from 8,492 genes. Using key driver analysis, we identified genes that, in silico and putatively in vitro, regulate many others. 51-119 key drivers in each network were replicated in both cohorts. In other cell types, 23 of these genes are found in crucial adipocyte pathways: Wnt signaling or mitochondrial function. We overexpressed or down-regulated seven key driver genes in human subcutaneous pre-adipocytes. Key driver genes ANAPC2 and RSPO1 inhibited adipogenesis, whereas PSME3 increased adipogenesis. RSPO1 increased Wnt signaling activity. In differentiated adipocytes, MIGA1 and UBR1 down-regulation led to mitochondrial dysfunction. These five genes regulate adipocyte function, and we hypothesize that they regulate fat distribution.


Assuntos
Adipócitos , Adipogenia , Distribuição da Gordura Corporal , Humanos , Adipócitos/metabolismo , Masculino , Feminino , Adipogenia/genética , Índice de Massa Corporal , Adulto , Redes Reguladoras de Genes , Pessoa de Meia-Idade , Teorema de Bayes , Relação Cintura-Quadril , Tecido Adiposo/metabolismo , Via de Sinalização Wnt/genética , Regulação da Expressão Gênica/genética , Biologia de Sistemas/métodos
9.
Int J Mol Sci ; 25(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731807

RESUMO

Fat tissue-a vital energy storage organ-is intricately regulated by various factors, including circular RNA, which plays a significant role in modulating fat development and lipid metabolism. Therefore, this study aims to clarify the regulatory mechanism of sheep adipocyte proliferation and differentiation by investigating the involvement of circTIAM1, miR-485-3p, and its target gene PLCB1. Through previous sequencing data, circTIAM1 was identified in sheep adipocytes, with its circularization mechanism elucidated, confirming its cytoplasmic localization. Experimental evidence from RNase R treatment and transcription inhibitors highlighted that circTIAM1 is more stable than linear RNA. Additionally, circTIAM1 promoted sheep adipocyte proliferation and differentiation. Furthermore, bioinformatic analysis demonstrated a robust interaction between miR-485-3p and circTIAM1. Further experiments revealed that miR-485-3p inhibits fat cell proliferation and differentiation by inhibiting PLCB1, with circTIAM1 alleviating the inhibitory effect via competitive binding. In summary, our findings elucidate the mechanism through which circTIAM1 regulates Guangling Large-Tailed sheep adipocyte proliferation and differentiation via the miR-485-3p-PLCB1 pathway, offering a novel perspective for further exploring fat metabolism regulation.


Assuntos
Adipócitos , Diferenciação Celular , Proliferação de Células , MicroRNAs , Fosfolipase C beta , RNA Circular , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Adipócitos/metabolismo , Adipócitos/citologia , Proliferação de Células/genética , RNA Circular/genética , RNA Circular/metabolismo , Ovinos , Diferenciação Celular/genética , Fosfolipase C beta/metabolismo , Fosfolipase C beta/genética , Transdução de Sinais
10.
Nat Commun ; 15(1): 3769, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704393

RESUMO

Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.


Assuntos
Adipócitos , Medula Óssea , Leptina , Osteogênese , Receptores de Estrogênio , Animais , Osteogênese/genética , Adipócitos/metabolismo , Adipócitos/citologia , Camundongos , Leptina/metabolismo , Leptina/genética , Medula Óssea/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Receptor ERRalfa Relacionado ao Estrogênio , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células da Medula Óssea/metabolismo , Camundongos Knockout
12.
Sci Rep ; 14(1): 10053, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698047

RESUMO

Type 2 diabetes mellitus is a worldwide public health issue. In the globe, Egypt has the ninth-highest incidence of diabetes. Due to its crucial role in preserving cellular homeostasis, the autophagy process has drawn a lot of attention in recent years, Therefore, the purpose of this study was to evaluate the traditional medication metformin with the novel therapeutic effects of cinnamondehyde on adipocyte and hepatic autophagy in a model of high-fat diet/streptozotocin-diabetic rats. The study was conducted on 40 male albino rats, classified into 2 main groups, the control group and the diabetic group, which was subdivided into 4 subgroups (8 rats each): untreated diabetic rats, diabetic rats received oral cinnamaldehyde 40 mg/kg/day, diabetic rats received oral metformin 200 mg/kg/day and diabetic rats received a combination of both cinnamaldehyde and metformin daily for 4 weeks. The outcomes demonstrated that cinnamaldehyde enhanced the lipid profile and glucose homeostasis. Moreover, Cinnamaldehyde had the opposite effects on autophagy in both tissues; by altering the expression of genes that control autophagy, such as miRNA 30a and mammalian target of rapamycin (mTOR), it reduced autophagy in adipocytes and stimulated it in hepatic tissues. It may be inferred that by increasing the treatment efficacy of metformin and lowering its side effects, cinnamaldehyde could be utilized as an adjuvant therapy with metformin for the treatment of type 2 diabetes.


Assuntos
Acroleína , Acroleína/análogos & derivados , Adipócitos , Autofagia , Diabetes Mellitus Experimental , Fígado , Metformina , Animais , Acroleína/farmacologia , Acroleína/uso terapêutico , Autofagia/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Ratos , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Metformina/farmacologia , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Estreptozocina , Glicemia/metabolismo , Serina-Treonina Quinases TOR/metabolismo
13.
Anim Sci J ; 95(1): e13951, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38703069

RESUMO

Intramuscular fat (IMF) is a crucial determinant of meat quality and is influenced by various regulatory factors. Despite the growing recognition of the important role of long noncoding RNAs (lncRNAs) in IMF deposition, the mechanisms underlying buffalo IMF deposition remain poorly understood. In this study, we identified and characterized a lncRNA, lncFABP4, which is transcribed from the antisense strand of fatty acid-binding protein 4 (FABP4). lncFABP4 inhibited cell proliferation in buffalo intramuscular preadipocytes. Moreover, lncFABP4 significantly increased intramuscular preadipocyte differentiation, as indicated by an increase in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARG), CCAAT enhancer binding protein alpha (C/EBPα), and FABP4. Mechanistically, lncFABP4 was found to have the potential to regulate downstream gene expression by participating in protein-protein interaction pathways. These findings contribute to further understanding of the intricate mechanisms through which lncRNAs modulate intramuscular adipogenesis in buffaloes.


Assuntos
Adipócitos , Adipogenia , Búfalos , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a Ácido Graxo , PPAR gama , RNA Longo não Codificante , Animais , Búfalos/genética , Búfalos/metabolismo , Adipogenia/genética , Adipócitos/metabolismo , Adipócitos/citologia , Proteínas de Ligação a Ácido Graxo/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , PPAR gama/metabolismo , PPAR gama/genética , Expressão Gênica , Células Cultivadas , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Qualidade dos Alimentos
14.
Endocrinology ; 165(6)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38712392

RESUMO

Long-term ß-adrenoceptor (ß-AR) stimulation is a pathological mechanism associated with cardiovascular diseases resulting in endothelial and perivascular adipose tissue (PVAT) dysfunction. In this study, we aimed to identify whether ß-adrenergic signaling has a direct effect on PVAT. Thoracic aorta PVAT was obtained from male Wistar rats and cultured ex vivo with the ß-AR agonist isoproterenol (Iso; 1 µM) or vehicle for 24 hours. Conditioned culture medium (CCM) from Iso-treated PVAT induced a marked increase in aorta contractile response, induced oxidative stress, and reduced nitric oxide production in PVAT compared to vehicle. In addition, Iso-treated PVAT and PVAT-derived differentiated adipocytes exhibited higher corticosterone release and protein expression of 11ß-hydroxysteroid dehydrogenase type 1 (11ß-HSD1), an enzyme responsible for de novo synthesis of corticosterone. Macrophages exposed to Iso also exhibited increased corticosterone release in response to ß-AR stimulation. Incubation of Iso-treated PVAT and PVAT-derived differentiated adipocytes with ß3-AR antagonist restored aorta contractile function modulated by Iso-CCM and normalized 11ß-HSD1 protein expression. These results show that ß3-AR signaling leads to upregulation of 11ß-HSD1 in PVAT, thus increasing corticosterone release and contributing to impair the anticontractile function of this tissue.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Corticosterona , Isoproterenol , Ratos Wistar , Animais , Masculino , Ratos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/genética , Isoproterenol/farmacologia , Corticosterona/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Tecido Adiposo/metabolismo , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/metabolismo , Adipócitos/metabolismo , Adipócitos/efeitos dos fármacos , Receptores Adrenérgicos beta/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Óxido Nítrico/metabolismo , Meios de Cultivo Condicionados/farmacologia
15.
Biochem Biophys Res Commun ; 716: 149998, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692012

RESUMO

The equilibrium between the hypertrophic growth of existing adipocytes and adipogenesis is vital in managing metabolic stability in white adipocytes when faced with overnutrition. Adipogenesis has been established as a key player in combating metabolic irregularities caused by various factors. However, the benefits of increasing adipogenesis-mediated white adipose tissue (WAT) expansion for metabolic health regulation remain uncertain. Our findings reveal an increase in Impdh2 expression during the adipogenesis phase, both in vivo and in vitro. Xmp enhances adipogenic potential by fostering mitotic clonal expansion (MCE). The conditional knockout of Impdh2 in adipocyte progenitor cells(APCs) in adult and aged mice effectively curbs white adipose tissue expansion, ameliorates glucose tolerance, and augments energy expenditure under high-fat diet (HFD). However, no significant difference is observed under normal chow diet (NCD). Concurrently, the knockout of Impdh2 in APCs significantly reduces the count of new adipocytes induced by HFD, without affecting adipocyte size. Mechanistically, Impdh2 regulates the proliferation of APCs during the MCE phase via Xmp. Exogenous Xmp can significantly offset the reduction in adipogenic abilities of APCs due to Impdh2 deficiency. In summary, we discovered that adipogenesis-mediated WAT expansion, induced by overnutrition, also contributes to metabolic abnormalities. Moreover, the pivotal role of Impdh2 in regulating adipogenesis in APCs offers a novel therapeutic approach to combat obesity.


Assuntos
Adipócitos , Adipogenia , Tecido Adiposo Branco , Dieta Hiperlipídica , Camundongos Knockout , Hipernutrição , Animais , Tecido Adiposo Branco/metabolismo , Adipogenia/genética , Hipernutrição/metabolismo , Hipernutrição/genética , Camundongos , Adipócitos/metabolismo , Camundongos Endogâmicos C57BL , Masculino , Metabolismo Energético/genética , Deleção de Genes , Proliferação de Células , Células-Tronco/metabolismo , Células-Tronco/citologia , Células-Tronco/patologia
16.
PLoS One ; 19(5): e0298827, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38722949

RESUMO

Glutathione peroxidase 2 (GPX2) is a selenium-dependent enzyme and protects cells against oxidative damage. Recently, GPX2 has been identified as a candidate gene for backfat and feed efficiency in pigs. However, it is unclear whether GPX2 regulates the development of porcine preadipocytes and skeletal muscle cells. In this study, adenoviral gene transfer was used to overexpress GPX2. Our findings suggest that overexpression of GPX2 gene inhibited proliferation of porcine preadipocytes. And the process is accompanied by the reduction of the p-p38. GPX2 inhibited adipogenic differentiation and promoted lipid degradation, while ERK1/2 was reduced and p-p38 was increased. Proliferation of porcine skeletal muscle cells was induced after GPX2 overexpression, was accompanied by activation in JNK, ERK1/2, and p-p38. Overexpression methods confirmed that GPX2 has a promoting function in myoblastic differentiation. ERK1/2 pathway was activated and p38 was suppressed during the process. This study lays a foundation for the functional study of GPX2 and provides theoretical support for promoting subcutaneous fat reduction and muscle growth.


Assuntos
Adipócitos , Glutationa Peroxidase , Sistema de Sinalização das MAP Quinases , Animais , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/genética , Adipócitos/metabolismo , Adipócitos/citologia , Suínos , Diferenciação Celular/genética , Proliferação de Células , Adipogenia/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/metabolismo , Músculo Esquelético/citologia
17.
Cells ; 13(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38727299

RESUMO

The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.


Assuntos
Adipogenia , Tecido Adiposo Branco , Envelhecimento , Obesidade , Humanos , Envelhecimento/patologia , Obesidade/patologia , Obesidade/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Adipócitos/metabolismo , Adipócitos/patologia
18.
Rev Invest Clin ; 76(2): 65-79, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718804

RESUMO

UNASSIGNED: Excess body weight has become a global epidemic and a significant risk factor for developing chronic diseases, which are the leading causes of worldwide morbidities. Adipose tissue (AT), primarily composed of adipocytes, stores substantial amounts of energy and plays a crucial role in maintaining whole-body glucose and lipid metabolism. This helps prevent excessive body fat accumulation and lipotoxicity in peripheral tissues. In addition, AT contains endothelial cells and a substantial population of immune cells (constituting 60-70% of non-adipocyte cells), including macrophages, T and B lymphocytes, and natural killer cells. These resident immune cells engage in crosstalk with adipocytes, contributing to the maintenance of metabolic and immune homeostasis in AT. An exacerbated inflammatory response or inadequate immune resolution can lead to chronic systemic low-grade inflammation, triggering the development of metabolic alterations and the onset of chronic diseases. This review aims to elucidate the regulatory mechanisms through which immune cells influence AT function and energy homeostasis. We also focus on the interactions and functional dynamics of immune cell populations, highlighting their role in maintaining the delicate balance between metabolic health and obesity-related inflammation. Finally, understanding immunometabolism is crucial for unraveling the pathogenesis of metabolic diseases and developing targeted immunotherapeutic strategies. These strategies may offer innovative avenues in the rapidly evolving field of immunometabolism. (Rev Invest Clin. 2024;76(2):65-79).


Assuntos
Tecido Adiposo , Inflamação , Doenças Metabólicas , Obesidade , Humanos , Tecido Adiposo/metabolismo , Tecido Adiposo/imunologia , Obesidade/imunologia , Obesidade/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Doenças Metabólicas/imunologia , Doenças Metabólicas/metabolismo , Doenças Metabólicas/etiologia , Metabolismo Energético/fisiologia , Adipócitos/metabolismo , Adipócitos/imunologia , Metabolismo dos Lipídeos/fisiologia , Animais , Homeostase
19.
J Agric Food Chem ; 72(20): 11587-11596, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38728660

RESUMO

Cellular agriculture holds hope for a sustainable alternative to conventional meat, yet multiple technical challenges remain. These include the large-scale production of edible scaffolds and culturing methods for fat tissues, which are key to meat texture, flavor, and nutritional values. Herein. we disclose our method in the facile fabrication of sponge-like plant protein scaffolds by applying commercial sugar cubes as highly permeable templates. The prepared secalin scaffolds feature a high porosity of 85-90%, fully interconnected pores, and high water stability. The mechanical properties of scaffolds could be tuned by varying sugar-to-protein weight ratio and post-water annealing treatment. Moreover, murine preadipocytes (3T3-L1) and porcine adipose-derived stem cells (ADSCs) readily infiltrate, adhere, proliferate, and differentiate on the secalin scaffolds to develop a fat tissue morphology. A cultured fat tissue was produced by culturing porcine ADSCs for 12 days, which remarkably resembles conventional porcine subcutaneous adipose tissue in appearance, texture, flavor, and fatty acid profiles. The research demonstrates the great potential of sponge-like secalin scaffolds for cultured fat tissue production.


Assuntos
Adipócitos , Tecido Adiposo , Secale , Alicerces Teciduais , Animais , Alicerces Teciduais/química , Suínos , Camundongos , Porosidade , Tecido Adiposo/citologia , Adipócitos/citologia , Adipócitos/metabolismo , Secale/química , Engenharia Tecidual , Células-Tronco/citologia , Diferenciação Celular , Células 3T3-L1 , Proliferação de Células
20.
Neoplasma ; 71(2): 164-179, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38766857

RESUMO

Obesity is a major public health concern because it increases the risk of several diseases, including cancer. Crosstalk between obesity and cancer seems to be very complex, and the interaction between adipocytes and cancer cells leads to changes in adipocytes' function and their paracrine signaling, promoting a microenvironment that supports tumor growth. Carbonic anhydrase IX (CA IX) is a tumor-associated enzyme that not only participates in pH regulation but also facilitates metabolic reprogramming and supports the migration, invasion, and metastasis of cancer cells. In addition, CA IX expression, predominantly regulated via hypoxia-inducible factor (HIF-1), serves as a surrogate marker of hypoxia. In this study, we investigated the impact of adipocytes and adipocyte-derived factors on the expression of CA IX in colon and breast cancer cells. We observed increased expression of CA9 mRNA as well as CA IX protein in the presence of adipocytes and adipocyte-derived conditioned medium. Moreover, we confirmed that adipocytes affect the hypoxia signaling pathway and that the increased CA IX expression results from adipocyte-mediated induction of HIF-1α. Furthermore, we demonstrated that adipocyte-mediated upregulation of CA IX leads to increased migration and decreased adhesion of colon cancer cells. Finally, we brought experimental evidence that adipocytes, and more specifically leptin, upregulate CA IX expression in cancer cells and consequently promote tumor progression.


Assuntos
Adipócitos , Antígenos de Neoplasias , Neoplasias da Mama , Anidrase Carbônica IX , Movimento Celular , Neoplasias do Colo , Subunidade alfa do Fator 1 Induzível por Hipóxia , Leptina , Comunicação Parácrina , Humanos , Anidrase Carbônica IX/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Adipócitos/metabolismo , Adipócitos/patologia , Antígenos de Neoplasias/metabolismo , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Leptina/metabolismo , Linhagem Celular Tumoral , Animais , Obesidade/metabolismo , Meios de Cultivo Condicionados/farmacologia , Microambiente Tumoral , Regulação Neoplásica da Expressão Gênica , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA