Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.024
Filtrar
1.
Nature ; 629(8013): 937-944, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38720067

RESUMO

QS-21 is a potent vaccine adjuvant and remains the only saponin-based adjuvant that has been clinically approved for use in humans1,2. However, owing to the complex structure of QS-21, its availability is limited. Today, the supply depends on laborious extraction from the Chilean soapbark tree or on low-yielding total chemical synthesis3,4. Here we demonstrate the complete biosynthesis of QS-21 and its precursors, as well as structural derivatives, in engineered yeast strains. The successful biosynthesis in yeast requires fine-tuning of the host's native pathway fluxes, as well as the functional and balanced expression of 38 heterologous enzymes. The required biosynthetic pathway spans seven enzyme families-a terpene synthase, P450s, nucleotide sugar synthases, glycosyltransferases, a coenzyme A ligase, acyl transferases and polyketide synthases-from six organisms, and mimics in yeast the subcellular compartmentalization of plants from the endoplasmic reticulum membrane to the cytosol. Finally, by taking advantage of the promiscuity of certain pathway enzymes, we produced structural analogues of QS-21 using this biosynthetic platform. This microbial production scheme will allow for the future establishment of a structure-activity relationship, and will thus enable the rational design of potent vaccine adjuvants.


Assuntos
Vias Biossintéticas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saponinas/biossíntese , Saponinas/metabolismo , Saponinas/química , Engenharia Metabólica , Adjuvantes Imunológicos/biossíntese , Adjuvantes Imunológicos/metabolismo
2.
Cells ; 13(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474410

RESUMO

Dendritic cells (DCs) capture pathogens and process antigens, playing a crucial role in activating naïve T cells, bridging the gap between innate and acquired immunity. However, little is known about DC activation when facing Leishmania parasites. Thus, this study investigates in vitro activity of canine peripheral blood-derived DCs (moDCs) exposed to L. infantum and L. amazonensis parasites and their extracellular vesicles (EVs). L. infantum increased toll-like receptor 4 gene expression in synergy with nuclear factor κB activation and the generation of pro-inflammatory cytokines. This parasite also induced the expression of class II molecules of major histocompatibility complex (MHC) and upregulated co-stimulatory molecule CD86, which, together with the release of chemokine CXCL16, can attract and help in T lymphocyte activation. In contrast, L. amazonensis induced moDCs to generate a mix of pro- and anti-inflammatory cytokines, indicating that this parasite can establish a different immune relationship with DCs. EVs promoted moDCs to express class I MHC associated with the upregulation of co-stimulatory molecules and the release of CXCL16, suggesting that EVs can modulate moDCs to attract cytotoxic CD8+ T cells. Thus, these parasites and their EVs can shape DC activation. A detailed understanding of DC activation may open new avenues for the development of advanced leishmaniasis control strategies.


Assuntos
Leishmania , Animais , Cães , Linfócitos T CD8-Positivos , Células Dendríticas , Adjuvantes Imunológicos/metabolismo , Citocinas/metabolismo , Ativação Linfocitária
3.
Vaccine ; 42(10): 2519-2529, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38494411

RESUMO

Subunit vaccines are an important platform for controlling current and emerging infectious diseases. The lymph nodes are the primary site generating the humoral response and delivery of antigens to these sites is critical to effective immunization. Indeed, the duration of antigen exposure within the lymph node is correlated with the antibody response. While current licensed vaccines are typically given through the intramuscular route, injecting vaccines subcutaneously allows for direct access to lymphatic vessels and therefore can enhance the transfer of antigen to the lymph nodes. However, protein subunit antigen uptake into the lymph nodes is inefficient, and subunit vaccines require adjuvants to stimulate the initial immune response. Therefore, formulation strategies have been developed to enhance the exposure of subunit proteins and adjuvants to the lymph nodes by increasing lymphatic uptake or prolonging the retention at the injection site. Given that lymph node exposure is a crucial consideration in vaccine design, in depth analyses of the pharmacokinetics of antigens and adjuvants should be the focus of future preclinical and clinical studies. This review will provide an overview of formulation strategies for targeting the lymphatics and prolonging antigen exposure and will discuss pharmacokinetic evaluations which can be applied toward vaccine development.


Assuntos
Vasos Linfáticos , Vasos Linfáticos/metabolismo , Antígenos , Vacinas de Subunidades Antigênicas , Vacinação , Linfonodos , Adjuvantes Imunológicos/metabolismo , Desenvolvimento de Vacinas
4.
J Med Chem ; 67(5): 3321-3338, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38363069

RESUMO

Immunotherapy targeting the toll-like receptor 7 (TLR7) is a promising strategy for cancer treatment. Herein, we describe the design and synthesis of a series of imidazoquinoline-based TLR7 agonists and assess NF-κB pathway activation using HEK-Blue hTLR7 cells to identify the most potent small-molecule TLR7 agonist, SMU-L11 (EC50 = 0.024 ± 0.002 µM). In vitro experiments demonstrated that SMU-L11 specifically activated TLR7, resulting in recruitment of the MyD88 adaptor protein and activation of the NF-κB and MAPK signaling pathways. Moreover, SMU-L11 was found to exert immune-enhancing effects by significantly inducing the secretion of proinflammatory cytokines in murine dendritic cells, macrophages, and human peripheral blood mononuclear cells while promoting M1 macrophage polarization. In vivo studies using a B16-F10 mouse tumor model showed that SMU-L11 significantly enhanced immune cell activation and augmented CD4+ T and CD8+ T-cell proliferation, directly killing tumor cells and inhibiting tumor growth.


Assuntos
Melanoma , Humanos , Animais , Camundongos , Melanoma/tratamento farmacológico , Melanoma/metabolismo , NF-kappa B/metabolismo , Receptor 7 Toll-Like/metabolismo , Microambiente Tumoral , Leucócitos Mononucleares/metabolismo , Adjuvantes Imunológicos/metabolismo
5.
Microb Cell Fact ; 23(1): 40, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321474

RESUMO

BACKGROUND: In recent years, biosafety and green food safety standards have increased the demand for immune enhancers and adjuvants. In the present study, recombinant food-grade Lactococcus lactis (r-L. lactis-Tα1-IFN) expressing thymosin Tα1 and chicken interferon fusion protein was constructed. RESULTS: The in vitro interactions with macrophages revealed a mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate both macrophage J774-Dual™ NF-κB and interferon regulator (IRF) signaling pathways. In vitro interactions with chicken peripheral blood mononuclear cells (PBMCs) demonstrated that a mixture of recombinant r-L. lactis-Tα1-IFN significantly enhanced the expression levels of interferon (IFN)-γ, interleukin (IL)-10, CD80, and CD86 proteins in chicken PBMCs. Animal experiments displayed that injecting a lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly activate the proliferation of T cells and antigen-presenting cells in chicken PBMCs. Moreover, 16S analysis of intestinal microbiota demonstrated that injection of the lysis mixture of recombinant r-L. lactis-Tα1-IFN could significantly improve the structure and composition of chicken intestinal microbiota, with a significant increase in probiotic genera, such as Lactobacillus spp. Results of animal experiments using the lysis mixture of recombinant r-L. lactis-Tα1-IFN as an immune adjuvant for inactivated chicken Newcastle disease vaccine showed that the serum antibody titers of the experimental group were significantly higher than those of the vaccine control group, and the expression levels of cytokines IFN-γ and IL-2 were significantly higher than those of the vaccine control group. CONCLUSION: These results indicate that food-safe recombinant r-L. lactis-Tα1-IFN has potential as a vaccine immune booster and immune adjuvant. This study lays the foundation for the development of natural green novel animal immune booster or immune adjuvant.


Assuntos
Lactococcus lactis , Timosina , Vacinas , Animais , Interferons/metabolismo , Lactococcus , Leucócitos Mononucleares , Adjuvantes Imunológicos/metabolismo , Proteínas Recombinantes/metabolismo , Timosina/metabolismo , Vacinas/metabolismo , Galinhas , Lactococcus lactis/metabolismo
6.
Fish Shellfish Immunol ; 146: 109369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38220122

RESUMO

Damiana (Turnera diffusa Willd) was evaluated in vitro for antioxidant and antibacterial activities against Staphylococcus aureus and Streptococcus pyogenes (as a preliminary screening assessment) by high-performance thin-layer chromatography (HPTLC)-Direct bioautography. A study was performed in vivo to evaluate the effects of Damiana enriched diets at 0.5 % on immune parameters in mucus and serum and gene expression in Almaco Jack (Seriola rivoliana) intestine after two and four weeks; an infection with Aeromonas hydrophila at 1x107 colony forming units (CFU) followed and an ex vivo study was carried out using head-kidney leukocytes. Ferric reducing ability of plasma (FRAP) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays showed high antioxidant activities in Damiana leaves; even in the ABTS assay, Damiana at 300 µg/mL showed similar activity to ascorbic acid - the standard control. Damiana exhibited strong in vitro antimicrobial activity against S. aureus and S. pyogenes. In vivo studies showed a strong enhancement of myeloperoxidase, nitric oxide, superoxide dismutase, and catalase activities in mucus and serum of S. rivoliana supplemented with Damiana; their immunological response enhanced after infection with A. hydrophila. IL-1ß, TNF-α, and IL-10 gene expressions upregulated in the fish intestine challenged with the bacterium. Piscidin and macrophage (MARCO) receptor gene expression up-regulated at week 4 and down-regulated after infection. Intestinal histology results confirm that Damiana not cause inflammation or damage. Finally, the ex vivo study confirmed the immunostimulant and protective effects of Damiana through increased phagocytic, respiratory burst, myeloperoxidase activities and nitric oxide generation before and upon the bacterial encounter. These results support the idea that Damiana has the potential as an immunostimulant additive for diets in aquaculture by enhancing immune parameters and protecting Almaco Jack against A. hydrophila infections upon four weeks of supplementation.


Assuntos
Benzotiazóis , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Ácidos Sulfônicos , Turnera , Animais , Turnera/química , Antioxidantes/metabolismo , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/metabolismo , Óxido Nítrico/metabolismo , Staphylococcus aureus/metabolismo , Suplementos Nutricionais/análise , Dieta , Peroxidase/metabolismo , Aeromonas hydrophila , Infecções por Bactérias Gram-Negativas/veterinária , Ração Animal/análise
7.
Fish Shellfish Immunol ; 145: 109352, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171430

RESUMO

Nile tilapia reared under intensive conditions was more susceptible for Ichthyophthirius multifilii (I. multifiliis) infection eliciting higher mortality, lower productive rate and further bacterial coinfection with Aeromonas hydrophila (A. hydrophila). The higher potency of magnetic field of iron oxide nanoparticles (NPs) can kill pathogens through inhibiting their viability. Herein, coating of Chlorella vulgaris extract (ChVE) with magnetic iron oxide NPs (Mag iron NPs) can create an external magnetic field that facilitates their release inside the targeted tissues. Thus, the current study is focused on application of new functionalized properties of Mag iron NPs in combination with ChVE and their efficacy to alleviate I. multifiliis and subsequent infection with A. hydrophila in Nile tilapia. Four hundred fingerlings were divided into: control group (with no additives), three groups fed control diet supplemented with ChVE, Mag iron NPs and ChVE@Mag iron NPs for 90 days. At the end of feeding trial fish were challenged with I. multifiliis and at 9 days post challenge was coinfected by A. hydrophila. A remarkable higher growth rate and an improved feed conversion ratio were detected in group fed ChVE@Mag iron-NPs. The maximum expression of antioxidant enzymes in skin and gills tissues (GSH-Px, CAT, and SOD) which came in parallel with higher serum activities of these enzymes was identified in groups received ChVE@Mag iron-NPs. Furthermore, group fed a combination of ChVE and Mag iron-NPs showed a boosted immune response (higher lysozyme, IgM, ACH50, and MPO) prior to challenge with I. multifiliis. In contrast, fish fed ChVE@Mag iron-NPs supplemented diet had lower infection (decreased by 62%) and mortality rates (decreased by 84%), as well as less visible white spots (decreased by 92 % at 12 dpi) on the body surfaces and mucous score. Interestingly, post I. multifiliis the excessive inflammatory response in gill and skin tissues was subsided by feeding on ChVE@Mag iron-NPs as proved by down regulation of IL-1ß, TNFα, COX-2 and iNOS and upregulation of IL-10, and IgM, IgT and Muc-2 genes. Notably, group exposed to I. multifiliis-showed higher mortality when exposed to Aeromonas hydrophilia (increased by 43 %) while group fed ChVE@Mag iron-NPs exhibited lower morality (2%). Moreover, the bacterial loads of A. hydrophilia in fish infected by I. multifiliis and fed control diet were higher than those received dietary supplement of ChVE, Mag iron-NPs and the most reduced load was obtained in group fed ChVE@Mag iron-NPs at 7 dpi. In conclusion, ChVE@Mag iron-NPs fed fish had stronger immune barrier and antioxidant functions of skin and gills, and better survival following I. multifiliis and A. hydrophilia infection.


Assuntos
Chlorella vulgaris , Ciclídeos , Doenças dos Peixes , Animais , Antioxidantes/metabolismo , Adjuvantes Imunológicos/metabolismo , Suplementos Nutricionais , Dieta , Aeromonas hydrophila/fisiologia , Nanopartículas Magnéticas de Óxido de Ferro , Imunoglobulina M/metabolismo , Ferro/metabolismo , Ração Animal/análise , Resistência à Doença
8.
Vaccine ; 42(3): 512-521, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38184395

RESUMO

Dendritic cell (DC) based immunotherapy is one of the strategies to combat cancer invoking a patient's immune system. This form of anticancer immunotherapy employs adjuvants to enhance the immune response, triggering mechanisms of innate immunity and thus increase immunotherapeutic efficiency. A conventional adjuvant for DCs maturation during production of anticancer vaccines is bacterial LPS. Nevertheless, synthetic dsRNAs were also shown to stimulate different receptors on innate immune cells and to activate immune responses through induction of cytokines via toll-like receptors. In our study we investigated the potential of Larifan as dsRNA of natural origin to stimulate maturation of DCs with proinflammatory (possible antitumoral) activity and to compare these immunostimulatory properties between Larifan's fractions with different molecular lengths. To explore the suitability of this product for therapy, it is necessary to study the properties of its different fractions and compare them to standard adjuvants. We investigated the effect of Larifan's fractions on immune system stimulation in vivo by monitoring the survival time of tumor-bearing mice. Murine DCs produced in vitro using Larifan and its fractions together with tumor antigens during production were also characterized. All Larifan fractions resulted in inducing high expression of immunogenic markers CD40, CD80, CD86, CCR7, MHC II and lower secretion of the immunosuppressive cytokine IL-10, compared to the maturation with LPS in mDCs. The lowest expression of tolerogenic gene Ido1 and highest expression of the immunogenic genes Clec7a, Tnf, Icosl, Il12rb2, Cd209a were characteristic to the unfractionated dsRNA and short fraction FR15. In the mouse model the best overall survival rate was observed in mice treated with medium-length FR9 and FR15. We can state that both Larifan and its fractions were superior to LPS as vaccine adjuvants in stimulating phenotype and functional activity of mature DCs. DCs maturation using these factors induces a valuable anticancer immune response.


Assuntos
Bacteriófagos , Neoplasias , Humanos , Camundongos , Animais , Adjuvantes de Vacinas , Lipopolissacarídeos , Células Dendríticas , Citocinas/metabolismo , Adjuvantes Imunológicos/metabolismo , Imunidade , Receptores de Interleucina-12 , Compostos Orgânicos
9.
Microbiol Spectr ; 11(6): e0254923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909745

RESUMO

IMPORTANCE: The development of safe and effective vaccines is needed to control the transmission of coronavirus disease 2019 (COVID-19). Synthetic DNA vaccines represent a promising platform in response to such outbreaks. Here, DNA vaccine candidates were developed using an optimized antibiotic-resistance gene-free asd-pVAX1 vector. An optimized flagellin (FliC) adjuvant was designed by fusion expression to increase the immunogenicity of the S1 antigen. S1 and S1-FliCΔD2D3 proteins were strongly expressed in mammalian cells. The FliCΔD2D3-adjuvanted DNA vaccine induced Th1/Th2-mixed immune responses and high titers of neutralizing antibodies. This study provides crucial information regarding the selection of a safer DNA vector and adjuvant for vaccine development. Our FliCΔD2D3-adjuvanted S1 DNA vaccine is more potent at inducing both humoral and cellular immune responses than S1 alone. This finding provides a new idea for the development of novel DNA vaccines against COVID-19 and could be further applied for the development of other vaccines.


Assuntos
COVID-19 , Vacinas de DNA , Humanos , Animais , Camundongos , Salmonella typhimurium/metabolismo , Vacinas de DNA/genética , Vacinas de DNA/metabolismo , SARS-CoV-2 , Flagelina/genética , Flagelina/metabolismo , Vacinas contra COVID-19 , COVID-19/prevenção & controle , Adjuvantes Imunológicos/metabolismo , Adjuvantes Imunológicos/farmacologia , Anticorpos Neutralizantes/metabolismo , Anticorpos Antivirais/metabolismo , Imunogenicidade da Vacina , Mamíferos
10.
Int J Biol Macromol ; 252: 126440, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611690

RESUMO

Actinidia eriantha polysaccharide (AEPS) is a potent adjuvant with dual Th1 and Th2 potentiating activity. linc-AAM has been previously proved to facilitate the expression of immune response genes (IRGs) in AEPS-activated RAW264.7 macrophages. However, its role in mediating adjuvant activity of AEPS remains to be elucidated. In this study, bone marrow-derived macrophages (BMDMs) from wide-type (WT) and linc-AAM knockout C57BL/6J mice treated with AEPS were subjected to transcriptome sequencing and bioinformatic analysis. linc-AAM deficiency inhibited M1 and M2 immune responses in BMDMs induced by AEPS. In mechanisms, AEPS facilitated the expression of IRGs and activated BMDMs through NF-κB-linc-AAM-JAK/STAT axis. Furthermore, linc-AAM knockout inhibited cytokine and chemokine production, immune cell recruitment as well as immune cell migration to draining lymph nodes at peritoneal cavity in mice induced by AEPS. More importantly, linc-AAM deletion reduced the adjuvant activity of APES on antigen-specific cellular and humoral immune responses to ovalbumin in mice. This study has for the first time demonstrated the role of lncRNAs in regulating the adjuvant activity of polysaccharides and its mechanisms. These findings expanded current knowledge on the mechanism of action of adjuvant and provide a new target for the design and development of vaccine adjuvants.


Assuntos
Actinidia , Animais , Camundongos , Actinidia/genética , Camundongos Endogâmicos C57BL , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/metabolismo , Macrófagos , Adjuvantes Farmacêuticos , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo
11.
Immunobiology ; 228(5): 152709, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37487385

RESUMO

Adjuvants are used to elicit strong immune responses for vaccines that show poor immunogenicity. Previously, we demonstrated that a sonicated bacterin of Bordetella bronchiseptica can be used as a safe adjuvant that enhances the antigen-presenting capability of dendritic cells (DCs). In this study, we purified the lipopolysaccharide (LPS) of B. bronchiseptica (Bb-LPS) and investigated its immunogenic effects on DCs compared to those of Escherichia coli O26:B6 (O26)-derived LPS (O26-LPS), a positive control. Bb-LPS was purified using an LPS extraction kit. Limulus amebocyte lysate assay was performed to determine the optimal concentration of Bb-LPS and O26-LPS for treatment. Bb-LPS increased the metabolic activity of DCs at a concentration of 0 to 250 EU/mL, similar to that of O26-LPS. Bb-LPS significantly increased the expression level of CD40 and CD54, related to the immune responses of DCs. Bb-LPS enhanced the antigen-presenting capability of DCs and significantly increased the interferon-gamma/interleukin-4 ratio of CD4+ T cells co-cultured with DCs to 0.95 (p < 0.05). Moreover, Bb-LPS increased the production of pro-inflammatory cytokines in a safer manner than that obtained by O26-LPS. In vivo safety tests revealed that Bb-LPS was less toxic than O26-LPS in mice. This study demonstrated that Bb-LPS showed unique immune characteristics and immunogenic effects on the antigen-presenting capability of DCs, which differed from those of O26-LPS. This study provides valuable information for basic and clinical research for developing safe vaccine adjuvants.


Assuntos
Bordetella bronchiseptica , Lipopolissacarídeos , Camundongos , Animais , Lipopolissacarídeos/metabolismo , Adjuvantes de Vacinas , Adjuvantes Imunológicos/metabolismo , Vacinas Bacterianas , Células Dendríticas
12.
Cells ; 12(11)2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37296625

RESUMO

Viral infections are usually accompanied by systemic cytokinemia. Vaccines need not necessarily mimic infection by inducing cytokinemia, but must induce antiviral-acquired immunity. Virus-derived nucleic acids are potential immune-enhancers and particularly good candidates as adjuvants in vaccines in mouse models. The most important nucleic-acid-sensing process involves the dendritic cell (DC) Toll-like receptor (TLR), which participates in the pattern recognition of foreign DNA/RNA structures. Human CD141+ DCs preferentially express TLR3 in endosomes and recognize double-stranded RNA. Antigen cross-presentation occurs preferentially in this subset of DCs (cDCs) via the TLR3-TICAM-1-IRF3 axis. Another subset, plasmacytoid DCs (pDCs), specifically expresses TLR7/9 in endosomes. They then recruit the MyD88 adaptor, and potently induce type I interferon (IFN-I) and proinflammatory cytokines to eliminate the virus. Notably, this inflammation leads to the secondary activation of antigen-presenting cDCs. Hence, the activation of cDCs via nucleic acids involves two modes: (i) with bystander effect of inflammation and (ii) without inflammation. In either case, the acquired immune response finally occurs with Th1 polarity. The level of inflammation and adverse events depend on the TLR repertoire and the mode of response to their agonists in the relevant DC subsets, and could be predicted by assessing the levels of cytokines/chemokines and T cell proliferation in vaccinated subjects. The main differences in the mode of vaccine sought in infectious diseases and cancer are defined by whether it is prophylactic or therapeutic, whether it can deliver sufficient antigens to cDCs, and how it behaves in the microenvironment of the lesion. Adjuvant can be selected on a case-to-case basis.


Assuntos
Células Dendríticas , Receptor 3 Toll-Like , Camundongos , Animais , Humanos , Receptor 3 Toll-Like/metabolismo , Adjuvantes Imunológicos/farmacologia , Adjuvantes Imunológicos/metabolismo , Receptores Toll-Like/metabolismo , Citocinas/metabolismo , Adjuvantes Farmacêuticos , Vacinação , Inflamação/metabolismo
13.
Fish Shellfish Immunol ; 139: 108908, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37380116

RESUMO

In this study, we investigated the effects of Clostridium butyricum (group A), Bacillus subtilis (group B), and the immune enhancer algal ß-1,3 glucan (group C) on the intestinal flora of Reeves' turtle Mauremys reevesii and the effects of C. butyricum on the transcriptome of M. reevesii splenic immune tissues. Reeve' turtles were assigned to four groups, each containing three replicates from 18 samples. Juvenile turtles with an initial weight of 106.35 ± 0.03 g were fed a basic diet containing no probiotics (group D), or a basic diet containing C. butyricum TF20201120, B.subtilis, or algal ß-1,3 glucan supplement, respectively. After the turtles had been fed for 60, 90, and 120 d of the experimental period, high-throughput sequencing of the 16S rRNA gene revealed no significant difference in alpha diversity among the four groups at 60 days of feeding (P > 0.05), and at 90 days, the alpha diversity in group A was significantly different (P < 0.05), with an increase of 26.62% in the Shannon index and a decrease of 83.33% in the Simpson index; at 120 d, the alpha diversity (Shannon index) showed a decreasing trend in order for groups A, B, and C, At the phylum level, the abundance of Bacteroidetes, Proteobacteria, and Fusobacteria in group A increased significantly with increasing feeding time (P < 0.05), At the genus level, the abundance of Ruminococcaceae and Anaerotruncus in group A increased significantly compared with that in the other three groups (P < 0.05). Transcriptome analysis showed that 384 genes were differentially expressed in the spleen of M. reevesii, 195 genes were upregulated and 189 genes were downregulated, and C. butyricum TF201120 regulated the hematopoietic cell lineage signaling pathway in the spleen of M. reevesii (P < 0.05). The regulation of several identified immune-related genes was confirmed by qPCR. These results showed that C. butyricum, B. subtilis, and the immune enhancer algal ß-1,3 glucan can improve the intestinal flora of M. reevesii, with C. butyricum TF20201120 being the most effective and significantly enhancing the immunity of M. reevesii.


Assuntos
Clostridium butyricum , Microbioma Gastrointestinal , Tartarugas , Animais , Tartarugas/metabolismo , Clostridium butyricum/fisiologia , Adjuvantes Imunológicos/metabolismo , Baço , Transcriptoma , RNA Ribossômico 16S/genética
14.
Sci Rep ; 13(1): 8634, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244938

RESUMO

Radiation therapy induces immunogenic cell death in cancer cells, whereby released endogenous adjuvants are sensed by immune cells to direct adaptive immune responses. TLRs expressed on several immune subtypes recognize innate adjuvants to direct downstream inflammatory responses in part via the adapter protein MyD88. We generated Myd88 conditional knockout mice to interrogate its contribution to the immune response to radiation therapy in distinct immune populations in pancreatic cancer. Surprisingly, Myd88 deletion in Itgax (CD11c)-expressing dendritic cells had little discernable effects on response to RT in pancreatic cancer and elicited normal T cell responses using a prime/boost vaccination strategy. Myd88 deletion in Lck-expressing T cells resulted in similar or worsened responses to radiation therapy compared to wild-type mice and lacked antigen-specific CD8+ T cell responses from vaccination, similar to observations in Myd88-/- mice. Lyz2-specific loss of Myd88 in myeloid populations rendered tumors more susceptible to radiation therapy and elicited normal CD8+ T cell responses to vaccination. scRNAseq in Lyz2-Cre/Myd88fl/fl mice revealed gene signatures in macrophages and monocytes indicative of enhanced type I and II interferon responses, and improved responses to RT were dependent on CD8+ T cells and IFNAR1. Together, these data implicate MyD88 signaling in myeloid cells as a critical source of immunosuppression that hinders adaptive immune tumor control following radiation therapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pancreáticas , Camundongos , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Monócitos/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia , Camundongos Knockout , Adjuvantes Imunológicos/metabolismo , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas
15.
Oncoimmunology ; 12(1): 2212550, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205983

RESUMO

DNA vaccines have been an attractive approach for treating cancer patients, however have demonstrated modest immunogenicity in human clinical trials. Dendritic cells (DCs) are known to cross-present DNA-encoded antigens expressed in bystander cells. However, we have previously reported that B cells, and not DCs, serve as primary antigen-presenting cells (APCs) following passive uptake of plasmid DNA. Here we sought to understand the requirements for B cells to present DNA-encoded antigens, to ultimately increase the immunogenicity of plasmid DNA vaccines. Using ovalbumin-specific OT-1 CD8+ T cells and isolated APC populations, we demonstrated that following passive uptake of plasmid DNA, B cells but not DC, can translate the encoded antigen. However, CD8 T cells were only activated by B cells when they were co-cultured with DCs. We found that a cell-cell contact is required between B cells and DCs. Using MHCI KO and re-purification studies, we demonstrated that B cells were the primary APCs and DCs serve to license this function. We further identified that the gene expression profiles of B cells that have been licensed by DCs, compared to the B cells that have not, are vastly different and have signatures similar to B cells activated with a TLR7/8 agonist. Our data demonstrate that B cells transcribe and translate antigens encoded by plasmid DNA following passive uptake, however require licensing by live DC to present antigen to CD8 T cells. Further study of the role of B cells as APCs will be important to improve the immunological efficacy of DNA vaccines.


Assuntos
Células Dendríticas , Vacinas de DNA , Humanos , Vacinas de DNA/genética , Vacinas de DNA/metabolismo , Apresentação de Antígeno/genética , DNA/metabolismo , Plasmídeos/genética , Adjuvantes Imunológicos/metabolismo
16.
Bioconjug Chem ; 34(5): 856-865, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37083372

RESUMO

The development of effective tumor vaccines is an important direction in the field of cancer prevention/immunotherapy. Efficient antigen delivery is essential for inducing effective antitumor responses for tumor vaccines. Lumazine synthase (BLS) from Brucella spp. is a decameric protein with delivery and adjuvant properties, but its application in tumor vaccines is limited. Here, we developed an antigen delivery platform by combining a BLS asymmetric assembly and the Plug-and-Display system of SpyCatcher/SpyTag. An asymmetric assembly system consisting of BLSke and BLSdr was developed to equally assemble two molecules. Then, the MHC-I-restricted ovalbumin peptide (OVA(257-264) SIINFEKL) was conjugated with BLSke, and a cell-penetrating peptide (CPP) KALA was conjugated with BLSdr using the SpyCatcher/SpyTag system. KALA modification enhanced internalization of OVA peptides by DCs as well as promoted the maturation of DCs and the cross-presentation of SIINFEKL. Moreover, the immunotherapy of a KALA-modified vaccine suppressed tumor growth and enhanced CD8+ T cell responses in E.G7-OVA tumor-bearing mice. In the prophylactic model, KALA-modified vaccination showed the most significant protective effect and significantly prolonged the survival period of tumor challenged mice. In conclusion, the asymmetric assembly platform equally assembles two proteins or peptides, avoiding their spatial or functional interference. This asymmetric assembly and Plug-and-Display technology provide a universal platform for rapid development of personalized tumor vaccines.


Assuntos
Vacinas Anticâncer , Peptídeos Penetradores de Células , Neoplasias , Animais , Camundongos , Vacinas Anticâncer/uso terapêutico , Autoantígenos/metabolismo , Linfócitos T CD8-Positivos , Adjuvantes Imunológicos/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Ovalbumina , Neoplasias/metabolismo , Peptídeos Penetradores de Células/química , Camundongos Endogâmicos C57BL , Células Dendríticas
17.
Immunobiology ; 228(3): 152380, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031606

RESUMO

Inflammation and lipid regulator with UBA-like and NBR1-like domains (ILRUN) is a protein-encoding gene associated with innate immune signaling, lipid metabolism and cancer. In the context of innate immunity, ILRUN inhibits IRF3-mediated transcription of antimicrobial and proinflammatory cytokines by inducing degradation of the transcriptional coactivators CBP and p300. There remains a paucity of information, however, regarding the innate immune roles of ILRUN beyond in vitro analyses. To address this, we utilize a knockout mouse model to investigate the effect of ILRUN on cytokine expression in splenocytes and on the development of immune cell populations in the spleen and thymus. We show elevated production of tumor necrosis factor and interleukin-6 cytokines in ILRUN-deficient splenocytes following stimulation with the innate immune ligands polyinosinic:polycytidylic acid or lipopolysaccharide. Differences were also observed in the populations of several T cell subsets, including regulatory, mucosal-associated invariant and natural killer. These data identify novel functions for ILRUN in the development of certain immune cell populations and support previous in vitro findings that ILRUN negatively regulates the synthesis of pathogen-stimulated cytokines. This establishes the ILRUN knockout mouse model as a valuable resource for further study of the functions of ILRUN in health and disease.


Assuntos
Citocinas , Subpopulações de Linfócitos T , Camundongos , Animais , Citocinas/metabolismo , Imunidade Inata , Fatores Imunológicos/metabolismo , Adjuvantes Imunológicos/metabolismo , Camundongos Knockout
18.
Biomaterials ; 296: 122062, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36863071

RESUMO

Neoantigen cancer vaccines that target tumor specific mutations are emerging as a promising modality for cancer immunotherapy. To date, various approaches have been adopted to enhance efficacy of these therapies, but the low immunogenicity of neoantigens has hindered clinical application. To address this challenge, we developed a polymeric nanovaccine platform that activates the NLRP3 inflammasome, a key immunological signaling pathway in pathogen recognition and clearance. The nanovaccine is comprised of a poly (orthoester) scaffold engrafted with a small-molecule TLR7/8 agonist and an endosomal escape peptide that facilitates lysosomal rupture and NLRP3 inflammasome activation. Upon solvent transfer, the polymer self-assembles with neoantigens to form ∼50 nm nanoparticles that facilitate co-delivery to antigen-presenting cells. This polymeric activator of the inflammasome (PAI) was found to induce potent antigen-specific CD8+ T cell responses characterized by IFN-γ and GranzymeB secretion. Moreover, in combination with immune checkpoint blockade therapy, the nanovaccine stimulated robust anti-tumor immune responses against established tumors in EG.7-OVA, B16·F10, and CT-26 models. Results from our studies indicate that NLRP3 inflammasome activating nanovaccines demonstrate promise for development as a robust platform to enhance immunogenicity of neoantigen therapies.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Adjuvantes Imunológicos/metabolismo , Imunoterapia/métodos , Nanopartículas/química
19.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982527

RESUMO

Wheat allergies are potentially life-threatening and, therefore, have become a major health concern at the global level. It is largely unknown at present whether genetic variation in allergenicity potential exists among hexaploid, tetraploid and diploid wheat species. Such information is critical in establishing a baseline allergenicity map to inform breeding efforts to identify hyper-, hypo- and non-allergenic varieties. We recently reported a novel mouse model of intrinsic allergenicity using the salt-soluble protein extract (SSPE) from durum, a tetraploid wheat (Triticum durum). Here, we validated the model for three other wheat species [hexaploid common wheat (Triticum aestivum), diploid einkorn wheat (Triticum monococcum), and the ancient diploid wheat progenitor, Aegilops tauschii], and then tested the hypothesis that the SSPEs from wheat species will exhibit differences in relative allergenicities. Balb/c mice were repeatedly exposed to SSPEs via the skin. Allergic sensitization potential was assessed by specific (s) IgE antibody responses. Oral anaphylaxis was quantified by the hypothermic shock response (HSR). The mucosal mast cell response (MMCR) was determined by measuring mast cell protease in the blood. While T. monococcum elicited the least, but significant, sensitization, others were comparable. Whereas Ae. taushcii elicited the least HSR, the other three elicited much higher HSRs. Similarly, while Ae. tauschii elicited the least MMCR, the other wheats elicited much higher MMCR as well. In conclusion, this pre-clinical comparative mapping strategy may be used to identify potentially hyper-, hypo- and non-allergenic wheat varieties via crossbreeding and genetic engineering methods.


Assuntos
Diploide , Triticum , Animais , Camundongos , Triticum/metabolismo , Alérgenos/metabolismo , Tetraploidia , Melhoramento Vegetal , Adjuvantes Imunológicos/metabolismo , Cloreto de Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo
20.
Int J Biol Macromol ; 232: 123485, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36731692

RESUMO

Sex-control technology have great economic value and is one of the hot topics in livestock research. To produce more milk, dairy farmers prefer female offspring. X/Y sperm separation is an effective method for offspring sex control. Currently, the major commercial production method for sperm separation is flow cytometry sorting in cattle. However, flow cytometry requires expensive equipment and long sorting times. So, a simple and inexpensive method for producing a higher number of dairy cows is required. In this study, R848 activates toll-like receptor 7/8 (TLR7/8), thereby separating X from Y sperm. The results showed TLR7/8 is expressed in the tail of X sperm. Immunofluorescence (IF) of testes, epididymis, and ejaculate shows that the number of TLR7+/8+ sperm cells is up to 50 %. Furthermore, TLR7/8 agonist (R848) affects mitochondrial function through the PI3K/GSK3α/ß/hexokinase and PI3K/NFκB/hexokinase signalling pathways, inhibiting X sperm motility, while the motility of Y-sperm remains unchanged. The difference in sperm motility causes Y sperm (with high motility) to move to the upper layer and X-sperm (with low motility) to the lower layer allowing the separation of X and Y sperm. Based on this study, we reveal a simple and effective method for enriched X/Y sperms from cattle.


Assuntos
Fosfatidilinositol 3-Quinases , Receptor 7 Toll-Like , Bovinos , Masculino , Animais , Feminino , Separação Celular/métodos , Separação Celular/veterinária , Fosfatidilinositol 3-Quinases/metabolismo , Receptor 7 Toll-Like/metabolismo , Motilidade dos Espermatozoides , Hexoquinase/metabolismo , Sêmen , Espermatozoides/metabolismo , Citometria de Fluxo/métodos , Citometria de Fluxo/veterinária , Proteínas Serina-Treonina Quinases/metabolismo , NF-kappa B/metabolismo , Adjuvantes Imunológicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA