Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Food Res Int ; 192: 114800, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39147470

RESUMO

Roasting is necessary for bringing out the aroma and flavor of coffee beans, making coffee one of the most consumed beverages. However, this process also generates a series of toxic compounds, including acrylamide and furanic compounds (5-hydroxymethylfurfural, furan, 2-methylfuran, 3-methylfuran, 2,3-dimethylfuran, and 2,5-dimethylfuran). Furthermore, not much is known about the formation of these compounds in emerging coffee formulations containing alcohol and sugars. Therefore, this study investigated the effect of roasting time and degree on levels of acrylamide and furanic compounds in arabica coffee using fast and slow roasting methods. The fast and slow roasting methods took 5.62 min and 9.65 min, respectively, and reached a maximum of 210 °C to achieve a light roast. For the very dark roast, the coffee beans were roasted for 10.5 min and the maximum temperature reached 245 °C. Our findings showed that the levels of acrylamide (375 ± 2.52 µg kg-1) and 5-HMF (194 ± 11.7 mg kg-1) in the slow-roasted coffee were 35.0 % and 17.4 % lower than in fast-roasted coffee. Furthermore, light roast coffee had significantly lower concentrations of acrylamide and 5-HMF than very dark roast, with values of 93.7 ± 7.51 µg kg-1 and 21.3 ± 10.3 mg kg-1, respectively. However, the levels of furan and alkylfurans increased with increasing roasting time and degree. In this study, we also examined the concentrations of these pollutants in new coffee formulations consisting of alcohol-, sugar-, and honey-infused coffee beans. Formulations with honey and sugar resulted in higher concentrations of 5-HMF, but no clear trend was observed for acrylamide. On the other hand, formulations with honey had higher concentrations of furan and alkylfurans. These results indicate that optimizing roasting time and temperature might not achieve the simultaneous reduction of all the pollutants. Additionally, sugar- and honey-infused coffee beans are bound to have higher furanic compounds, posing a higher health risk.


Assuntos
Acrilamida , Café , Furaldeído , Furanos , Temperatura Alta , Acrilamida/análise , Furanos/análise , Café/química , Furaldeído/análise , Furaldeído/análogos & derivados , Culinária/métodos , Coffea/química , Sementes/química , Manipulação de Alimentos/métodos , Fatores de Tempo , Aditivos Alimentares/análise
2.
Anal Chim Acta ; 1321: 343018, 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39155102

RESUMO

BACKGROUND: Food safety has become an essential aspect of public concern and there are lots of detection means. Liquid chromatography plays a dominating role in food safety inspection because of its high separation efficiency and reproducibility. However, with the increasing complexity of real samples and monitoring requirements, conventional single-mode chromatography would require frequent column replacement and cannot separate different kinds of analytes on a single column simultaneously, which is costly and time-consuming. There is a great need for fabricating mixed-mode stationary phases and validating the feasibility of employing mixed-mode stationary phases for food safety inspection. RESULTS: This work fabricated multifunctional stationary phases for liquid chromatography to determine diverse food additives under the mixed mode of RPLC/HILIC/IEC. Two dicationic ionic liquid silanes were synthesized and bonded onto the silica gel surface. The functionalized silica was characterized by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and elemental analysis. Both columns provide satisfactory separation performance towards 6 hydrophilic nucleosides, 4 hydrophobic polycyclic aromatic hydrocarbons, and 5 anions. Great repeatability of retention (RSD <0.1 %) and column efficiency (100330 plate/m) were obtained. Thermomechanical analysis and linear solvation energy relationship investigated the retention mechanism. Finally, the better in two prepared columns was employed to separate and determine the contents of NO2- and NO3- in vegetables(highest 4906 mg kg-1 NO3- in spinach), preservatives in bottled beverages (180.8 mg kg-1 sodium benzoate in soft drink), and melamine in milk with satisfactory performance and recovery rates ranging from 96.4 % to 105.6 %. SIGNIFICANCE: This work developed a novel scheme for preparing mixed-mode stationary phases by dicationic ionic liquid which provides great separation selectivity. Most importantly, this work proved the superiority of employing mixed-mode stationary phases for food safety inspection, which might avoid high-cost and frequent changes of columns and chromatography systems in the near future.


Assuntos
Aditivos Alimentares , Líquidos Iônicos , Dióxido de Silício , Líquidos Iônicos/química , Dióxido de Silício/química , Aditivos Alimentares/análise , Aditivos Alimentares/isolamento & purificação , Cromatografia Líquida/métodos , Nucleosídeos/isolamento & purificação , Nucleosídeos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/isolamento & purificação , Ânions/análise , Ânions/isolamento & purificação , Ânions/química , Silanos/química
3.
Food Res Int ; 191: 114721, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39059917

RESUMO

Recent empirical evidence suggests that gut dysbiosis is one of the negative health outcomes potentially associated with chronic consumption of some food additives. In this context, the present study aimed at analyzing the disclosure of food additives associated with gut dysbiosis in the labels of products commercialized in the Uruguayan market. A cross-sectional survey of packaged products commercialized in nine supermarkets was conducted between August and September 2021. All packaged processed and ultra-processed products available in each data collection site were surveyed using a cellphone app. The information available on the labels was manually extracted and the disclosure of food additives was analyzed using a computer assisted approach. Results showed that 38.1% of the products disclosed at least one food additive associated with gut dysbiosis. Disclosure was most frequent in ice-cream and popsicles, beverages, meat products and analogues, desserts, and fats, oils and fat and oil emulsions. Potassium sorbate was the individual additive associated with gut dysbiosis most frequently disclosed on the labels, followed by mono- and di-glycerides of fatty acid, sucralose, carboxymethylcellulose, acesulphame potassium, carrageenan, and sodium benzoate. These food additives frequently co-occurred and network analysis enabled the identification of patterns of co-occurrence. Taken together, results from the present work suggest the need to conduct additional research to assess the intake of food additives associated with gut dysbiosis at the population level, as well as to evaluate potential synergistic effects of food additives.


Assuntos
Disbiose , Aditivos Alimentares , Aditivos Alimentares/análise , Humanos , Uruguai , Estudos Transversais , Microbioma Gastrointestinal/efeitos dos fármacos , Manipulação de Alimentos , Rotulagem de Alimentos , Fast Foods/análise
4.
Molecules ; 29(13)2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38999121

RESUMO

Ostrich meat is an interesting alternative to poultry or beef due to its nutritional value. The addition of three plant species (hot peppers, acerola, Schisandra chinesis) was suggested as a method to improve the quality, safety, and consumer acceptance of sausages prepared from ostrich meat. A series of microbiological and chemical analyses (including, inter alia, content of biogenic amines, heavy metals, and bioactive compounds) of the products as well as their sensory evaluation was performed to verify this claim. The microflora of all sausages was dominated by lactic acid bacteria. The biggest threat to consumers' health could be connected to the presence of biogenic amines formed through the enzymatic activity of lactic acid bacteria. The sausages with plant additives had better antioxidative and anti-inflammatory properties and lower fat oxidation-these features were correlated with the presence of vitamin C. Sausages with plant additives had a higher acceptability in terms of taste and smell.


Assuntos
Produtos da Carne , Struthioniformes , Produtos da Carne/análise , Produtos da Carne/microbiologia , Animais , Aditivos Alimentares/análise , Antioxidantes/análise , Paladar , Aminas Biogênicas/análise
5.
Artigo em Inglês | MEDLINE | ID: mdl-38833436

RESUMO

This study addressed primarily the characterisation and quantification of titanium dioxide (TiO2) (nano)particles (NPs) in a large variety of commercial foodstuffs. The samples were purchased from local markets in Spain before the ban of TiO2 food additive (E171) in the EU. The analyses were carried out by single particle inductively coupled plasma-tandem mass spectrometry (spICP-MS/MS) in mass shift mode (oxidation of 48Ti to 48Ti16O (m/z = 64)) and using a highly efficient sample introduction system (APEX™ Ω). This novel analytical approach allowed accurate characterisation of a large panel of TiO2 NPs sizes ranging from ∼12 to ∼800 nm without isobaric interferences from 48Ca isotope, which is highly abundant in most of the analysed foodstuffs. TiO2 NPs were extracted from foodstuffs using sodium dodecyl sulphate (0.1%, w/v) and diluted with ultra-pure water to reach ∼ 1000 particles signals per acquisition. All the analysed samples contained TiO2 NPs with concentrations ranging from 1010 to 1014 particles kg-1, but with significant low recoveries compared to the total Ti determination. A selection of samples was also analysed using a similar spICP-MS/MS approach with a conventional sample introduction system. The comparison of results highlighted the improvement of the limit of detection in size (12 nm) by the APEX™ Ω system, providing nanoparticulate fractions ranging from ∼4% (cheddar sauce) up to ∼87% (chewing gum), which is among the highest nanoparticulate fractions reported in literature using a spICP-MS approach. In addition, two commercially available E171 additives were analysed using the previous approaches and other techniques in different European laboratories with the aim of methods inter-comparison. This study provides occurrence data related to TiO2 NPs in common commercial foodstuffs but it also demonstrates the potential of the novel analytical approach based on APEX™-ICP-MS/MS to characterise nano-size TiO2 particles in complex matrices such as foodstuffs.


Assuntos
Aditivos Alimentares , Análise de Alimentos , Espectrometria de Massas em Tandem , Titânio , Titânio/química , Titânio/análise , Aditivos Alimentares/análise , Contaminação de Alimentos/análise , Tamanho da Partícula , Nanopartículas/química , Nanopartículas/análise
6.
Food Chem ; 456: 140002, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38870812

RESUMO

It is well known that aquatic products such as fish and shellfish, when stored for a long period of time under inappropriate conditions, can suffer from muscle softening. This phenomenon is mainly caused by endogenous proteases, which are activated during heating and accelerates the degradation of myofibrillar proteins, directly leading to weaker gels and poorer water retention capacity. This paper reviews the changes in fish proteins during storage after death and the factors affecting protein hydrolysis. A brief overview of the extraction of protease inhibitors, polysaccharides and proteins is given, as well as their mechanism of inhibition of protein hydrolysis in surimi and the current status of their application to improve the properties of surimi.


Assuntos
Produtos Pesqueiros , Proteínas de Peixes , Animais , Hidrólise , Proteínas de Peixes/química , Proteínas de Peixes/metabolismo , Produtos Pesqueiros/análise , Géis/química , Peixes , Aditivos Alimentares/química , Aditivos Alimentares/metabolismo , Aditivos Alimentares/análise
7.
ACS Appl Mater Interfaces ; 16(27): 35245-35254, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38935865

RESUMO

An alarming increase in the use of pesticides and organoarsenic compounds and their toxic impacts on the environment have inspired us to develop a selective and highly sensitive sensor for the detection of these pollutants. Herein, a bio-friendly, low-cost Al-based luminescent metal-organic framework (1')-based fluorescent material is demonstrated that helps in sustaining water quality by rapid monitoring and quantification of a long-established pesticide (pendimethalin) and a widely employed organoarsenic feed additive (roxarsone). A pyridine-functionalized porous aluminum-based metal-organic framework (Al-MOF) was solvothermally synthesized. After activation, it was used for fast (<10 s) and selective turn-off detection of roxarsone and pendimethalin over other competitive analytes. This is the first MOF-based recyclable sensor for pendimethalin with a remarkably low limit of detection (LOD, 14.4 nM). Real-time effectiveness in detection of pendimethalin in various vegetable and food extracts was successfully verified. Moreover, the aqueous-phase recyclable detection of roxarsone with an ultralow detection limit (13.1 nM) makes it a potential candidate for real-time application. The detection limits for roxarsone and pendimethalin are lower than the existing luminescent material based sensors. Furthermore, the detection of roxarsone in different environmental water and a wide pH range with a good recovery percentage was demonstrated. In addition, a cheap and bio-friendly 1'@chitosan@paper strip composite was prepared and successfully employed for the hands-on detection of pendimethalin and roxarsone. The turn-off behavior of 1' in the presence of pendimethalin and roxarsone was examined systematically, and plausible mechanistic pathways were proposed with the help of multiple experimental evidences.


Assuntos
Compostos de Anilina , Quitosana , Estruturas Metalorgânicas , Papel , Roxarsona , Verduras , Poluentes Químicos da Água , Estruturas Metalorgânicas/química , Compostos de Anilina/química , Poluentes Químicos da Água/análise , Verduras/química , Roxarsona/análise , Roxarsona/química , Quitosana/química , Praguicidas/análise , Contaminação de Alimentos/análise , Limite de Detecção , Aditivos Alimentares/análise
8.
J Food Sci ; 89(7): 4359-4371, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38847748

RESUMO

Hydrocolloids are widely used in meat products as common food additives. However, research has indicated that excessive consumption of these hydrocolloids may have potential health implications. Currently, consumers mainly rely on sensory evaluation to identify hydrocolloid adulteration in meat products. Although many studies on quantitative detection of hydrocolloids have been conducted by biochemical methods in laboratory environments, there is currently a lack of effective tools for consumers and regulators to obtain real-time and reliable information on hydrocolloid adulteration. To address this challenge, a smartphone-based computer vision method was developed to quantitatively detect carrageenan adulteration in beef in this work. Specifically, Swin Transformer models, along with pre-training and fine-tuning techniques, were used to successfully automate the classification of beef into nine different levels of carrageenan adulteration, ranging from 0% to 20%. Among the tested models, Swin-Tiny (Swin-T) achieved the highest trade-off performance, with a Top-1 accuracy of 0.997, a detection speed of 3.2 ms, and a model size of 103.45 Mb. Compared to computer vision, the electrochemical impedance spectroscopy achieved a lower accuracy of 0.792 and required a constant temperature environment and a waiting time of around 30 min for data stabilization. In addition, Swin-T model was also capable of distinguishing between different types of hydrocolloids with a Top-1 accuracy of 0.975. This study provides consumers and regulators with a valuable tool to obtain real-time quantitative information about meat adulteration anytime, anywhere. PRACTICAL APPLICATION: This research provides a practical solution for regulators and consumers to non-destructively and quantitatively detect the content and type of hydrocolloids in beef in real-time using smartphones. This innovation has the potential to significantly reduce the costs associated with meat quality testing, such as the use of chemical reagents and expensive instruments.


Assuntos
Carragenina , Coloides , Contaminação de Alimentos , Smartphone , Contaminação de Alimentos/análise , Coloides/química , Animais , Bovinos , Carragenina/análise , Carragenina/química , Produtos da Carne/análise , Aditivos Alimentares/análise , Carne Vermelha/análise , Carne/análise
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124703, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38936206

RESUMO

Unsafe food additives pose a significant threat to global health, especially in developing countries. Many existing methods rely on clean laboratories, complicated optics equipment, trained personnel and lengthy detection time, which are not suitable for onsite food safety inspections in emergency situations, peculiarly in impoverished areas. In this paper, a fast and visual onsite method is designed for the detection and quantification of additives in food safety by engineering a nanohybrid (MoS2/SDBS/Cu-CuFe2O4)-based catalysis. Interestingly, the nanohybrid presents peroxidase-like mimetic activity toward the substrate containing 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide (H2O2), which are then integrated simply into a detection kit. The blue oxidated TMB in this kit can be converted completely to colorless by some bio-molecule additives in commercial food, such as glutathione (GSH), cysteine (Cys), and ascorbic acid (AA). Remarkably, this process takes just less than 2 min and the detection limits are 2.8 nM, 5.5 nM and 47 nM, respectively. These results show excellent repeatability with a statistical analysis with (*P < 0.05) over 30 tests. Next, the images of the color changes can be captured clearly using a smartphone by red-green-blue (RGB) channels, which provides an opportunity for the development of field-operation device. Additionally, our approach is applied to some targets-indicative foods, showing a recovery range between 95.8 % and 104.2 %, offering an attractive and promising pathway for future practical food safety inspection applications. More importantly, this method can easily be extended to the detection of reducing substances in other analytical fields.


Assuntos
Aditivos Alimentares , Limite de Detecção , Catálise , Aditivos Alimentares/análise , Benzidinas/química , Molibdênio/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Cobre/análise , Cobre/química , Nanopartículas Metálicas/química , Colorimetria/métodos
10.
Food Chem ; 454: 139710, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815328

RESUMO

Food additives are chemical compounds intentionally added during foodstuff production to control technological functions, such as pH, viscosity, stability (color, flavor, taste, and odor), homogeneity, and loss of nutritional value. These compounds are fundamental in inhibition the degradation process and prolonging the shelf life of foodstuffs. However, their inadequate employment or overconsumption can adversely affect consumers' health with the development of allergies, hematological, autoimmune, and reproductive disorders, as well as the development of some types of cancer. Thus, the development and application of simple, fast, low-cost, sensitivity, and selectivity analytical methods for identifying and quantifying food additives from various chemical classes and in different foodstuffs are fundamental to quality control and ensuring food safety. This review presents trends in the detection of food additives in foodstuffs using differential pulse voltammetry and square wave voltammetry, the main pulse voltammetric techniques, indicating the advantages, drawbacks, and applicability in food analysis. Are discussed the importance of adequate choices of working electrode materials in the improvements of analytical results, allowing reliable, accurate, and inexpensive voltammetric methods for detecting these compounds in foodstuffs samples.


Assuntos
Técnicas Eletroquímicas , Aditivos Alimentares , Análise de Alimentos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Aditivos Alimentares/análise , Análise de Alimentos/métodos
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 317: 124401, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703414

RESUMO

A transition metal coordination polymer (CP), [Cd(Hdpcp)]n (Cd-CP) was prepared based on 3-(2,4-dicarboxyphenyl)-6-carboxypyridine ligand (H3dpcp), and then its composite Eu@Cd-CP was synthesized by the post-modification through loading Eu3+ ions on Cd-CP. Eu@Cd-CP has outstanding fluorescence stability in aqueous solution with a wide range of pH. Furthermore, Eu@Cd-CP can distinguish sodium salicylate (SS) and sodium dehydroacetate (SA) in some food additives by quenching the characteristic fluorescence of Eu3+ ion. Eu@Cd-CP is the first known CP-based fluorescent probe for selective detection of SS and SA. In addition, the fluorescence mechanisms of discerning above analytes by Eu@Cd-CP have been thoroughly evaluated. It has found that synergistic effect of the dynamic process, photoinduced electron transfer (PET) process, energy absorption competition, and formation of Eu-O bonding interactions in sensing SA lead to the fluorescence quenching of Eu@Cd-CP. The fluorescence response mechanism of Eu@Cd-CP with SA is ascribed to the combination of the dynamic process, PET process, and energy absorption competition. A series of portable devices based on Eu@Cd-CP including fluorescence test strips, lamp beads, and composite films were developed to discern SS and SA via visual changes in luminescence color. This composite material can be potentially used as a multifunctional fluorescent probe for practical applications.


Assuntos
Európio , Corantes Fluorescentes , Aditivos Alimentares , Espectrometria de Fluorescência , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Európio/química , Aditivos Alimentares/análise , Polímeros/química , Concentração de Íons de Hidrogênio
12.
Am J Clin Nutr ; 120(2): 310-319, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38816268

RESUMO

BACKGROUND: There has been a dramatic shift in food systems, and the consumption of commercially processed and packaged foods has grown globally, including among older infants and young children. Many of these products are ultraprocessed and contain additives, with concerning implications for the health and nutrition of children. OBJECTIVES: The study objectives were as follows: 1) to assess the levels of processing among different commercially produced complementary food product (CPCF) categories marketed in the Southeast Asia region, 2) to compare the nutrient content of CPCF products across levels of processing, and 3) to assess the types of additives present in different CPCF categories. METHODS: This cross-sectional study involved secondary analysis of a cross-sectional dataset of product label information from CPCF purchased in 2021 in Cambodia, Indonesia, Lao People's Democratic Republic, Malaysia, Philippines, Thailand, and Viet Nam. Ingredient lists were reviewed to determine the level of processing-based on the Nova classification-and the presence of additives. Nutrient declaration panels were reviewed to determine total sugar, sodium, and total fat. RESULTS: Nearly half of all CPCF were ultraprocessed, with total sugar and sodium content significantly higher among ultraprocessed CPCF than unprocessed/minimally processed products. Almost half of CPCF contained additives, with a median of 6 per product. More than 30% of all CPCF made use of cosmetic additives to enhance the products' appearance, flavor, or texture, with emulsifiers, colors, and thickeners the most prevalent. Almost one-third of products contained additives not permitted in Codex Alimentarius standards and guidelines for CPCF. CONCLUSIONS: Findings from this study should alert national governments to both adopt and ensure enforcement of Codex guidance on additives and regulations enacted to encourage lower levels of processing for CPCF.


Assuntos
Aditivos Alimentares , Manipulação de Alimentos , Alimentos Infantis , Estudos Transversais , Humanos , Sudeste Asiático , Aditivos Alimentares/análise , Alimentos Infantis/análise , Alimentos Infantis/normas , Lactente , Valor Nutritivo , Rotulagem de Alimentos , População do Sudeste Asiático
13.
Food Chem ; 451: 139416, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663249

RESUMO

A reliable solid-liquid extraction protocol coupled with liquid chromatography-electrospray ionization-tandem mass spectrometry in the negative-ion mode was developed and validated for illegal bromate determination in preliminary and bakery products. Crude and dried-treated samples were directly extracted with acetonitrile-water (4:1, v/v). Bromate was determined using a Phenomenex Synergi™ Polar reversed-phase column and MS/MS under multiple reaction monitoring. The chosen solvent efficiently extracted bromate with all applied extraction-assisting techniques (p > 0.05). Although this assay avoids cleanup procedures, matrix effect of <-11% was achieved. Rapid bromate separation in only 8 min was attained by a reversed-phase column. In both commodities, linearity range, R2, recovery%, repeatability, intermediate precision, LOD and LOQ results were 0.05-100 ng mL-1, >0.9999, 88.6-103%, 2.93-9.80% and 9.64-10.10%, 0.015 µg kg-1 and 0.05 µg kg-1, respectively. Out of 288 tested real samples, 13.9% of violations were observed. This high-sensitivity protocol offers effective oversight and consumer protection.


Assuntos
Bromatos , Contaminação de Alimentos , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas em Tandem , Contaminação de Alimentos/análise , Bromatos/análise , Bromatos/química , Aditivos Alimentares/análise , Aditivos Alimentares/isolamento & purificação , Extração em Fase Sólida/métodos , Cromatografia Líquida de Alta Pressão , Pão/análise , Limite de Detecção
14.
Food Chem Toxicol ; 188: 114654, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38608926

RESUMO

In view of a continuous trend in replacing synthetic feed additives and especially flavouring compounds by botanical preparations, different aspects of the safety evaluations of plants and plant-derived preparations and components in feed are discussed. This includes risk assessment approaches developed by the European Food Safety Authority (EFSA) for phytotoxins regarding unintentional exposure of target animals and of consumers to animal derived food via carry-over from feed. Relevant regulatory frameworks for feed additives and feed contaminants in the European Union are summarised and the essentials of existing guidelines used in the safety evaluation of botanicals and their preparations and components in feed are outlined. The examples presented illustrate how the safety of the botanicals, their preparations and components present in feed is assessed. An outlook on possible future developments in risk assessment by applying new in vitro and in silico methodologies is given.


Assuntos
Ração Animal , União Europeia , Medição de Risco , Ração Animal/análise , Animais , Humanos , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Aditivos Alimentares/toxicidade , Aditivos Alimentares/análise
15.
Food Chem Toxicol ; 187: 114605, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537869

RESUMO

The gut microbiota should be included in the scientific processes of risk assessment of food additives. Xylitol is a sweetener that shows low digestibility and intestinal absorption, implying that a high proportion of consumed xylitol could reach the colonic microbiota. The present study has evaluated the dose-dependent effects of xylitol intake on the composition and the metabolic activity of the child gut-microbiota. The study was conducted in a dynamic simulator of the colonic microbiota (BFBL Gut Simulator) inoculated with a child pooled faecal sample and supplemented three times per day, for 7 days, with increasing xylitol concentrations (1 g/L, 3 g/L and 5 g/L). Sequencing of 16S rRNA gene amplicons and group-specific quantitative PCR indicated a xylitol dose-response effect on the abundance of Lachnospiraceae, particularly the genera Blautia, Anaerostipes and Roseburia. The microbial changes observed with xylitol corresponded with a dose-dependant effect on the butyrate concentration that, in parallel, favoured an increase in epithelial integrity of Caco-2 cells. The study represents a detailed observation of the bacterial taxa that are the main contributors to the metabolism of xylitol by the child gut microbiota and the results could be relevant in the risk assessment re-evaluation of xylitol as a sweetener.


Assuntos
Microbioma Gastrointestinal , Criança , Humanos , Xilitol/farmacologia , Xilitol/metabolismo , Aditivos Alimentares/farmacologia , Aditivos Alimentares/análise , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise , Células CACO-2 , Butiratos/farmacologia , Edulcorantes/farmacologia , Edulcorantes/análise
16.
J Sci Food Agric ; 104(10): 6108-6117, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38445510

RESUMO

BACKGROUND: Excessive NaCl intake in liquid and semi-solid food (e.g. soup, hot pot base, sauce) poses a high risk to human health, and reducing NaCl intake is a major concern for global health. RESULTS: Using the generalized Labeled Magnitude Scale (gLMS) method, the study verified the possibility of sodium reduction through oil addition. The compromised acceptance threshold (CAT) and hedonic rejection threshold (HRT) were determined. The gLMS results showed that the saltiness intensity of samples containing 0.36% NaCl and 2.29% sunflower seed oil was significantly higher than that of samples containing only 0.36% NaCl (P < 0.05). CAT and HRT results indicated that by adding 3.59% sunflower oil, the NaCl content could be reduced to a minimum of 0.14% without causing sensory rejection in bone broth samples. The quantitative descriptive analysis method was used to determine the effects of NaCl and oil concentrations on the sensory attributes of bone broth samples. Furthermore, it was used to analyze the consumer acceptability drivers in combination with the hedonic scale to optimize the formulation of reduced-salt bone broth products. Notably, sample E (0.36% NaCl, 2.29% fat) not only had a significant salt reduction effect with a 20% decrease in NaCl, but also had improved overall acceptability. CONCLUSION: This study provides theoretical guidance for designing salt-reduction cuisine within the catering and food industries, including bone broth and hot pot bases. © 2024 Society of Chemical Industry.


Assuntos
Comportamento do Consumidor , Paladar , Humanos , Adulto , Óleo de Girassol/química , Feminino , Masculino , Aditivos Alimentares/análise , Aditivos Alimentares/química , Cloreto de Sódio/análise , Cloreto de Sódio/química , Adulto Jovem , Pessoa de Meia-Idade , Cloreto de Sódio na Dieta/análise , Osso e Ossos/química
17.
J Sci Food Agric ; 104(9): 5274-5283, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38334358

RESUMO

BACKGROUND: The influences of deacetylated konjac glucomannan (DKGM) at different condition levels (0.0%, 0.5%, 1.0%, 1.5%, 2.0%) on the 3D printing feasibility, printing properties, and the final gel characteristics of minced pork were investigated. RESULTS: As the DKGM content increased, the printing accuracy and stability initially increased and then declined, and the printing stability and accuracy increased to their highest levels (98.16% and 98.85%) with a 1.5% addition of DKGM. Furthermore, the addition of DKGM significantly enhanced the texture of 3D-printed meat after heat treatments. When the DKGM content reached 1.5%, the hardness and springiness were 1.19 and 1.06 times higher than those of the control group. The results of low-field nuclear magnetic resonance and Raman spectra revealed that DKGM enhanced the amount of bound water in 3D-printed meat and encouraged changes in protein structure. After the addition of DKGM at 1.5%, the contents of bound water and ß-sheets were 7.67% and 12.89% higher than those of the control group, respectively, facilitating the development of a better gel network of minced meat during heating. CONCLUSION: The results indicate that a concentration of 1.5% DKGM is the ideal setting for obtaining the desired rheological properties and textural characteristics (printability) of 3D-printed minced meat products compared to other samples. In addition, the results showed that the addition of DKGM at 1.5% promotes the transition from α-helix to ß-folding of proteins during heating, which facilitates the formation of gels. The results of the study contribute to the application potential of minced meat in the field of 3D food printing. © 2024 Society of Chemical Industry.


Assuntos
Mananas , Produtos da Carne , Impressão Tridimensional , Mananas/química , Animais , Suínos , Produtos da Carne/análise , Amorphophallus/química , Reologia , Manipulação de Alimentos/métodos , Aditivos Alimentares/química , Aditivos Alimentares/análise , Géis/química , Culinária/métodos
18.
Artigo em Inglês | MEDLINE | ID: mdl-38175170

RESUMO

Silicon dioxide (SiO2), in its amorphous form, is an approved direct food additive in the United States and has been used as an anticaking agent in powdered food products and as a stabilizer in the production of beer. While SiO2 has been used in food for many years, there is limited information regarding its particle size and size distribution. In recent years, the use of SiO2 food additive has raised attention because of the possible presence of nanoparticles. Characterization of SiO2 food additive and understanding their physicochemical properties utilizing modern analytical tools are important in the safety evaluation of this additive. Herein, we present analytical techniques to characterize some SiO2 food additives, which were obtained directly from manufacturers and distributors. Characterization of these additives was performed using dynamic light scattering (DLS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), and single-particle inductively coupled plasma mass spectrometry (spICP-MS) after the food additive materials underwent different experimental conditions. The data obtained from DLS, spICP-MS, and electron microscopy confirmed the presence of nanosized (1-100 nm) primary particles, as well as aggregates and agglomerates of aggregates with sizes greater than 100 nm. SEM images demonstrated that most of the SiO2 food additives procured from different distributors showed similar morphology. The results provide a foundation for evaluating the nanomaterial content of regulated food additives and will help the FDA address current knowledge gaps in analyzing nanosized particles in commercial food additives.


Assuntos
Nanopartículas , Nanoestruturas , Dióxido de Silício/química , Aditivos Alimentares/análise , Nanopartículas/química , Análise Espectral , Tamanho da Partícula
19.
Chem Pharm Bull (Tokyo) ; 72(1): 93-97, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38233137

RESUMO

Sunflower seed extract, an antioxidant agent registered on the List of Existing Food Additives in Japan, was evaluated using HPLC, and three common constituents were detected. These peaks were identified as monocaffeoylquinic acids (3-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, and 5-O-caffeoylquinic acid [chlorogenic acid]). Upon scrutinizing other components, dicaffeoylquinic acids (isochlorogenic acids; 3,4-di-O-caffeoylquinic, 3,5-di-O-caffeoylquinic, and 4,5-di-O-caffeoylquinic acids) were also identified. Structures of two newly isolated compounds were determined to be 3-O-(3S-2-oxo-3-hydroxy-indole-3-acetyl)-5-O-caffeoylquinic and 4-O-(3S-2-oxo-3-hydroxy-indole-3-acetyl)-5-O-caffeoylquinic acids. To identify the components that contribute to the antioxidant activity of sunflower seed extract, we fractionated the food additive sample solution and examined the active fractions for 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. Monocaffeoylquinic and dicaffeoylquinic acids showed high DPPH activity, including their contribution to the antioxidant activity of this food additive. DPPH radical scavenging activity of the new compounds showed almost the same value as that of the positive control, Trolox. Therefore, the contribution of these compounds was also considered.


Assuntos
Antioxidantes , Ácido Clorogênico/análogos & derivados , Helianthus , Ácido Quínico/análogos & derivados , Antioxidantes/farmacologia , Antioxidantes/química , Aditivos Alimentares/análise , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Indóis
20.
Eur J Pediatr ; 183(4): 1839-1848, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38277000

RESUMO

The aim of this study was to investigate the effect of time, temperature, and thickener on expressed human milk thickened for infants with dysphagia. Thickening agents included raw oatmeal cereal, commercial thickeners (Gelmix, Purathick), pureed fruits, pureed vegetables, yogurt, and pudding. The International Dysphagia Diet Standardisation Initiative (IDDSI) flow test was used to measure the thickness level across samples at various temperatures (40 °F/4.4 °C, 70 °F/21.1 °C, and 98.6 °F/37 °C) and times (0, 5, 10, and 20 min). Statistical analysis included one-way ANOVA with Tukey post hoc test and multiple linear regression. Fruit purees, particularly banana, achieved the thickest mixtures at all temperatures and maintained a similar thickness over time (20 min). Vegetable puree mixtures were minimally effective at thickening, i.e., between 0 and 1 ml on IDDSI flow test, with exception of squash at 40 °F/4.4 °C. Commercial thickener (Gelmix and Purathick) mixtures continued to thicken over time. The yogurt mixture at 40 °F/4.4 °C thickened initially and thinned slightly over time. The pudding mixture at 40 °F/4.4 °C thickened immediately but quickly became a thin liquid. The raw oatmeal cereal mixtures thinned or thickened over time dependent on the temperature of the human milk (40 °F/4.4 °C mixture thinned over time, while the 70 °F/21.1 °C, and 98.6 °F/37 °C mixtures thickened over time). CONCLUSION: Time, temperature, and thickening agents have a significant impact on the thickness level when added to expressed human milk. Certain foods such as fruit purees, squash, yogurt, and raw oatmeal may effectively thicken human milk, and the IDDSI flow test can assess if the mixture maintains a similar thickness level over time. These foods could be considered for older infants with dysphagia. When thickening human milk for infants with dysphagia, close physician and clinician monitoring is recommended given the potential positive and/or negative consequences on oral feeding and overall health. WHAT IS KNOWN: • Thin liquids can be challenging for infants with dysphagia to safely swallow Human milk is difficult to thicken. WHAT IS NEW: • Pureed fruits and pureed squash thicken human milk effectively at various temperatures and maintain thickness level over 20 minutes. • Pureed fruits and pureed squash thicken human milk effectively at various temperatures and maintain thickness level over 20 Raw oatmeal cereal either thins over time or thickens over time depending on the temperature of the base liquid.


Assuntos
Transtornos de Deglutição , Humanos , Temperatura , Leite Humano/química , Aditivos Alimentares/análise , Bebidas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA