Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neurol ; 271(8): 5525-5540, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38896263

RESUMO

BACKGROUND: Myotonic dystrophy is a multisystem disorder characterized by widespread organic involvement including central nervous system symptoms. Although myotonic dystrophy disease types 1 (DM1) and 2 (DM2) cover a similar spectrum of symptoms, more pronounced clinical and brain alterations have been described in DM1. Here, we investigated brain volumetric and white matter alterations in both disease types and compared to healthy controls (HC). METHODS: MRI scans were obtained from 29 DM1, 27 DM2, and 56 HC. We assessed macro- and microstructural brain changes by surface-based analysis of cortical thickness of anatomical images and tract-based spatial statistics of fractional anisotropy (FA) obtained by diffusion-weighted imaging, respectively. Global MRI measures were related to clinical and neuropsychological scores to evaluate their clinical relevance. RESULTS: Cortical thickness was reduced in both patient groups compared to HC, showing similar patterns of regional distribution in DM1 and DM2 (occipital, temporal, frontal) but more pronounced cortical thinning for DM1. Similarly, FA values showed a widespread decrease in DM1 and DM2 compared to HC. Interestingly, FA was significantly lower in DM1 compared to DM2 within most parts of the brain. CONCLUSION: Comparisons between DM1 and DM2 indicate a more pronounced cortical thinning of grey matter and a widespread reduction in microstructural integrity of white matter in DM1. Future studies are required to unravel the underlying and separating mechanisms for the disease courses of the two types and their neuropsychological symptoms.


Assuntos
Distrofia Miotônica , Humanos , Distrofia Miotônica/patologia , Distrofia Miotônica/diagnóstico por imagem , Distrofia Miotônica/complicações , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Afinamento Cortical Cerebral/diagnóstico por imagem , Afinamento Cortical Cerebral/patologia , Imageamento por Ressonância Magnética , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Adulto Jovem , Testes Neuropsicológicos , Anisotropia
2.
Neurobiol Aging ; 139: 82-89, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38657394

RESUMO

Alterations in grey matter (GM) and white matter (WM) are associated with memory impairment across the neurocognitive aging spectrum and theorised to spread throughout brain networks. Functional and structural connectivity (FC,SC) may explain widespread atrophy. We tested the effect of SC and FC to the hippocampus on cortical thickness (CT) of connected areas. In 419 (223 F) participants (agemean=73 ±â€¯8) from the Alzheimer's Disease Neuroimaging Initiative, cortical regions associated with memory (Rey Auditory Verbal Learning Test) were identified using Lasso regression. Two structural equation models (SEM), for SC and resting-state FC, were fitted including CT areas, and SC and FC to the left and right hippocampus (LHIP,RHIP). LHIP (ß=-0.150,p=<.001) and RHIP (ß=-0.139,p=<.001) SC predicted left temporopolar/rhinal CT; RHIP SC predicted right temporopolar/rhinal CT (ß=-0.191,p=<.001). LHIP SC predicted right fusiform/parahippocampal (ß=-0.104,p=.011) and intraparietal sulcus/superior parietal CT (ß=0.101,p=.028). Increased RHIP FC predicted higher left inferior parietal CT (ß=0.132,p=.042) while increased LHIP FC predicted lower right fusiform/parahippocampal CT (ß=-0.97; p=.023). The hippocampi may be epicentres for cortical thinning through disrupted connectivity.


Assuntos
Envelhecimento Cognitivo , Hipocampo , Humanos , Idoso , Masculino , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Envelhecimento Cognitivo/fisiologia , Idoso de 80 Anos ou mais , Memória/fisiologia , Imageamento por Ressonância Magnética , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Afinamento Cortical Cerebral/diagnóstico por imagem , Afinamento Cortical Cerebral/patologia , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Atrofia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Envelhecimento/patologia , Envelhecimento/fisiologia , Envelhecimento/psicologia , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia
3.
Alzheimers Dement ; 20(6): 3931-3942, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38648354

RESUMO

INTRODUCTION: We investigated the association between white matter hyperintensities (WMH) and regional cortical thickness, amyloid and tau deposition, and synaptic density in the WMH-connected cortex using multimodal images. METHODS: We included 107 participants (59 with Alzheimer's disease [AD]; 27 with mild cognitive impairment; 21 cognitively normal controls) with amyloid beta (Aß) positivity on amyloid positron emission tomography (PET). The cortex connected to WMH was identified using probabilistic tractography. RESULTS: We found that WMH connected to the cortex with more severe regional degeneration as measured by cortical thickness, Aß and tau deposition, and synaptic vesicle glycoprotein 2 A (SV2A) density using 18F-SynVesT-1 PET. In addition, higher ratios of Aß in the deep WMH-connected versus WMH-unconnected cortex were significantly related to lower cognitive scores. Last, the cortical thickness of WMH-connected cortex reduced more than WMH-unconnected cortex over 12 months. DISCUSSION: Our results suggest that WMH may be associated with AD-intrinsic processes of degeneration, in addition to vascular mechanisms. HIGHLIGHTS: We studied white matter hyperintensities (WMHs) and WMH-connected cortical changes. WMHs are associated with more severe regional cortical degeneration. Findings suggest WMHs may be associated with Alzheimer's disease-intrinsic processes of degeneration.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Tomografia por Emissão de Pósitrons , Substância Branca , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Masculino , Feminino , Substância Branca/patologia , Substância Branca/diagnóstico por imagem , Idoso , Peptídeos beta-Amiloides/metabolismo , Disfunção Cognitiva/patologia , Disfunção Cognitiva/diagnóstico por imagem , Sinapses/patologia , Sinapses/metabolismo , Imageamento por Ressonância Magnética , Proteínas tau/metabolismo , Afinamento Cortical Cerebral/patologia , Afinamento Cortical Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/diagnóstico por imagem , Idoso de 80 Anos ou mais
4.
Dev Psychobiol ; 66(4): e22481, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38538956

RESUMO

This study explored the interactions among prenatal stress, child sex, and polygenic risk scores (PGS) for attention-deficit/hyperactivity disorder (ADHD) on structural developmental changes of brain regions implicated in ADHD. We used data from two population-based birth cohorts: Growing Up in Singapore Towards healthy Outcomes (GUSTO) from Singapore (n = 113) and Generation R from Rotterdam, the Netherlands (n = 433). Prenatal stress was assessed using questionnaires. We obtained latent constructs of prenatal adversity and prenatal mood problems using confirmatory factor analyses. The participants were genotyped using genome-wide single nucleotide polymorphism arrays, and ADHD PGSs were computed. Magnetic resonance imaging scans were acquired at 4.5 and 6 years (GUSTO), and at 10 and 14 years (Generation R). We estimated the age-related rate of change for brain outcomes related to ADHD and performed (1) prenatal stress by sex interaction models, (2) prenatal stress by ADHD PGS interaction models, and (3) 3-way interaction models, including prenatal stress, sex, and ADHD PGS. We observed an interaction between prenatal stress and ADHD PGS on mean cortical thickness annual rate of change in Generation R (i.e., in individuals with higher ADHD PGS, higher prenatal stress was associated with a lower rate of cortical thinning, whereas in individuals with lower ADHD PGS, higher prenatal stress was associated with a higher rate of cortical thinning). None of the other tested interactions were statistically significant. Higher prenatal stress may promote a slower brain developmental rate during adolescence in individuals with higher ADHD genetic vulnerability, whereas it may promote a faster brain developmental rate in individuals with lower ADHD genetic vulnerability.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Criança , Adolescente , Humanos , Transtorno do Deficit de Atenção com Hiperatividade/genética , Afinamento Cortical Cerebral , Encéfalo/diagnóstico por imagem , Estratificação de Risco Genético , Herança Multifatorial
5.
Biol Psychiatry ; 96(5): 376-389, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38521159

RESUMO

BACKGROUND: Schizophrenia is a highly heritable disorder characterized by increased cortical thinning throughout the life span. Studies have reported a shared genetic basis between schizophrenia and cortical thickness. However, no genes whose expression is related to abnormal cortical thinning in schizophrenia have been identified. METHODS: We conducted linear mixed models to estimate the rates of accelerated cortical thinning across 68 regions from the Desikan-Killiany atlas in individuals with schizophrenia compared with healthy control participants from a large longitudinal sample (ncases = 169 and ncontrols = 298, ages 16-70 years). We studied the correlation between gene expression data from the Allen Human Brain Atlas and accelerated thinning estimates across cortical regions. Finally, we explored the functional and genetic underpinnings of the genes that contribute most to accelerated thinning. RESULTS: We found a global pattern of accelerated cortical thinning in individuals with schizophrenia compared with healthy control participants. Genes underexpressed in cortical regions that exhibit this accelerated thinning were downregulated in several psychiatric disorders and were enriched for both common and rare disrupting variation for schizophrenia and neurodevelopmental disorders. In contrast, none of these enrichments were observed for baseline cross-sectional cortical thickness differences. CONCLUSIONS: Our findings suggest that accelerated cortical thinning, rather than cortical thickness alone, serves as an informative phenotype for neurodevelopmental disruptions in schizophrenia. We highlight the genetic and transcriptomic correlates of this accelerated cortical thinning, emphasizing the need for future longitudinal studies to elucidate the role of genetic variation and the temporal-spatial dynamics of gene expression in brain development and aging in schizophrenia.


Assuntos
Transtornos do Neurodesenvolvimento , Esquizofrenia , Humanos , Esquizofrenia/genética , Esquizofrenia/patologia , Esquizofrenia/diagnóstico por imagem , Adulto , Pessoa de Meia-Idade , Masculino , Feminino , Adolescente , Adulto Jovem , Idoso , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/diagnóstico por imagem , Afinamento Cortical Cerebral/genética , Afinamento Cortical Cerebral/diagnóstico por imagem , Afinamento Cortical Cerebral/patologia , Imageamento por Ressonância Magnética , Estudos Longitudinais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Predisposição Genética para Doença/genética
6.
Commun Biol ; 7(1): 198, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368479

RESUMO

Previous studies on Alzheimer's disease-type cognitive impairment (ADCI) and subcortical vascular cognitive impairment (SVCI) has rarely explored spatiotemporal heterogeneity. This study aims to identify distinct spatiotemporal cortical atrophy patterns in ADCI and SVCI. 1,338 participants (713 ADCI, 208 SVCI, and 417 cognitively unimpaired elders) underwent brain magnetic resonance imaging (MRI), amyloid positron emission tomography, and neuropsychological tests. Using MRI, this study measures cortical thickness in five brain regions (medial temporal, inferior temporal, posterior medial parietal, lateral parietal, and frontal areas) and utilizes the Subtype and Stage Inference (SuStaIn) model to predict the most probable subtype and stage for each participant. SuStaIn identifies two distinct cortical thinning patterns in ADCI (medial temporal: 65.8%, diffuse: 34.2%) and SVCI (frontotemporal: 47.1%, parietal: 52.9%) patients. The medial temporal subtype of ADCI shows a faster decline in attention, visuospatial, visual memory, and frontal/executive domains than the diffuse subtype (p-value < 0.01). However, there are no significant differences in longitudinal cognitive outcomes between the two subtypes of SVCI. Our study provides valuable insights into the distinct spatiotemporal patterns of cortical thinning in patients with ADCI and SVCI, suggesting the potential for individualized therapeutic and preventive strategies to improve clinical outcomes.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Maleato de Dizocilpina/análogos & derivados , Humanos , Idoso , Doença de Alzheimer/patologia , Afinamento Cortical Cerebral/patologia , Disfunção Cognitiva/diagnóstico por imagem , Encéfalo/patologia
8.
PLoS One ; 19(1): e0295069, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38295031

RESUMO

CONTEXT: An existing major challenge in Parkinson's disease (PD) research is the identification of biomarkers of disease progression. While magnetic resonance imaging is a potential source of PD biomarkers, none of the magnetic resonance imaging measures of PD are robust enough to warrant their adoption in clinical research. This study is part of a project that aims to replicate 11 PD studies reviewed in a recent survey (JAMA neurology, 78(10) 2021) to investigate the robustness of PD neuroimaging findings to data and analytical variations. OBJECTIVE: This study attempts to replicate the results in Hanganu et al. (Brain, 137(4) 2014) using data from the Parkinson's Progression Markers Initiative (PPMI). METHODS: Using 25 PD subjects and 18 healthy controls, we analyzed the rate of change of cortical thickness and of the volume of subcortical structures, and we measured the relationship between structural changes and cognitive decline. We compared our findings to the results in the original study. RESULTS: (1) Similarly to the original study, PD patients with mild cognitive impairment (MCI) exhibited increased cortical thinning over time compared to patients without MCI in the right middle temporal gyrus, insula, and precuneus. (2) The rate of cortical thinning in the left inferior temporal and precentral gyri in PD patients correlated with the change in cognitive performance. (3) There were no group differences in the change of subcortical volumes. (4) We did not find a relationship between the change in subcortical volumes and the change in cognitive performance. CONCLUSION: Despite important differences in the dataset used in this replication study, and despite differences in sample size, we were able to partially replicate the original results. We produced a publicly available reproducible notebook allowing researchers to further investigate the reproducibility of the results in Hanganu et al. (2014) when more data is added to PPMI.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Córtex Cerebral/patologia , Afinamento Cortical Cerebral/patologia , Reprodutibilidade dos Testes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética , Biomarcadores
9.
J Psychiatr Res ; 171: 177-184, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38295451

RESUMO

The study investigates morphometric changes using surface-based measures and logistic regression in Major depressive-disorder (MDD) and Manic-disorder patients as compared to controls. MDD (n = 21) and manic (n = 20) subjects were recruited from psychiatric clinics, along with 19 healthy-controls from local population, after structured and semi-structured clinical interview (DSM-IV, brief Psychotic-Rating Scale (BPRS), Young Mania Rating Scale (YMRS), Hamilton depression rating scale (HDRS), cognitive function by postgraduate Institute Battery of Brain Dysfunction (PGIBBD)). Using 3D T1-weighted images, gray matter (GM) cortical thickness and GM-based morphometric signatures (using logistic regression) were compared among MDD, manic disorder and controls using analysis of covariance (ANCOVA). No significant difference was found between the MDD and manic disorder patients. When compared to controls, cortical thinning was observed in bilateral rostral middle frontal gyrus and parsopercularis, right lateral occipital cortex, right lingual gyrus in MDD; and bilateral rostral middle frontal and superior frontal gyrus, right middle temporal gyrus, left supramarginal and left precentral gyrus in Manic disorders. Logistic regression analysis exhibited GM cortical thinning in the bilateral parsopercularis, right lateral occipital cortex and lingual gyrus in MDD; and bilateral rostral middle, superior frontal gyri, right middle temporal gyrus in Manic with a sensitivity and specificity of 85.7 % and 94.7 % and 90.0 % and 94.7 %, respectively in comparison with controls. Both groups exhibited GM loss in bilateral rostral middle frontal gyrus brain regions compared to controls. Multivariate analysis revealed common changes in GM in MDD and manic disorders associated with mood temperament, but differences when compared to controls.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Córtex Motor , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Bipolar/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Modelos Logísticos , Afinamento Cortical Cerebral , Imageamento por Ressonância Magnética/métodos , Mania , Biomarcadores
10.
Nat Commun ; 15(1): 784, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278807

RESUMO

Cortical thinning is an important hallmark of the maturation of brain morphology during childhood and adolescence. However, the connectome-based wiring mechanism that underlies cortical maturation remains unclear. Here, we show cortical thinning patterns primarily located in the lateral frontal and parietal heteromodal nodes during childhood and adolescence, which are structurally constrained by white matter network architecture and are particularly represented using a network-based diffusion model. Furthermore, connectome-based constraints are regionally heterogeneous, with the largest constraints residing in frontoparietal nodes, and are associated with gene expression signatures of microstructural neurodevelopmental events. These results are highly reproducible in another independent dataset. These findings advance our understanding of network-level mechanisms and the associated genetic basis that underlies the maturational process of cortical morphology during childhood and adolescence.


Assuntos
Conectoma , Substância Branca , Humanos , Adolescente , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Conectoma/métodos , Afinamento Cortical Cerebral , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Imageamento por Ressonância Magnética
11.
J Neurol Neurosurg Psychiatry ; 95(8): 748-752, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38199813

RESUMO

BACKGROUND: Consistent patterns of reduced cortical thickness have been identified in early Alzheimer's disease (AD). However, the pathological factors that influence rates of cortical thinning within these AD signature regions remain unclear. METHODS: Participants were from the Insight 46 substudy of the MRC National Survey of Health and Development (NSHD; 1946 British birth cohort), a prospective longitudinal cohort study. Linear regression was used to examine associations of baseline cerebral ß-amyloid (Aß) deposition, measured using florbetapir positron emission tomography, and baseline white matter hyperintensity volume (WMHV) on MRI, a marker of cerebral small vessel disease, with subsequent longitudinal changes in AD signature cortical thickness quantified from baseline and repeat MRI (mean [SD] interval 2.4 [0.2] years). RESULTS: In a population-based sample of 337 cognitively normal older white adults (mean [SD] age at baseline 70.5 [0.6] years; 48.1% female), higher global WMHV at baseline related to faster subsequent rates of cortical thinning in both AD signature regions (~0.15%/year faster per 10 mL additional WMHV), whereas baseline Aß status did not. Among Aß positive participants (n=56), there was some evidence that greater global Aß standardised uptake value ratio at baseline related to faster cortical thinning in the AD signature Mayo region, but this did not reach statistical significance (p=0.08). CONCLUSIONS: Cortical thinning within AD signature regions may develop via cerebrovascular pathways. Perhaps reflecting the age of the cohort and relatively low prevalence of Aß-positivity, robust Aß-related differences were not detected. Longitudinal follow-up incorporating additional biomarkers will allow assessment of how these relationships evolve closer to expected dementia onset.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Afinamento Cortical Cerebral , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Substância Branca , Humanos , Feminino , Masculino , Idoso , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Estudos Longitudinais , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Afinamento Cortical Cerebral/diagnóstico por imagem , Afinamento Cortical Cerebral/patologia , Estudos Prospectivos , Etilenoglicóis , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/metabolismo , Doenças de Pequenos Vasos Cerebrais/diagnóstico por imagem , Doenças de Pequenos Vasos Cerebrais/patologia , Compostos de Anilina
12.
J Affect Disord ; 348: 229-237, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38160887

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a prevalent mental health condition with significant societal impact. Owing to the intricate biological diversity of MDD, treatment efficacy remains limited. Immune biomarkers have emerged as potential predictors of treatment response, underscoring the interaction between the immune system and the brain. This study investigated the relationship between cytokine levels and cortical thickness in patients with MDD, focusing on the corticolimbic circuit, to elucidate the influence of neuroinflammation on structural brain changes and contribute to a deeper understanding of the pathophysiology of MDD. METHOD: A total of 114 patients with MDD and 101 healthy controls (HC) matched for age, sex, and body mass index (BMI) were recruited. All participants were assessed for depression severity using the Hamilton Depression Rating Scale (HDRS), and 3.0 T T1 weighted brain MRI data were acquired. Additionally, cytokine levels were measured using a highly sensitive bead-based multiplex immunosorbent assay. RESULTS: Patients diagnosed with MDD exhibited notably elevated levels of interleukin-6 (p = 0.005) and interleukin-8 (p = 0.005), alongside significant cortical thinning in the left anterior cingulate gyrus and left superior frontal gyrus, with these findings maintaining significance even after applying Bonferroni correction. Furthermore, increased interleukin-6 and interleukin-8 levels in patients with MDD are associated with alterations in the left frontomarginal gyrus and right anterior cingulate cortex (ACC). CONCLUSIONS: This suggests a potential influence of neuroinflammation on right ACC function in MDD patients, warranting longitudinal research to explore interleukin-6 and interleukin-8 mediated neurotoxicity in MDD vulnerability and brain morphology changes.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Interleucina-8 , Doenças Neuroinflamatórias , Afinamento Cortical Cerebral , Depressão , Interleucina-6 , Imageamento por Ressonância Magnética , Inflamação/diagnóstico por imagem
13.
Schizophr Bull ; 50(2): 403-417, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38102721

RESUMO

BACKGROUND AND HYPOTHESES: Previous studies revealed innate immune system activation in people with schizophrenia (SZ), potentially mediated by endogenous pathogen recognition receptors, notably Toll-like receptors (TLR). TLRs are activated by pathogenic molecules like bacterial lipopolysaccharides (TLR1 and TLR4), viral RNA (TLR3), or both (TLR8). Furthermore, the complement system, another key component of innate immunity, has previously been linked to SZ. STUDY DESIGN: Peripheral mRNA levels of TLR1, TLR3, TLR4, and TLR8 were compared between SZ and healthy controls (HC). We investigated their relationship with immune activation through complement expression and cortical thickness of the cingulate gyrus, a region susceptible to immunological hits. TLR mRNA levels and peripheral complement receptor mRNA were extracted from 86 SZ and 77 HC white blood cells; structural MRI scans were conducted on a subset. STUDY RESULTS: We found significantly higher TLR4 and TLR8 mRNA levels and lower TLR3 mRNA levels in SZ compared to HC. TLRs and complemental factors were significantly associated in SZ and HC, with the strongest deviations of TLR mRNA levels in the SZ subgroup having elevated complement expression. Cortical thickness of the cingulate gyrus was inversely associated with TLR8 mRNA levels in SZ, and with TLR4 and TLR8 levels in HC. CONCLUSIONS: The study underscores the role of innate immune activation in schizophrenia, indicating a coordinated immune response of TLRs and the complement system. Our results suggest there could be more bacterial influence (based on TLR 4 levels) as opposed to viral influence (based on TLR3 levels) in schizophrenia. Specific TLRs were associated with brain cortical thickness reductions of limbic brain structures.


Assuntos
Esquizofrenia , Receptor 3 Toll-Like , Receptor 4 Toll-Like , Receptor 8 Toll-Like , Humanos , Afinamento Cortical Cerebral , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismo , RNA Mensageiro/metabolismo , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética , Receptor 1 Toll-Like/metabolismo , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Receptor Toll-Like 9/metabolismo , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA