Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.644
Filtrar
1.
Hum Vaccin Immunother ; 20(1): 2346963, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38745461

RESUMO

COVID-19, caused by SARS-CoV-2, and meningococcal disease, caused by Neisseria meningitidis, are relevant infectious diseases, preventable through vaccination. Outer membrane vesicles (OMVs), released from Gram-negative bacteria, such as N. meningitidis, present adjuvant characteristics and may confer protection against meningococcal disease. Here, we evaluated in mice the humoral and cellular immune response to different doses of receptor binding domain (RBD) of SARS-CoV-2 adjuvanted by N. meningitidis C:2a:P1.5 OMVs and aluminum hydroxide, as a combined preparation for these pathogens. The immunization induced IgG antibodies of high avidity for RBD and OMVs, besides IgG that recognized the Omicron BA.2 variant of SARS-CoV-2 with intermediary avidity. Cellular immunity showed IFN-γ and IL-4 secretion in response to RBD and OMV stimuli, demonstrating immunologic memory and a mixed Th1/Th2 response. Offspring presented transferred IgG of similar levels and avidity as their mothers. Humoral immunity did not point to the superiority of any RBD dose, but the group immunized with a lower antigenic dose (0.5 µg) had the better cellular response. Overall, OMVs enhanced RBD immunogenicity and conferred an immune response directed to N. meningitidis too.


Assuntos
Anticorpos Antivirais , COVID-19 , Imunoglobulina G , Neisseria meningitidis , SARS-CoV-2 , Animais , Camundongos , Imunoglobulina G/sangue , Neisseria meningitidis/imunologia , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , SARS-CoV-2/imunologia , Adjuvantes Imunológicos/administração & dosagem , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Imunidade Celular , Imunidade Humoral , Camundongos Endogâmicos BALB C , Infecções Meningocócicas/prevenção & controle , Infecções Meningocócicas/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adjuvantes de Vacinas/administração & dosagem , Hidróxido de Alumínio/administração & dosagem , Hidróxido de Alumínio/imunologia , Imunização/métodos , Afinidade de Anticorpos , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Vacinas Meningocócicas/imunologia , Vacinas Meningocócicas/administração & dosagem , Memória Imunológica , Células Th1/imunologia
2.
Front Immunol ; 15: 1354710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726010

RESUMO

Cancer vaccines are gaining ground as immunotherapy options. We have previously demonstrated in cutaneous melanoma (CM) patients that adjuvant treatment with VACCIMEL, a mixture of four irradiated CM cell lines co-adjuvanted with BCG and GM-CSF, increases the cellular immune response to melanocyte differentiation antigens, cancer-testis antigens and neoantigens, with respect to basal levels. On the other hand, it is also known that treatment with anti-PD-1 monoclonal antibodies (MAbs), acting on pre-existing tumor-reactive lymphocytes, induces clinical responses in CM patients, albeit in a fraction of treated patients. A combination of both treatments would appear therefore desirable. In this paper, we describe CM patients who, having progressed even years after vaccination, were treated with anti-PD-1 MAbs. In 5/5 of such progressor patients, complete responses were obtained which lasted between 3 and 65+ months. Three of the patients remain disease-free and two recurred. One of the patients passed away after a recurrence of brain metastases. We suggest that clonally expanded reactive lymphocytes induced by VACCIMEL partially remain as memory cells, which may be recalled after tumor recurrence and may foster ulterior activity of anti-PD-1 MAbs.


Assuntos
Vacinas Anticâncer , Melanoma , Receptor de Morte Celular Programada 1 , Neoplasias Cutâneas , Humanos , Melanoma/imunologia , Melanoma/terapia , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/tratamento farmacológico , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/imunologia , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Vacinas Anticâncer/administração & dosagem , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Inibidores de Checkpoint Imunológico/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Melanoma Maligno Cutâneo , Resultado do Tratamento , Adjuvantes Imunológicos/uso terapêutico , Adjuvantes Imunológicos/administração & dosagem
3.
Nat Commun ; 15(1): 3738, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702297

RESUMO

Whole virus-based inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide have been critical to the COVID-19 pandemic response. Although these vaccines are protective against homologous coronavirus infection, the emergence of novel variants and the presence of large zoonotic reservoirs harboring novel heterologous coronaviruses provide significant opportunities for vaccine breakthrough, which raises the risk of adverse outcomes like vaccine-associated enhanced respiratory disease. Here, we use a female mouse model of coronavirus disease to evaluate inactivated vaccine performance against either homologous challenge with SARS-CoV-2 or heterologous challenge with a bat-derived coronavirus that represents a potential emerging disease threat. We show that inactivated SARS-CoV-2 vaccines adjuvanted with aluminum hydroxide can cause enhanced respiratory disease during heterologous infection, while use of an alternative adjuvant does not drive disease and promotes heterologous viral clearance. In this work, we highlight the impact of adjuvant selection on inactivated vaccine safety and efficacy against heterologous coronavirus infection.


Assuntos
Hidróxido de Alumínio , Vacinas contra COVID-19 , COVID-19 , SARS-CoV-2 , Vacinas de Produtos Inativados , Animais , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Feminino , COVID-19/prevenção & controle , COVID-19/imunologia , COVID-19/virologia , Camundongos , Vacinas de Produtos Inativados/imunologia , SARS-CoV-2/imunologia , Hidróxido de Alumínio/administração & dosagem , Modelos Animais de Doenças , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes de Vacinas , Anticorpos Antivirais/imunologia , Camundongos Endogâmicos BALB C , Humanos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia
4.
Hum Vaccin Immunother ; 20(1): 2348124, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38714332

RESUMO

South Korea's National Immunization Program administers the quadrivalent influenza vaccine (QIV) to manage seasonal influenza, with a particular focus on the elderly. After reviewing the safety and immune response triggered by the adjuvanted QIV (aQIV) in individuals aged 65 and older, the Ministry of Food and Drug Safety in Korea approved its use. However, the extensive impact of aQIV on public health is yet to be fully understood. This study assessed the cost-effectiveness of replacing QIV with aQIV in South Korean adults aged 65 years and older. A dynamic transmission model, calibrated with national influenza data, was applied to compare the influence of aQIV and QIV on older adults and the broader population throughout a single influenza season. This study considered both the direct and indirect effects of vaccination on the elderly. We derived the incremental cost-effectiveness ratios (ICERs) from quality-adjusted life-years (QALYs) and costs incurred, validated through a probabilistic sensitivity analysis with 5,000 simulations. Findings suggest that transitioning to aQIV from QIV in the elderly would be cost-effective, particularly if aQIV's efficacy reaches or exceeds 56.1%. With an ICER of $29,267/QALY, considerably lower than the $34,998/QALY willingness-to-pay threshold, aQIV presents as a cost-effective option. Thus, implementing aQIV with at least 56.1% efficacy is beneficial from both financial and public health perspectives in mitigating seasonal influenza in South Korea.


Assuntos
Adjuvantes Imunológicos , Análise Custo-Benefício , Vacinas contra Influenza , Influenza Humana , Humanos , Vacinas contra Influenza/economia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , República da Coreia , Idoso , Influenza Humana/prevenção & controle , Influenza Humana/economia , Idoso de 80 Anos ou mais , Adjuvantes Imunológicos/economia , Adjuvantes Imunológicos/administração & dosagem , Masculino , Feminino , Anos de Vida Ajustados por Qualidade de Vida
5.
Hum Vaccin Immunother ; 20(1): 2351664, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38757508

RESUMO

Middle East respiratory syndrome coronavirus (MERS-CoV) is a lethal beta-coronavirus that emerged in 2012. The virus is part of the WHO blueprint priority list with a concerning fatality rate of 35%. Scientific efforts are ongoing for the development of vaccines, anti-viral and biotherapeutics, which are majorly directed toward the structural spike protein. However, the ongoing effort is challenging due to conformational instability of the spike protein and the evasion strategy posed by the MERS-CoV. In this study, we have expressed and purified the MERS-CoV pre-fusion spike protein in the Expi293F mammalian expression system. The purified protein was extensively characterized for its biochemical and biophysical properties. Thermal stability analysis showed a melting temperature of 58°C and the protein resisted major structural changes at elevated temperature as revealed by fluorescence spectroscopy and circular dichroism. Immunological assessment of the MERS-CoV spike immunogen in BALB/c mice with AddaVaxTM and Imject alum adjuvants showed elicitation of high titer antibody responses but a more balanced Th1/Th2 response with AddaVaxTM squalene like adjuvant. Together, our results suggest the formation of higher-order trimeric pre-fusion MERS-CoV spike proteins, which were able to induce robust immune responses. The comprehensive characterization of MERS-CoV spike protein warrants a better understanding of MERS spike protein and future vaccine development efforts.


Assuntos
Anticorpos Antivirais , Camundongos Endogâmicos BALB C , Coronavírus da Síndrome Respiratória do Oriente Médio , Glicoproteína da Espícula de Coronavírus , Vacinas Virais , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/genética , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas Virais/imunologia , Camundongos , Feminino , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/imunologia , Imunogenicidade da Vacina , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes de Vacinas , Humanos
6.
Sci Rep ; 14(1): 11101, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750098

RESUMO

Mucosal immunity plays a major role not only in the prevention but probably also in the outcomes of COVID-19. An enhanced production of secretory immunoglobulin A (sIgA) might contribute to the activation of the immune response mechanisms. To assess the levels of sIgA produced by epithelial cells in the nasal and pharyngeal mucosa and those measured in salivary gland secretions and to study the course of COVID-19 following the combined scheme of intranasal and subcutaneous administration of a bacteria-based immunostimulant agent. This study included 69 patients, aged between 18 and 60, who had moderate COVID-19 infection. They were divided into two groups: Group 1 (control group) included 39 patients who received only background therapy, and Group 2 was made up of 30 patients who received background therapy in combination with the Immunovac VP4 vaccine, a bacteria-based immunostimulant agent, which was given for 11 days starting from the day of admission to hospital. The levels of sIgA were measured by ELISA in epithelial, nasal and pharyngeal swabs, and salivary gland secretions at baseline and on days 14 and 30. The combined scheme of intranasal and subcutaneous administration of the Immunovac VP4 vaccine in the complex therapy of patients with COVID-19 is accompanied by increased synthesis of sIgA in nasal and pharyngeal swabs, more intense decrease in the level of C-reactive protein (CRP) and reduction in the duration of fever and length of hospitalization compared to the control group. Prescribing a immunostimulant agent containing bacterial ligands in complex therapy for COVID-19 patients helps to enhance mucosal immunity and improves the course of the disease.


Assuntos
Adjuvantes Imunológicos , COVID-19 , Imunoglobulina A Secretora , SARS-CoV-2 , Humanos , Imunoglobulina A Secretora/imunologia , COVID-19/imunologia , Feminino , Adulto , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Adjuvantes Imunológicos/administração & dosagem , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Imunidade nas Mucosas/efeitos dos fármacos , Adulto Jovem , Adolescente , Administração Intranasal
7.
Front Immunol ; 15: 1370564, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711520

RESUMO

There are considerable avenues through which currently licensed influenza vaccines could be optimized. We tested influenza vaccination in a mouse model with two adjuvants: Sendai virus-derived defective interfering (SDI) RNA, a RIG-I agonist; and an amphiphilic imidazoquinoline (IMDQ-PEG-Chol), a TLR7/8 agonist. The negatively charged SDI RNA was formulated into lipid nanoparticles (LNPs) facilitating direct delivery of SDI RNA to the cytosol, where RIG-I sensing induces inflammatory and type I interferon responses. We previously tested SDI RNA and IMDQ-PEG-Chol as standalone and combination adjuvants for influenza and SARS-CoV-2 vaccines. Here, we tested two different ionizable lipids, K-Ac7-Dsa and S-Ac7-Dog, for LNP formulations. The LNPs were incorporated with SDI RNA to determine its potential as a combination adjuvant with IMDQ-PEG-Chol by evaluating the host immune response to vaccination and infection in immunized BALB/c mice. Adjuvanticity of IMDQ-PEG-Chol with and without empty or SDI-loaded LNPs was validated with quadrivalent inactivated influenza vaccine (QIV), showing robust induction of antibody titers and T-cell responses. Depending on the adjuvant combination and LNP formulation, humoral and cellular vaccine responses could be tailored towards type 1 or type 2 host responses with specific cytokine profiles that correlated with the protective responses to viral infection. The extent of protection conferred by different vaccine/LNP/adjuvant combinations was tested by challenging mice with a vaccine-matched strain of influenza A virus A/Singapore/gp1908/2015 IVR-180 (H1N1). Groups that received either LNP formulated with SDI or IMDQ-PEG-Chol, or both, showed very low levels of viral replication in their lungs at 5 days post-infection (DPI). These studies provide evidence that the combination of vaccines with LNPs and/or adjuvants promote antigen-specific cellular responses that can contribute to protection upon infection. Interestingly, we observed differences in humoral and cellular responses to vaccination between different groups receiving K-Ac7-Dsa or S-Ac7-Dog lipids in LNP formulations. The differences were also reflected in inflammatory responses in lungs of vaccinated animals to infection, depending on LNP formulations. Therefore, this study suggests that the composition of the LNPs, particularly the ionizable lipid, plays an important role in inducing inflammatory responses in vivo, which is important for vaccine safety and to prevent adverse effects upon viral exposure.


Assuntos
Adjuvantes Imunológicos , Vacinas contra Influenza , Lipossomos , Camundongos Endogâmicos BALB C , Nanopartículas , Infecções por Orthomyxoviridae , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Camundongos , Adjuvantes Imunológicos/administração & dosagem , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Feminino , Lipídeos , Vacinação/métodos , Adjuvantes de Vacinas , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Vírus Sendai/imunologia , Influenza Humana/prevenção & controle , Influenza Humana/imunologia
8.
BMC Vet Res ; 20(1): 173, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702665

RESUMO

Strangles is a highly contagious disease of the equine upper respiratory tract caused by Streptococcus equi subspecies. Streptococcus equi subsp. equi (S. equi) and Streptococcus equi subsp. zooepidemicus (S. zooepidemicus) was isolated, as local, hot, and field strains, from horses clinically suffering from respiratory distress. The isolated Streptococci were identified using bacteriological and molecular techniques. Four formulations of inactivated S. equi vaccines were developed and evaluated. The first formulation was prepared using the S. equi isolates, adjuvanted with MONTANIDE GEL adjuvant, while the second formulation was adjuvanted with MONTANIDE ISA-70 adjuvant. The other 2 formulations were inactivated combined vaccines prepared from both S. equi and S. zooepidemicus isolates. The 3rd formulation was the combined isolates adjuvanted with MONTANIDE GEL while the 4th formulation was the combined isolates adjuvanted with MONTANIDE ISA-70. The developed vaccines' physical properties, purity, sterility, safety, and potency were ensured. The immunizing efficacy was determined in isogenic BALB/c mice and white New Zealand rabbits using the passive hemagglutination test. Also, the antibodies' titer of the combined S. equi and S. zooepidemicus vaccine adjuvanted with MONTANIDE ISA-70 in foals was tracked using an indirect enzyme-linked immunosorbent assay. The protective efficacy of the developed vaccines was determined using a challenge test in both laboratory and field animal models, where a 75% protection rate was achieved. The combined vaccine proved to be more efficacious than the monovalent vaccine. Also, the MONTANIDE ISA-70 adjuvant provided significant protective efficacy than the MONTANIDE GEL. The current work is introducing a very promising mitigative and strategic controlling solution for strangles.


Assuntos
Doenças dos Cavalos , Camundongos Endogâmicos BALB C , Infecções Estreptocócicas , Vacinas Estreptocócicas , Streptococcus equi , Streptococcus , Animais , Streptococcus equi/imunologia , Cavalos , Coelhos , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/imunologia , Camundongos , Doenças dos Cavalos/prevenção & controle , Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/imunologia , Vacinas Estreptocócicas/imunologia , Vacinas Estreptocócicas/administração & dosagem , Feminino , Anticorpos Antibacterianos/sangue , Adjuvantes Imunológicos/administração & dosagem , Vacinas de Produtos Inativados/imunologia
9.
Investig Clin Urol ; 65(3): 248-255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38714515

RESUMO

PURPOSE: This study investigated the efficacy of intravesical gemcitabine as an alternative to bacillus Calmette-Guérin (BCG) therapy. MATERIALS AND METHODS: Data were retrospectively collected across seven institutions from February 1999 to May 2023. Inclusion criteria included patients with intermediate- or high-risk non-muscle invasive bladder cancer (NMIBC) who underwent transurethral resection of bladder tumors (TURBT) and received at least four sessions of intravesical gemcitabine or BCG induction therapy. Patient characteristics, complete remission (CR), occurrence, and progression rates were compared. RESULTS: In total, 149 patients were included in this study (gemcitabine, 63; BCG, 86). No differences were apparent between the two groups in baseline characteristics, except for the follow-up period (gemcitabine, 9.2±5.9 months vs. BCG, 43.9±41.4 months, p<0.001). There were no consistent significant differences observed between the two groups in the 3-month (gemcitabine, 98.4% vs. BCG, 95.3%; p=0.848), 6-month (94.9% vs. 90.0%, respectively; p=0.793) and 1-year CR rates (84.2% vs. 83.3%, respectively; p=0.950). Also, there was no significant statistical difference in progression-free survival between the two groups (p=0.953). The occurrence rates of adverse events were similar between the groups (22.2% vs. 22.1%; p=0.989); however, the rate of Clavien-Dindo grade 2 or higher was significantly higher in the BCG group (1.6% vs. 16.3%, respectively; p<0.001). CONCLUSIONS: Intravesical gemcitabine demonstrated efficacy comparable to BCG therapy for the first year in patients with intermediate- and high-risk NMIBC. However, long-term follow-up studies are warranted.


Assuntos
Adjuvantes Imunológicos , Antimetabólitos Antineoplásicos , Vacina BCG , Desoxicitidina , Gencitabina , Recidiva Local de Neoplasia , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/cirurgia , Neoplasias da Bexiga Urinária/terapia , Desoxicitidina/análogos & derivados , Desoxicitidina/administração & dosagem , Estudos Retrospectivos , Vacina BCG/administração & dosagem , Vacina BCG/uso terapêutico , Masculino , Feminino , Administração Intravesical , Idoso , Antimetabólitos Antineoplásicos/administração & dosagem , Pessoa de Meia-Idade , Adjuvantes Imunológicos/administração & dosagem , Cistectomia/métodos , Medição de Risco , Uretra
10.
N Engl J Med ; 390(15): 1359-1371, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38631003

RESUMO

BACKGROUND: Adjuvant pembrolizumab therapy after surgery for renal-cell carcinoma was approved on the basis of a significant improvement in disease-free survival in the KEYNOTE-564 trial. Whether the results regarding overall survival from the third prespecified interim analysis of the trial would also favor pembrolizumab was uncertain. METHODS: In this phase 3, double-blind, placebo-controlled trial, we randomly assigned (in a 1:1 ratio) participants with clear-cell renal-cell carcinoma who had an increased risk of recurrence after surgery to receive pembrolizumab (at a dose of 200 mg) or placebo every 3 weeks for up to 17 cycles (approximately 1 year) or until recurrence, the occurrence of unacceptable toxic effects, or withdrawal of consent. A significant improvement in disease-free survival according to investigator assessment (the primary end point) was shown previously. Overall survival was the key secondary end point. Safety was a secondary end point. RESULTS: A total of 496 participants were assigned to receive pembrolizumab and 498 to receive placebo. As of September 15, 2023, the median follow-up was 57.2 months. The disease-free survival benefit was consistent with that in previous analyses (hazard ratio for recurrence or death, 0.72; 95% confidence interval [CI], 0.59 to 0.87). A significant improvement in overall survival was observed with pembrolizumab as compared with placebo (hazard ratio for death, 0.62; 95% CI, 0.44 to 0.87; P = 0.005). The estimated overall survival at 48 months was 91.2% in the pembrolizumab group, as compared with 86.0% in the placebo group; the benefit was consistent across key subgroups. Pembrolizumab was associated with a higher incidence of serious adverse events of any cause (20.7%, vs. 11.5% with placebo) and of grade 3 or 4 adverse events related to pembrolizumab or placebo (18.6% vs. 1.2%). No deaths were attributed to pembrolizumab therapy. CONCLUSIONS: Adjuvant pembrolizumab was associated with a significant and clinically meaningful improvement in overall survival, as compared with placebo, among participants with clear-cell renal-cell carcinoma at increased risk for recurrence after surgery. (Funded by Merck Sharp and Dohme, a subsidiary of Merck; KEYNOTE-564 ClinicalTrials.gov number, NCT03142334.).


Assuntos
Antineoplásicos Imunológicos , Carcinoma de Células Renais , Neoplasias Renais , Humanos , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/efeitos adversos , Adjuvantes Imunológicos/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/mortalidade , Carcinoma de Células Renais/cirurgia , Método Duplo-Cego , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/mortalidade , Neoplasias Renais/cirurgia , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/uso terapêutico , Intervalo Livre de Doença , Terapia Combinada , Análise de Sobrevida
11.
Vet Microbiol ; 293: 110088, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38640639

RESUMO

Orf virus (ORFV), a member of the genus Parapoxvirus, possesses an excellent immune activation capability, which makes it a promising immunomodulation agent. In this study, we evaluated ORFV as a novel adjuvant to enhance the immune response of mice to a subunit vaccine using porcine circovirus type 2 (PCV2) capsid (Cap) protein as a model. Our results showed that both inactivated and live attenuated ORFV activated mouse bone marrow-derived dendritic cells and increased expression of immune-related cytokines interleukin (IL)-1ß, IL-6, and TNF-α. Enhanced humoral and cellular immune responses were induced in mice immunized with PCV2 Cap protein combined with inactivated or live attenuated ORFV adjuvant compared with the aluminum adjuvant. Increased secretion of Th1 and Th2 cytokines by splenic lymphocytes in immunized mice further indicated that the ORFV adjuvant promoted a mixed Th1/Th2 immune response. Moreover, addition of the ORFV adjuvant to the PCV2 subunit vaccine significantly reduced the viral load in the spleen and lungs of PCV2-challenged mice and prevented pathological changes in lungs. This study demonstrates that ORFV enhances the immunogenicity of a PCV2 subunit vaccine by improving the adaptive immune response, suggesting the potential application of ORFV as a novel adjuvant.


Assuntos
Adjuvantes Imunológicos , Infecções por Circoviridae , Circovirus , Citocinas , Vírus do Orf , Vacinas de Subunidades Antigênicas , Vacinas Virais , Animais , Circovirus/imunologia , Camundongos , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Infecções por Circoviridae/prevenção & controle , Infecções por Circoviridae/veterinária , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/virologia , Adjuvantes Imunológicos/administração & dosagem , Citocinas/imunologia , Vírus do Orf/imunologia , Proteínas do Capsídeo/imunologia , Feminino , Imunidade Celular , Células Dendríticas/imunologia , Carga Viral , Anticorpos Antivirais/sangue , Imunidade Humoral , Suínos , Adjuvantes de Vacinas , Camundongos Endogâmicos BALB C , Células Th1/imunologia
12.
ACS Infect Dis ; 10(5): 1552-1560, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38623820

RESUMO

Tyrosine cross-linking has recently been used to produce nanoclusters (NCs) from peptides to enhance their immunogenicity. In this study, NCs were generated using the ectodomain of the ion channel Matrix 2 (M2e) protein, a conserved influenza surface antigen. The NCs were administered via intranasal (IN) or intramuscular (IM) routes in a mouse model in a prime-boost regimen in the presence of the adjuvant CpG. After boost, a significant increase in anti-M2e IgG and its subtypes was observed in the serum and lungs of mice vaccinated through the IM and IN routes; however, significant enhancement in anti-M2e IgA in lungs was observed only in the IN group. Analysis of cytokine concentrations in stimulated splenocyte cultures indicated a Th1/Th17-biased response. Mice were challenged with a lethal dose of A/California/07/2009 (H1N1pdm), A/Puerto Rico/08/1934 (H1N1), or A/Hong Kong/08/1968 (H3N2) strains. Mice that received M2e NCs + CpG were significantly protected against these strains and showed decreased lung viral titers compared with the naive mice and M2e NC-alone groups. The IN-vaccinated group showed superior protection against the H3N2 strain as compared to the IM group. This research extends our earlier efforts involving the tyrosine-based cross-linking method and highlights the potential of this technology in enhancing the immunogenicity of short peptide immunogens.


Assuntos
Anticorpos Antivirais , Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Tirosina , Animais , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Tirosina/química , Tirosina/farmacologia , Vírus da Influenza A Subtipo H1N1/imunologia , Feminino , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Proteínas da Matriz Viral/imunologia , Proteínas da Matriz Viral/genética , Camundongos Endogâmicos BALB C , Vírus da Influenza A Subtipo H3N2/imunologia , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Pulmão/virologia , Pulmão/imunologia , Administração Intranasal , Injeções Intramusculares , Citocinas , Proteção Cruzada , Proteínas Viroporinas
13.
Expert Rev Vaccines ; 23(1): 535-545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38664959

RESUMO

INTRODUCTION: Zebrafishes represent a proven model for human diseases and systems biology, exhibiting physiological and genetic similarities and having innate and adaptive immune systems. However, they are underexplored for human vaccinology, vaccine development, and testing. Here we summarize gaps and challenges. AREAS COVERED: Zebrafish models have four potential applications: 1) Vaccine safety: The past successes in using zebrafishes to test xenobiotics could extend to vaccine and adjuvant formulations for general safety or target organs due to the zebrafish embryos' optical transparency. 2) Innate immunity: The zebrafish offers refined ways to examine vaccine effects through signaling via Toll-like or NOD-like receptors in zebrafish myeloid cells. 3) Adaptive immunity: Zebrafishes produce IgM, IgD,and two IgZ immunoglobulins, but these are understudied, due to a lack of immunological reagents for challenge studies. 4) Systems vaccinology: Due to the availability of a well-referenced zebrafish genome, transcriptome, proteome, and epigenome, this model offers potential here. EXPERT OPINION: It remains unproven whether zebrafishes can be employed for testing and developing human vaccines. We are still at the hypothesis-generating stage, although it is possible to begin outlining experiments for this purpose. Through transgenic manipulation, zebrafish models could offer new paths for shaping animal models and systems vaccinology.


Assuntos
Imunidade Adaptativa , Adjuvantes Imunológicos , Imunidade Inata , Modelos Animais , Desenvolvimento de Vacinas , Vacinas , Peixe-Zebra , Peixe-Zebra/imunologia , Animais , Adjuvantes Imunológicos/administração & dosagem , Humanos , Vacinas/imunologia , Vacinas/administração & dosagem , Vacinologia/métodos
14.
Colloids Surf B Biointerfaces ; 238: 113920, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688058

RESUMO

Mucosal immunization is a powerful weapon against viral infection. In this paper, large pore mesoporous silica nanoparticles (LMSN) with different particle sizes were synthesized for loading influenza split vaccine (SV) to explore the effect of nanoparticle sizes on mucosal immunization and adjuvant efficacy. Interestingly, it was found that among the three particle sizes of nanoparticles, only LMSN-M with around 250 nm could significantly enhance the mucosal immune effect of SV, possessing adjuvant effect. The results indicated that particle size affected the adjuvant effect of LMSN. There was no apparent difference in vaccine loading capacity of LMSN with different particle sizes, but the release of SV depended on the pore length of LMSN. The adjuvant effect of LMSN-M was attributed to its higher cellular uptake performance, intestine absorption and transport efficiency, and the ability to stimulate the maturation of dendritic cells. Simultaneously, compared with LMSN-S and LMSN-L, the more retention of LMSN-M in mesenteric lymph nodes increased the chance of interaction between vaccine and immune system, resulting in the enhanced immunity. This is the first time to study the impact of particle size of LMSN adjuvant on improving mucosal immunity of oral influenza vaccine, and the present work provides a scientific reference for adjuvant design of oral vaccine.


Assuntos
Vacinas contra Influenza , Nanopartículas , Tamanho da Partícula , Dióxido de Silício , Dióxido de Silício/química , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/química , Vacinas contra Influenza/administração & dosagem , Nanopartículas/química , Animais , Administração Oral , Porosidade , Camundongos , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/administração & dosagem , Camundongos Endogâmicos BALB C , Feminino , Imunidade nas Mucosas/efeitos dos fármacos , Propriedades de Superfície
15.
Vaccine ; 42(14): 3355-3364, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38631949

RESUMO

To better understand the role of pHsp90 adjuvant in immune response modulation, we proposed the use of the Receptor Binding Domain (RBD) of the Spike protein of SARS-CoV2, the principal candidate in the design of subunit vaccines. We evaluated the humoral and cellular immune responses against RBD through the strategy "protein mixture" (Adjuvant + Antigen). The rRBD adjuvanted with rAtHsp81.2 group showed a higher increase of the anti-rRBD IgG1, while the rRBD adjuvanted with rNbHsp90.3 group showed a significant increase in anti-rRBD IgG2b/2a. These results were consistent with the cellular immune response analysis. Spleen cell cultures from rRBD + rNbHsp90.3-immunized mice showed significantly increased IFN-γ production. In contrast, spleen cell cultures from rRBD + rAtHsp81.2-immunized mice showed significantly increased IL-4 levels. Finally, vaccines adjuvanted with rNbHsp90.3 induced higher neutralizing antibody responses compared to those adjuvanted with rAtHsp81.2. To know whether both chaperones must form complexes to generate an effective immune response, we performed co-immunoprecipitation (co-IP) assays. The results indicated that the greater neutralizing capacity observed in the rRBD adjuvanted with rNbHsp90.3 group would be given by the rRBD-rNbHsp90.3 interaction rather than by the quality of the immune response triggered by the adjuvants. These results, together with our previous results, provide a comparative benchmark of these two novel and safe vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV2 subunit vaccines. Furthermore, these results revealed differences in the ability to modulate the immune response between these two pHsp90s, highlighting the importance of adjuvant selection for future rational vaccine and adjuvant design.


Assuntos
Adjuvantes Imunológicos , Anticorpos Neutralizantes , Anticorpos Antivirais , Vacinas contra COVID-19 , COVID-19 , Proteínas de Choque Térmico HSP90 , Imunoglobulina G , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Glicoproteína da Espícula de Coronavírus/imunologia , Camundongos , Adjuvantes Imunológicos/administração & dosagem , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Proteínas de Choque Térmico HSP90/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/imunologia , SARS-CoV-2/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Feminino , COVID-19/prevenção & controle , COVID-19/imunologia , Camundongos Endogâmicos BALB C , Imunidade Celular , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Adjuvantes de Vacinas , Imunidade Humoral , Humanos
16.
ACS Biomater Sci Eng ; 10(5): 3387-3400, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38656158

RESUMO

Given the worldwide problem posed by enteric pathogens, the discovery of safe and efficient intestinal adjuvants combined with novel antigen delivery techniques is essential to the design of mucosal vaccines. In this work, we designed poly (lactic-co-glycolic acid) (PLGA)-based nanoparticles (NPs) to codeliver all-trans retinoic acid (atRA), novel antigens, and CpG. To address the insolubility of the intestinal adjuvant atRA, we utilized PLGA to encapsulate atRA and form a "nanocapsid" with polydopamine. By leveraging polydopamine, we adsorbed the water-soluble antigens and the TLR9 agonist CpG onto the NPs' surface, resulting in the pathogen-mimicking PLPCa NPs. In this study, the novel fusion protein (HBf), consisting of the Mycobacterium avium subspecies paratuberculosis antigens HBHA, Ag85B, and Bfra, was coloaded onto the NPs. In vitro, PLPCa NPs were shown to promote the activation and maturation of bone marrow-derived dendritic cells. Additionally, we found that PLPCa NPs created an immune-rich microenvironment at the injection site following intramuscular administration. From the results, the PLPCa NPs induced strong IgA levels in the gut in addition to enhancing powerful systemic immune responses. Consequently, significant declines in the bacterial burden and inflammatory score were noted in PLPCa NPs-treated mice. In summary, PLPCa can serve as a novel and safe vaccine delivery platform against gut pathogens, such as paratuberculosis, capable of activating both systemic and intestinal immunity.


Assuntos
Nanopartículas , Paratuberculose , Animais , Nanopartículas/química , Paratuberculose/imunologia , Paratuberculose/prevenção & controle , Camundongos , Tretinoína/química , Tretinoína/farmacologia , Mycobacterium avium subsp. paratuberculosis/imunologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/química , Células Dendríticas/imunologia , Células Dendríticas/efeitos dos fármacos , Intestinos/imunologia , Intestinos/microbiologia , Camundongos Endogâmicos C57BL , Feminino , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/química , Adjuvantes Imunológicos/administração & dosagem , Vacinas Bacterianas/imunologia , Camundongos Endogâmicos BALB C
17.
Virulence ; 15(1): 2345019, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38656137

RESUMO

Klebsiella pneumoniae is an important gram-negative bacterium that causes severe respiratory and healthcare-associated infections. Although antibiotic therapy is applied to treat severe infections caused by K. pneumoniae, drug-resistant isolates pose a huge challenge to clinical practices owing to adverse reactions and the mismanagement of antibiotics. Several studies have attempted to develop vaccines against K. pneumoniae, but there are no licensed vaccines available for the control of K. pneumoniae infection. In the current study, we constructed a novel DNA vaccine, pVAX1-YidR, which encodes a highly conserved virulence factor YidR and a recombinant expression plasmid pVAX1-IL-17 encoding Interleukin-17 (IL-17) as a molecular adjuvant. Adaptive immune responses were assessed in immunized mice to compare the immunogenicity of the different vaccine schemes. The results showed that the targeted antigen gene was expressed in HEK293T cells using an immunofluorescence assay. Mice immunized with pVAX1-YidR elicited a high level of antibodies, induced strong cellular immune responses, and protected mice from K. pneumoniae challenge. Notably, co-immunization with pVAX1-YidR and pVAX1-IL-17 significantly augmented host adaptive immune responses and provided better protection against K. pneumoniae infections in vaccinated mice. Our study demonstrates that combined DNA vaccines and molecular adjuvants is a promising strategy to develop efficacious antibacterial vaccines against K. pneumoniae infections.


Assuntos
Vacinas Bacterianas , Interleucina-17 , Infecções por Klebsiella , Klebsiella pneumoniae , Vacinas de DNA , Animais , Feminino , Humanos , Camundongos , Imunidade Adaptativa , Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/imunologia , Proteínas de Bactérias/genética , Vacinas Bacterianas/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/administração & dosagem , Modelos Animais de Doenças , Células HEK293 , Imunidade Celular , Imunização , Interleucina-17/imunologia , Interleucina-17/genética , Infecções por Klebsiella/prevenção & controle , Infecções por Klebsiella/imunologia , Klebsiella pneumoniae/imunologia , Klebsiella pneumoniae/genética , Camundongos Endogâmicos BALB C , Vacinas de DNA/imunologia , Vacinas de DNA/genética , Vacinas de DNA/administração & dosagem , Fatores de Virulência/imunologia , Fatores de Virulência/genética
18.
Int Immunopharmacol ; 133: 112121, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38652965

RESUMO

One effective antigen carrier proposed for use in immunization and vaccination is gold nanoparticles. Prior work has shown that gold nanoparticles themselves have adjuvant properties. Currently, gold nanoparticles are used to design new diagnostic tests and vaccines against viral, bacterial, and parasitic infections. We investigated the use of gold nanoparticles as immunomodulators in immunization and vaccination with an antigen isolated from Brucella abortus. Gold nanoparticles with a diameter of 15 nm were synthesized for immunization of animals and were then conjugated to the isolated antigen. The conjugates were used to immunize white BALB/c mice. As a result, high-titer (1:10240) antibodies were produced. The respiratory and proliferative activities of immune cells were increased, as were the serum interleukin concentrations. The minimum antigen amount detected with the produced antibodies was âˆ¼ 0.5 pg. The mice immunized with gold nanoparticles complexed with the B. abortus antigen were more resistant to B. abortus strain 82 than were the mice immunized through other schemes. This fact indicates that animal immunization with this conjugate enhances the effectiveness of the immune response. The results of this study are expected to be used in further work to examine the protective effect of gold nanoparticles complexed with the B. abortus antigen on immunized animals and to develop test systems for diagnosing brucellosis in the laboratory and in the field.


Assuntos
Adjuvantes Imunológicos , Antígenos de Bactérias , Brucella abortus , Brucelose , Ouro , Nanopartículas Metálicas , Camundongos Endogâmicos BALB C , Animais , Brucella abortus/imunologia , Ouro/química , Nanopartículas Metálicas/química , Brucelose/prevenção & controle , Brucelose/imunologia , Antígenos de Bactérias/imunologia , Camundongos , Feminino , Adjuvantes Imunológicos/administração & dosagem , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Vacina contra Brucelose/imunologia , Vacina contra Brucelose/administração & dosagem , Vacinação , Imunização
19.
Fish Shellfish Immunol ; 149: 109567, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641215

RESUMO

Streptococcosis, an emerging infectious disease caused by Streptococcus agalactiae, has had adverse effects on farmed tilapia. Several vaccines have been developed to prevent this disease and induce a specific immune response against S. agalactiae infection. In this study the use of MONTANIDE™ GR01, a new adjuvant for oral vaccination, was optimized for use in tilapia under laboratory and field studies. In the laboratory trial the immune response and protective efficacy of two doses of MONTANIDE™ GR01, 20 % (w/w) and 2 % (w/w), included into the feed-based adjuvanted vaccines were assessed comparatively. Following immunization, the innate immune parameters studied in serum, including lysozyme, myeloperoxidase, catalase and glutathione peroxidase activity, were all increased significantly. Furthermore, specific IgM antibodies against S. agalactiae were induced significantly in serum post-vaccination, with higher levels observed in both groups that received the feed-based adjuvanted vaccine. Under both injection and immersion challenge conditions, the relative percent survival for the feed-based adjuvanted vaccine groups ranged from 78 % to 84 %. Following use of the low dose concentration of MONTANIDE™ GR01 for oral vaccination of tilapia in cage culture systems, several innate immune parameters were effectively enhanced in the immunized fish. Similarly, the levels of specific IgM antibodies in the serum of feed-based vaccinated fish were significantly enhanced, reaching their highest levels 2-5 months post-vaccination. Cytokines associated with innate and adaptive immunity were also examined, and the expression levels of several genes showed significant up-regulation. This indicates that both cellular and humoral immune responses were induced by the feed-based adjuvanted vaccine. The economic impact of a feed-based adjuvanted vaccine was examined following vaccination, considering the growth performance and feed utilization of the fish. It was found that the Economic Performance Index and Economic Conversion Ratio were unaffected by vaccination, further demonstrating that there are no negative impacts associated with administering a feed-based vaccine to fish. In conclusion, the data from this study indicate that MONTANIDE™ GR01 is a highly valuable adjuvant for oral vaccination, as demonstrated by its ability to induce a strong immune response and effectively prevent streptococcal disease in Nile tilapia.


Assuntos
Adjuvantes Imunológicos , Ciclídeos , Doenças dos Peixes , Imunidade Inata , Infecções Estreptocócicas , Streptococcus agalactiae , Animais , Streptococcus agalactiae/imunologia , Infecções Estreptocócicas/veterinária , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/imunologia , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/imunologia , Ciclídeos/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Administração Oral , Ração Animal/análise , Vacinas Estreptocócicas/imunologia , Vacinas Estreptocócicas/administração & dosagem , Vacinação/veterinária
20.
Influenza Other Respir Viruses ; 18(4): e13288, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644564

RESUMO

BACKGROUND: Adults ≥ 65 years of age have suboptimal influenza vaccination responses compared to younger adults due to age-related immunosenescence. Two vaccines were specifically developed to enhance protection: MF59-adjuvanted trivalent influenza vaccine (aIIV3) and high-dose egg-based trivalent influenza vaccine (HD-IIV3e). METHODS: In a retrospective cohort study conducted using US electronic medical records linked to claims data during the 2019-2020 influenza season, we compared the relative vaccine effectiveness (rVE) of aIIV3 with HD-IIV3e and a standard-dose non-adjuvanted egg-based quadrivalent inactivated influenza vaccine (IIV4e) for the prevention of cardiorespiratory hospitalizations, including influenza hospitalizations. We evaluated outcomes in the "any" diagnosis position and the "admitting" position on the claim. A doubly robust methodology using inverse probability of treatment weighting and logistic regression was used to adjust for covariate imbalance. rVE was calculated as 100 * (1 - ORadjusted). RESULTS: The study included 4,299,594 adults ≥ 65 years of age who received aIIV3, HD-IIV3e, or IIV4e. Overall, aIIV3 was associated with lower proportions of cardiorespiratory hospitalizations with diagnoses in any position compared to HD-IIV3e (rVE = 3.9% [95% CI, 2.7-5.0]) or IIV4e (9.0% [95% CI, 7.7-10.4]). Specifically, aIIV3 was more effective compared with HD-IIV3e and IIV4e in preventing influenza hospitalizations (HD-IIV3e: 9.7% [95% CI, 1.9-17.0]; IIV4e: 25.3% [95% CI, 17.7-32.2]). Consistent trends were observed for admitting diagnoses. CONCLUSION: Relative to both HD-IIV3e and IIV4e, aIIV3 provided improved protection from cardiorespiratory or influenza hospitalizations.


Assuntos
Adjuvantes Imunológicos , Hospitalização , Vacinas contra Influenza , Influenza Humana , Polissorbatos , Esqualeno , Humanos , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Idoso , Hospitalização/estatística & dados numéricos , Masculino , Estudos Retrospectivos , Feminino , Esqualeno/administração & dosagem , Polissorbatos/administração & dosagem , Pessoa de Meia-Idade , Estados Unidos/epidemiologia , Adjuvantes Imunológicos/administração & dosagem , Idoso de 80 Anos ou mais , Eficácia de Vacinas , Estações do Ano , Adulto , Vacinação/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA