Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.218
Filtrar
1.
Anal Chim Acta ; 1303: 342544, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609271

RESUMO

BACKGROUND: Aflatoxin B1 (AFB1) and its precursors contaminate food and agricultural products, posing a significant risk to food safety and human health, but simultaneous and effective extraction and determination of AFB1 and its precursors with varied structures is still a challenging task. RESULTS: In this study, a bisimidazolium-type ionic liquid functionalized mesoporous multipod silica (SiO2@mPMO-IL(im)2) was fabricated to extract AFB1 and its two precursors, i.e., averantin and sterigmatocystin. The SiO2@mPMO-IL(im)2 could simultaneously extract three targets with varied structures based on the multipods, mesopores, and multifunctional groups. The density functional theory calculations further verified the multiple interactions between SiO2@mPMO-IL(im)2 and targets. The fabricated SiO2@mPMO-IL(im)2 could effectively extract and determine three targets in grains by combing with dispersive solid-phase extraction and high-performance liquid chromatography. Good linearity (r2 > 0.9978), low LODs (0.9-1.5 µg kg-1) and LOQs (3.0-4.5 µg kg-1), satisfactory spiked recoveries (92.5%-106.8%) and high precisions (RSD<6.4%) were observed. SIGNIFICANCE AND NOVELTY: This work demonstrates the feasibility of SiO2@mPMO-IL(im)2 for simultaneous and effective extraction of toxins with varied structures and provides a promising sample preparation for the analysis of AFB1 and its precursors in grain samples.


Assuntos
Aflatoxina B1 , Líquidos Iônicos , Humanos , Dióxido de Silício , Grão Comestível , Agricultura
2.
Food Chem ; 449: 139171, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604026

RESUMO

Aflatoxins, harmful substances found in peanuts, corn, and their derivatives, pose significant health risks. Addressing this, the presented research introduces an innovative MSGhostDNN model, merging contrastive learning with multi-scale convolutional networks for precise aflatoxin detection. The method significantly enhances feature discrimination, achieving an impressive 97.87% detection accuracy with a pre-trained model. By applying Grad-CAM, it further refines the model to identify key wavelengths, particularly 416 nm, and focuses on 40 key wavelengths for optimal performance with 97.46% accuracy. The study also incorporates a task dimensionality reduction approach for continuous learning, allowing effective ongoing aflatoxin spectrum monitoring in peanuts and corn. This approach not only boosts aflatoxin detection efficiency but also sets a precedent for rapid online detection of similar toxins, offering a promising solution to mitigate the health risks associated with aflatoxin exposure.


Assuntos
Aflatoxina B1 , Arachis , Contaminação de Alimentos , Zea mays , Aflatoxina B1/análise , Contaminação de Alimentos/análise , Arachis/química , Zea mays/química , Redes Neurais de Computação , Análise Espectral/métodos , Aprendizado de Máquina
3.
Food Chem Toxicol ; 188: 114640, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583501

RESUMO

This study investigates the individual and combined effects of the mycotoxins, Aflatoxin B1 (AFB1), Enniatin B (ENNB) and Sterigmatocystin (STG), on the cellular viability of gastric (NCI-N87), intestinal (Caco-2), hepatic (Hep-G2) and renal (Hek-293) cells, shedding light on synergistic or antagonistic effects using a constant ratio combination design proposed by Chou-Talalay. These toxins are prevalent in cereal-based foods, frequently consumed by children which raises concerns about their exposure to these mycotoxins. This population is particularly vulnerable to the effects of these toxins due to their underdeveloped organs and incompletely structured physiological processes. Results showed that ENB was the most toxic of the three mycotoxins across all cell lines, while STG and AFB1 showed lower toxicity. The combination of ENNB + STG was found to be the most potent in terms of binary mixtures. In regard to ternary combinations, Caco-2 cells are more sensitive to the tested mycotoxins, whereas NCI-N87 cells show lower levels of cell damage. Worrying dose reduction values (>10-fold) were found for ENNB in binary and ternary combinations at low exposure levels. These findings are significant for establishing initial reference values, which play a pivotal role in estimating reference doses that are subsequently incorporated into the broader risk assessment process.


Assuntos
Aflatoxina B1 , Depsipeptídeos , Esterigmatocistina , Humanos , Esterigmatocistina/toxicidade , Aflatoxina B1/toxicidade , Depsipeptídeos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células CACO-2 , Fígado/efeitos dos fármacos , Rim/efeitos dos fármacos , Intestinos/efeitos dos fármacos , Células HEK293 , Células Hep G2
4.
Molecules ; 29(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38611741

RESUMO

We reported a highly efficient electrochemical immunosensor utilizing chitosan-graphene nanosheets (CS-GNs) nanocomposites for the detection of aflatoxin B1 (AFB1) in corn samples. The CS-GNs nanocomposites, serving as a modifying layer, provide a significant specific surface area and biocompatibility, thereby enhancing both the electron transfer rate and the efficiency of antibody immobilization. The electrochemical characterization was conducted utilizing both differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Moreover, the antibody concentration, pH, antibody immobilization time, and immunoreaction time, were optimized. The results showed that the current change (ΔI) before and after the immunoreaction demonstrated a strong linear relationship (R2=0.990) with the AFB1 concentration, as well as good specificity and stability. The linear range extended from 0.05 to 25 ng/mL, with a detection limit of 0.021 ng/mL (S/N=3). The immunosensor exhibited a recovery rate ranging from 97.3% to 101.4% in corn samples, showing a promising performance using an efficient method, and indicating a remarkable prospect for the detection of fungal toxins in grains.


Assuntos
Técnicas Biossensoriais , Quitosana , Grafite , Zea mays , Aflatoxina B1 , Imunoensaio , Anticorpos
5.
Proc Natl Acad Sci U S A ; 121(16): e2314426121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38574017

RESUMO

Epstein-Barr Virus (EBV) infects more than 90% of the adult population worldwide. EBV infection is associated with Burkitt lymphoma (BL) though alone is not sufficient to induce carcinogenesis implying the involvement of co-factors. BL is endemic in African regions faced with mycotoxins exposure. Exposure to mycotoxins and oncogenic viruses has been shown to increase cancer risks partly through the deregulation of the immune response. A recent transcriptome profiling of B cells exposed to aflatoxin B1 (AFB1) revealed an upregulation of the Chemokine ligand 22 (CCL22) expression although the underlying mechanisms were not investigated. Here, we tested whether mycotoxins and EBV exposure may together contribute to endemic BL (eBL) carcinogenesis via immunomodulatory mechanisms involving CCL22. Our results revealed that B cells exposure to AFB1 and EBV synergistically stimulated CCL22 secretion via the activation of Nuclear Factor-kappa B pathway. By expressing EBV latent genes in B cells, we revealed that elevated levels of CCL22 result not only from the expression of the latent membrane protein LMP1 as previously reported but also from the expression of other viral latent genes. Importantly, CCL22 overexpression resulting from AFB1-exposure in vitro increased EBV infection through the activation of phosphoinositide-3-kinase pathway. Moreover, inhibiting CCL22 in vitro and in humanized mice in vivo limited EBV infection and decreased viral genes expression, supporting the notion that CCL22 overexpression plays an important role in B cell infection. These findings unravel new mechanisms that may underpin eBL development and identify novel pathways that can be targeted in drug development.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Animais , Camundongos , Herpesvirus Humano 4/genética , Infecções por Vírus Epstein-Barr/complicações , Aflatoxina B1/toxicidade , Ligantes , Linfoma de Burkitt/metabolismo , Quimiocinas , Carcinogênese
6.
Food Microbiol ; 121: 104524, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637086

RESUMO

Aspergillus flavus colonization on agricultural products during preharvest and postharvest results in tremendous economic losses. Inspired by the synergistic antifungal effects of essential oils, the aims of this study were to explore the mechanism of combined cinnamaldehyde and nonanal (SCAN) against A. flavus and to evaluate the antifungal activity of SCAN loading into diatomite (DM). Shriveled mycelia were observed by scanning electron microscopy, especially in the SCAN treatment group. Calcofluor white staining, transmission electron microscopy, dichloro-dihydro-fluorescein diacetate staining and the inhibition of key enzymes in tricarboxylic acid cycle indicated that the antifungal mechanism of SCAN against A. flavus was related to the cell wall damage, reactive oxygen species accumulation and energy metabolism interruption. RNA sequencing revealed that some genes involved in antioxidation were upregulated, whereas genes responsible for cell wall biosynthesis, oxidative stress, cell cycle and spore development were significantly downregulated, supporting the occurrence of cellular apoptosis. In addition, compared with the control group, conidia production in 1.5 mg/mL DM/cinnamaldehyde, DM/nonanal and DM/SCAN groups were decreased by 27.16%, 48.22% and 76.66%, respectively, and the aflatoxin B1 (AFB1) contents decreased by 2.00%, 73.02% and 84.15%, respectively. These finding suggest that DM/SCAN complex has potential uses in food preservation.


Assuntos
Acroleína/análogos & derivados , Aldeídos , Antifúngicos , Aspergillus flavus , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Aflatoxina B1/metabolismo , Conservação de Alimentos
7.
Onderstepoort J Vet Res ; 91(1): e1-e6, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38572889

RESUMO

Global aflatoxin contamination of agricultural commodities is of the most concern in food safety and quality. This study investigated the hepatoprotective effect of 80% methanolic leaf extract of Annona senegalensis against aflatoxin B1 (AFB1)-induced toxicity in rats. A. senegalensis has shown to inhibit genotoxicity of aflatoxin B1 in vitro. The rats were divided into six groups including untreated control, aflatoxin B1 only (negative control); curcumin (positive control; 10 mg/kg); and three groups receiving different doses (100 mg/kg, 200 mg/kg, and 300 mg/kg) of A. senegalensis extract. The rats received treatment (with the exception of untreated group) for 7 days prior to intoxication with aflatoxin B1. Serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, lactate dehydrogenase, and creatinine were measured. Hepatic tissues were analysed for histological alterations. Administration of A. senegalensis extract demonstrated hepatoprotective effects against aflatoxin B1-induced toxicity in vivo by significantly reducing the level of serum aspartate aminotransferase and alanine aminotransferase and regenerating the hepatocytes. No significant changes were observed in the levels of alkaline phosphatase, lactate dehydrogenase, and creatinine for the AFB1 intoxicated group, curcumin+AFB1 and Annona senegalensis leaf extract (ASLE)+AFB1 (100 mg/kg, 200 mg/kg, and 300 mg/kg body weight [b.w.]) treated groups. Annona senegalensis is a good candidate for hepatoprotective agents and thus its use in traditional medicine may at least in part be justified.Contribution: The plant extract investigated in this study can be used in animal health to protect the organism from toxicity caused by mycotoxins.


Assuntos
Annona , Curcumina , Ratos , Animais , Aflatoxina B1/toxicidade , Curcumina/farmacologia , Alanina Transaminase/farmacologia , Fosfatase Alcalina/farmacologia , Creatinina/farmacologia , Fígado , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Aspartato Aminotransferases/farmacologia , Lactato Desidrogenases
8.
Microbiol Res ; 283: 127710, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593581

RESUMO

Aflatoxin B1 (AFB1), a highly toxic secondary metabolite produced by Aspergillus flavus, poses a severe threat to agricultural production, food safety and human health. The methylation of mRNA m6A has been identified as a regulator of both the growth and AFB1 production of A. flavus. However, its intracellular occurrence and function needs to be elucidated. Here, we identified and characterized a m6A methyltransferase, AflIme4, in A. flavus. The enzyme was localized in the cytoplasm, and knockout of AflIme4 significantly reduced the methylation modification level of mRNA. Compared with the control strains, ΔAflIme4 exhibited diminished growth, conidial formation, mycelial hydrophobicity, sclerotium yield, pathogenicity and increased sensitivity to CR, SDS, NaCl and H2O2. Notably, AFB1 production was markedly inhibited in the A. flavus ΔAflIme4 strain. RNA-Seq coupled with RT-qPCR validation showed that the transcriptional levels of genes involved in the AFB1 biosynthesis pathway including aflA, aflG, aflH, aflK, aflL, aflO, aflS, aflV and aflY were significantly upregulated. Methylated RNA immunoprecipitation-qPCR (MeRIP-qPCR) analysis demonstrated a significant increase in m6A methylation modification levels of these pathway-specific genes, concomitant with a decrease in mRNA stability. These results suggest that AflIme4 attenuates the mRNA stability of genes in AFB1 biosynthesis by enhancing their mRNA m6A methylation modification, leading to impaired AFB1 biosynthesis. Our study identifies a novel m6A methyltransferase AflIme4 and highlights it as a potential target to control A. flavus growth, development and aflatoxin pollution.


Assuntos
Aflatoxinas , Aspergillus flavus , Humanos , Aspergillus flavus/genética , Aflatoxina B1/genética , Aflatoxina B1/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Peróxido de Hidrogênio/metabolismo , RNA Mensageiro/metabolismo , Aflatoxinas/genética , Aflatoxinas/metabolismo
9.
Food Chem ; 449: 139316, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615633

RESUMO

In this work, the perovskite fluorescent nanocrystals (CsPbBr3) were successfully synthesized and wrapped with SiO2 shell, utilized for the assembly of solid-state detection strip capable of conveniently and specifically detection of aflatoxin B1 (AFB1). The SiO2 coating aimed to enhance the stability of CsPbBr3 nanocrystals. The resulting CsPbBr3@SiO2 material exhibited remarkable fluorescence properties, and further self-assembled onto solid-state plate, generating AFB1-specific quenched fluorescence at a specific wavelength of 515 nm. When combined with the capture of AFB1 by magnetic nanoparticles conjugated with aptamers (MNPs-Apt), it was achieved the good separation and specific detection of AFB1 toxin in food matrices. The constructed fluorescent solid-state detection strip based on CsPbBr3@SiO2 exhibited good response to AFB1 toxin within a linear range of 0.1-100 ng mL-1 and an impressive detection limit as low as 0.053 ng mL-1. This presents a new strategy for the rapid screening and convenient detection of highly toxic AFB1.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Compostos de Cálcio , Contaminação de Alimentos , Nanopartículas , Óxidos , Dióxido de Silício , Titânio , Aflatoxina B1/análise , Aflatoxina B1/química , Contaminação de Alimentos/análise , Dióxido de Silício/química , Compostos de Cálcio/química , Óxidos/química , Nanopartículas/química , Titânio/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Fluorescência
10.
Ecotoxicol Environ Saf ; 276: 116316, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615640

RESUMO

Aflatoxins B1 (AFB1) a dangerous type of aflatoxin, poses a serious threat to human health. Meanwhile, Taraxasterol, a bioactive compound in dandelion, exhibits strong anti-inflammatory and antioxidant activity. Therefore, the aim of this study was to investigate the impact of AFB1 on the intrinsic and extrinsic pathways of apoptosis, as well as evaluate the protective role of taraxasterol in the TM3 Leydig cell line. Cell viability was evaluated using an MTT assay, measuring the effects of 3.6 µM AFB1 and varying concentrations of taraxasterol. Expression levels of Caspase 3,8, and 9 were analyzed with RT-qPCR, and flow cytometry was used to assess cell cycle progression and apoptotic alterations. The findings of this study demonstrated that exposure to 3.6 µM of AFB1 resulted in an upregulation of Caspase 3 and Caspase 9 expression, indicating an activation of apoptotic pathways in TM3 cells. Additionally, the analysis of apoptosis revealed a significant increase in cellular apoptosis at this AFB1 concentration. However, when TM3 cells were exposed to 5 µM of taraxasterol, a downregulation of Caspase 3 and Caspase 9 expression was observed, suggesting a protective effect against apoptosis. Moreover, the apoptotic rate in TM3 cells was reduced in the presence of 5 µM of taraxasterol. Consequently, this study highlights the potential of taraxasterol as a protective agent against AFB1-induced apoptosis and suggest its potential application in regulating cell survival and apoptosis-related processes. Further investigations are necessary to elucidate the underlying mechanisms and evaluate the clinical implications of taraxasterol in the context of fertility disorders and other conditions associated with AFB1 exposure.


Assuntos
Aflatoxina B1 , Apoptose , Sobrevivência Celular , Células Intersticiais do Testículo , Triterpenos , Aflatoxina B1/toxicidade , Apoptose/efeitos dos fármacos , Células Intersticiais do Testículo/efeitos dos fármacos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Masculino , Triterpenos/farmacologia , Esteróis/farmacologia , Caspase 3/metabolismo , Substâncias Protetoras/farmacologia , Caspase 9/metabolismo
11.
Ecotoxicol Environ Saf ; 276: 116332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626608

RESUMO

According to the International Agency for Research on Cancer (IARC), aflatoxin B1 (AFB1) has been recognized as a major contaminant in food and animal feed and which is a common mycotoxin with high toxicity. Previous research has found that AFB1 inhibited zebrafish muscle development. However, the potential mechanism of AFB1 on fish muscle development is unknown, so it is necessary to conduct further investigation. In the present research, the primary myoblast of grass carp was used as a model, we treated myoblasts with AFB1 for 24 h. Our results found that 5 µM AFB1 significantly inhibited cell proliferation and migration (P < 0.05), and 10 µM AFB1 promoted lactate dehydrogenase (LDH) release (P < 0.05). Reactive oxygen species (ROS), protein carbonyl (PC) and malondialdehyde (MDA) levels were increased in 15, 5 and 10 µM AFB1 (P < 0.05), respectively. Catalase (CAT), glutathione peroxidase (GPx) and total superoxide dismutase (T-SOD) activities were decreased in 10, 10 and 15 µM AFB1 (P < 0.05), respectively. Furthermore, 15 µM AFB1 induced oxidative damage by Nrf2 pathway, also induced apoptosis in primary myoblast of grass carp. Meanwhile, 15 µM AFB1 decreased MyoD gene and protein expression (P < 0.05). Importantly, 15 µM AFB1 decreased the protein expression of collagen Ⅰ and fibronectin (P < 0.05), and increased the protein levels of urokinase plasminogen activator (uPA), matrix metalloproteinase 9 (MMP-9), matrix metalloproteinase 2 (MMP-2), and p38 mitogen-activated protein kinase (p38MAPK) (P < 0.05). As a result, our findings suggested that AFB1 damaged the cell morphology, induced oxidative damage and apoptosis, degraded ECM components, in turn inhibiting myoblast development by activating the p38MAPK/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase (MMPs)/extracellular matrix (ECM) signaling pathway.


Assuntos
Aflatoxina B1 , Carpas , Proliferação de Células , Matriz Extracelular , Mioblastos , Espécies Reativas de Oxigênio , Animais , Aflatoxina B1/toxicidade , Mioblastos/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
12.
Ecotoxicol Environ Saf ; 276: 116344, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38636259

RESUMO

Aflatoxin B1 (AFB1) is one of the common dietary contaminants worldwide, which can harm the liver of humans and animals. Salvia miltiorrhiza polysaccharide (SMP) is a natural plant-derived polysaccharide with numerous pharmacological activities, including hepatoprotective properties. The purpose of this study is to explore the intervention effect of SMP on AFB1-induced liver injury and its underlying mechanisms in rabbits. The rabbits were administered AFB1 (25 µg/kg/feed) and or treatment with SMP (300, 600, 900 mg/kg/feed) for 42 days. The results showed that SMP effectively alleviated the negative impact of AFB1 on rabbits' productivity by increasing average daily weight gain (ADG) and feed conversion rate (FCR). SMP reduced aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP) levels in serum, ameliorating AFB1-induced hepatic pathological changes. Additionally, SMP enhanced superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) activity, and inhibited reactive oxygen species (ROS), malondialdehyde (MDA), 4-Hydroxynonenal (4-HNE), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) expression, thus mitigating AFB1-induced oxidative stress and inflammatory responses. Moreover, SMP upregulated the expression of nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1), NADPH quinone oxidoreductase 1 (NQO1) and B-cell lymphoma 2 (Bcl2) while downregulating kelch like ECH associated protein 1 (Keap1), cytochrome c (cyt.c), caspase9, caspase3, and Bcl-2-associated X protein (Bax) expression, thereby inhibiting AFB1-induced hepatocyte apoptosis. Consequently, our findings conclude that SMP can mitigate AFB1-induced liver damage by activating the Nrf2/HO-1 pathway and inhibiting mitochondria-dependent apoptotic pathway in rabbits.


Assuntos
Aflatoxina B1 , Doença Hepática Induzida por Substâncias e Drogas , Polissacarídeos , Salvia miltiorrhiza , Animais , Coelhos , Polissacarídeos/farmacologia , Aflatoxina B1/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Salvia miltiorrhiza/química , Fígado/efeitos dos fármacos , Fígado/patologia , Estresse Oxidativo/efeitos dos fármacos , Masculino , Alanina Transaminase/sangue , Espécies Reativas de Oxigênio/metabolismo
13.
Food Res Int ; 184: 114239, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38609220

RESUMO

Mycotoxins can inflict harmful effects on diverse organs, and mounting evidence indicates their potential involvement in human neurodegenerative diseases. Given the common occurrence of these toxins in food, there is an increasing demand for a comprehensive assessment of their combined toxicity to enhance our understanding of their potential hazards. This research investigates mycotoxin exposure from widely consumed cereal-based products, including enniatin B (ENNB), sterigmatocystin (STG), aflatoxin B1 (AFB1), cyclopiazonic acid (CPZ), citrinin (CIT), and ochratoxin A (OTA). Employing the median-effect equation based on Chou and Talalay's mass-action law, we assessed their cytotoxicity in human SH-SY5Y neuronal cells. Notably, ENNB displayed the highest neurotoxicity (IC50 = 3.72 µM), followed by OTA (9.10 µM) and STG (9.99 µM). The combination of OTA + STG exhibited the highest toxicity (IC50 = 3.77 µM), while CPZ + CIT showed the least detrimental effect. Approximately 70 % of tested binary combinations displayed synergistic or additive effects, except for ENNB + STG, ENNB + AFB1, and CPZ + CIT, which showed antagonistic interactions. Intriguingly, the senary combination displayed moderate antagonism at the lowest exposure and moderate synergism at higher doses. OTA exhibited predominantly synergistic interactions, comprising approximately 90 %, a noteworthy finding considering its prevalence in food. Conversely, ENNB interactions tended to be antagonistic. The most remarkable synergy occurred in the STG and CIT combination, enabling a 50-fold reduction in CIT dosage for an equivalent toxic effect. These findings highlight the biological relevance of robust synergistic interactions, emphasizing the need to assess human exposure hazards accurately, particularly considering frequent mycotoxin co-occurrence in environmental and food settings.


Assuntos
Micotoxinas , Neuroblastoma , Humanos , Micotoxinas/toxicidade , Aflatoxina B1 , Grão Comestível
14.
Sensors (Basel) ; 24(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38610537

RESUMO

Conventional spherical nucleic acid enzymes (SNAzymes), made with gold nanoparticle (AuNPs) cores and DNA shells, are widely applied in bioanalysis owing to their excellent physicochemical properties. Albeit important, the crowded catalytic units (such as G-quadruplex, G4) on the limited AuNPs surface inevitably influence their catalytic activities. Herin, a hybridization chain reaction (HCR) is employed as a means to expand the quantity and spaces of G4 enzymes for their catalytic ability enhancement. Through systematic investigations, we found that when an incomplete G4 sequence was linked at the sticky ends of the hairpins with split modes (3:1 and 2:2), this would significantly decrease the HCR hybridization capability due to increased steric hindrance. In contrast, the HCR hybridization capability was remarkably enhanced after the complete G4 sequence was directly modified at the non-sticky end of the hairpins, ascribed to the steric hindrance avoided. Accordingly, the improved SNAzymes using HCR were applied for the determination of AFB1 in food samples as a proof-of-concept, which exhibited outstanding performance (detection limit, 0.08 ng/mL). Importantly, our strategy provided a new insight for the catalytic activity improvement in SNAzymes using G4 as a signaling molecule.


Assuntos
Nanopartículas Metálicas , Ácidos Nucleicos , Aflatoxina B1 , Ouro , Hibridização de Ácido Nucleico
15.
Ecotoxicol Environ Saf ; 275: 116278, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564860

RESUMO

Due to the rise in temperature and sea level caused by climate change, the detection rate of aflatoxin B1 (AFB1) in food crops has increased dramatically, and the frequency and severity of aflatoxicosis in humans and animals are also increasing. AFB1 has strong hepatotoxicity, causing severe liver damage and even cancer. However, the mechanism of AFB1 hepatotoxicity remains unclear. By integrating network toxicology, molecular docking and in vivo experiments, this research was designed to explore the potential hepatotoxicity mechanisms of AFB1. Thirty-three intersection targets for AFB1-induced liver damage were identified using online databases. PI3K/AKT1, MAPK, FOXO1 signaling pathways, and apoptosis were significantly enriched. In addition, the proteins of ALB, AKT1, PIK3CG, MAPK8, HSP90AA1, PPARA, MAPK1, EGFR, FOXO1, and IGF1 exhibited good affinity with AFB1. In vivo experiments, significant pathological changes occurred in the liver of mice. AFB1 induction increased the expression levels of EGFR, ERK, and FOXO1, and decreased the expression levsls of PI3K and AKT1. Moreover, AFB1 treatment caused an increase in Caspase3 expression, and a decrease in Bcl2/Bax ratio. By combining network toxicology with in vivo experiments, this study confirms for the first time that AFB1 promotes the FOXO1 signaling pathway by inactivating PI3K/AKT1 and activating EGFR/ERK signaling pathways, hence aggravating hepatocyte apoptosis. This research provides new strategies for studying the toxicity of environmental pollutants and new possible targets for the development of hepatoprotective drugs.


Assuntos
Aflatoxina B1 , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Simulação de Acoplamento Molecular , Aflatoxina B1/toxicidade , Fígado/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores ErbB/metabolismo
16.
Mikrochim Acta ; 191(5): 256, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598148

RESUMO

A dual-signal ratiometric electrochemical aptasensor has been developed  for AFB1 detection using thionine/Au/zeolitic imidazolate framework-8 (Thi/Au/ZIF-8) nanomaterials and catalytic hairpin assembly (CHA) reaction. Thi/Au/ZIF-8 combined with DNA hairpin 2 (H2) was used as a signal probe. [Fe(CN)6]3-/4- was served as another signal probe, and the IThi/Au/ZIF-8/I[Fe(CN)6]3-/4- ratio was for the first time utilized to quantify AFB1. AFB1-induced CHA was used to expand the ratio of electrical signals. In the presence of AFB1, H2/Thi/Au/ZIF-8 bound to the electrode via CHA, enhanced  the current signal of Thi/Au/ZIF-8. H2 contained the DNA phosphate backbone hindered [Fe(CN)6]3-/4- redox reaction and resulted in a lower [Fe(CN)6]3-/4- current signal. This aptasensor exhibited high specificity for AFB1, a linear range of 0.1 pg mL-1 to 100 ng mL-1, and a detection limit of 0.089 pg mL-1. It demonstrated favorable sensitivity, selectivity, stability, and repeatability. The aptasensor was suitable for detecting AFB1 in peanuts and black tea and holds potential for real sample applications.


Assuntos
Aflatoxina B1 , Fenotiazinas , Zeolitas , Arachis , Catálise , DNA
17.
Ecotoxicol Environ Saf ; 277: 116363, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38663190

RESUMO

Environmental aflatoxin B1 (AFB1) exposure has been proposed to contribute to hepatocellular carcinoma by promoting liver fibrosis, but the potential mechanisms remain to be further elucidated. Extracellular vesicles (EVs) were recognized as crucial traffickers for hepatic intercellular communication and play a vital role in the pathological process of liver fibrosis. The AFB1-exposed hepatocyte-derived EVs (AFB1-EVs) were extracted, and the functional effects of AFB1-EVs on the activation of hepatic stellate cells (HSCs) were explored to investigate the molecular mechanism of AFB1 exposure-induced liver fibrogenesis. Our results revealed that an environment-level AFB1 exposure induced liver fibrosis via HSCs activation in mice, while the AFB1-EVs mediated hepatotoxicity and liver fibrogenesis in vitro and in vivo. AFB1 exposure in vitro increased PINK1/Parkin-dependent mitophagy in hepatocytes, where upregulated transcription of the PARK2 gene via p53 nuclear translocation and mitochondrial recruitment of Parkin, and promoted AFB1-EVs-mediated mitochondria-trafficking communication between hepatocytes and HSCs. The knockdown of Parkin in HepaRG cells reversed HSCs activation by blocking the mitophagy-related AFB1-EVs trafficking. This study further revealed that the hepatic fibrogenesis of AFB1 exposure was rescued by genetic intervention with siPARK2 or p53's Pifithrin-α (PFTα) inhibitors. Furthermore, AFB1-EVs-induced HSCs activation was relieved by GW4869 pharmaceutic inhibition of EVs secretion. These results revealed a novel mechanism that AFB1 exposure-induced p53-Parkin signal axis regulated mitophagy-dependent hepatocyte-derived EVs to mediate the mitochondria-trafficking intercellular communication between hepatocytes and HSCs in the local hepatotoxic microenvironment to promote the activated HSCs-associated liver fibrogenesis. Our study provided insight into p53-Parkin-dependent pathway regulation and promised an advanced strategy targeting intervention to EVs-mediated mitochondria trafficking for preventing xenobiotics-induced liver fibrosis.


Assuntos
Aflatoxina B1 , Vesículas Extracelulares , Células Estreladas do Fígado , Hepatócitos , Cirrose Hepática , Mitofagia , Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases , Aflatoxina B1/toxicidade , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/patologia , Vesículas Extracelulares/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Mitofagia/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Animais , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Camundongos , Masculino , Humanos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
18.
Int J Food Microbiol ; 417: 110693, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38653122

RESUMO

Aspergillus flavus is a fungus notorious for contaminating food and feed with aflatoxins. As a saprophytic fungus, it secretes large amounts of enzymes to access nutrients, making endoplasmic reticulum (ER) homeostasis important for protein folding and secretion. The role of HacA, a key transcription factor in the unfolded protein response pathway, remains poorly understood in A. flavus. In this study, the hacA gene in A. flavus was knockout. Results showed that the absence of hacA led to a decreased pathogenicity of the strain, as it failed to colonize intact maize kernels. This may be due to retarded vegetable growth, especially the abnormal development of swollen tips and shorter hyphal septa. Deletion of hacA also hindered conidiogenesis and sclerotial development. Notably, the mutant strain failed to produce aflatoxin B1. Moreover, compared to the wild type, the mutant strain showed increased sensitivity to ER stress inducer such as Dithiothreitol (DTT), and heat stress. It also displayed heightened sensitivity to other environmental stresses, including cell wall, osmotic, and pH stresses. Further transcriptomic analysis revealed the involvement of the hacA in numerous biological processes, including filamentous growth, asexual reproduction, mycotoxin biosynthetic process, signal transduction, budding cell apical bud growth, invasive filamentous growth, response to stimulus, and so on. Taken together, HacA plays a vital role in fungal development, pathogenicity and aflatoxins biosynthesis. This highlights the potential of targeting hacA as a novel approach for early prevention of A. flavus contamination.


Assuntos
Aflatoxinas , Aspergillus flavus , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Fatores de Transcrição , Resposta a Proteínas não Dobradas , Zea mays , Aspergillus flavus/genética , Aspergillus flavus/patogenicidade , Aspergillus flavus/metabolismo , Aspergillus flavus/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Aflatoxinas/biossíntese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Zea mays/microbiologia , Virulência , Aflatoxina B1/biossíntese , Aflatoxina B1/metabolismo , Estresse do Retículo Endoplasmático
19.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124268, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38603962

RESUMO

Aflatoxin B1 (AFB1) is a virulent metabolite secreted by Aspergillus fungi, impacting crop quality and posing health risks to human. Herein, a dual-mode Raman/fluorescence aptasensor was constructed to detect AFB1. The aptasensor was assembled by gold nanoparticles (AuNPs) and magnetic nanoparticles (MNPs), while the surface-enhanced Raman scattering (SERS) and fluorescence resonance energy transfer (FRET) effects were both realized. AuNPs were modified with the Raman signal molecule 4-MBA and the complementary chain of AFB1 aptamer (cDNA). MNPs were modified with the fluorescence signal molecule Cy5 and the AFB1 aptamer (AFB1 apt). Through base pairing, AuNPs aggregated on the surface of MNPs, forming a satellite-like nanocomposite, boosting SERS signal via increased "hot spots" but reducing fluorescence signal due to the proximity of AuNPs to Cy5. Upon exposure to AFB1, AFB1 apt specifically bound to AFB1, causing AuNPs detachment from MNPs, weakening the SERS signal while restoring the fluorescence signal. AFB1 concentration displayed a good linear relationship with SERS/fluorescence signal in the range of 0.01 ng/mL-100 ng/mL, with a detection limit as low as 5.81 pg/mL. The use of aptamer assured the high selectivity toward AFB1. Furthermore, the spiked recovery in peanut samples ranged from 91.4 % to 95.6 %, indicating the applicability of real sample detection. Compared to single-signal sensor, this dual-signal sensor exhibited enhanced accuracy, robust anti-interference capability, and increased flexibility, promising for toxin detection in food safety applications.


Assuntos
Aflatoxina B1 , Aptâmeros de Nucleotídeos , Ouro , Limite de Detecção , Nanopartículas Metálicas , Análise Espectral Raman , Aflatoxina B1/análise , Aptâmeros de Nucleotídeos/química , Arachis/química , Arachis/microbiologia , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Contaminação de Alimentos/análise , Ouro/química , Nanopartículas de Magnetita/química , Nanopartículas Metálicas/química , Análise Espectral Raman/métodos , Aspergillus
20.
BMJ Open ; 14(4): e084257, 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38684249

RESUMO

INTRODUCTION: In Sidama, Ethiopia, animal-source foods can be difficult to access. Milk has important nutrients for child growth, but carries the risk of aflatoxin M1 (AFM1) contamination. AFM1 is a metabolite of the mycotoxin aflatoxin B1 (AFB1) in dairy feed; cows secrete AFM1 in milk when their feed contains AFB1 produced by Aspergillus fungi in maize, nuts and oilseeds. It is unknown whether AFM1 compromises child growth and health. METHODS AND ANALYSIS: This protocol paper describes our study in Sidama to determine the impact of milk consumption and AFM1 on child growth in the first 18 months of life. We will collect baseline and end-line data on dairy production, socioeconomic and nutritional factors of 1000 dairy-owning households with children ages 6-18 months at baseline; and gather samples of milk and dairy feed and child anthropometrics. We will conduct phone interviews every 6 months to ascertain changes in practices or child health. Dairy feed will be tested for AFB1; milk for AFM1, pathogens and nutrients. Controlling for herd size, socioeconomic, nutritional and behavioural factors, we will determine the association between child anthropometrics and milk consumption, as well as AFM1 exposure. We will examine whether AFM1 exposure affects child growth in the first 18 months of life, and weigh the benefits and risks of milk consumption. ETHICS AND DISSEMINATION: The protocol is approved by the Institutional Review Boards of the Ethiopian Public Health Institute (EPHI-IRB-481-2022), Michigan State University (STUDY00007996) and International Food Policy Research Institute (DSGD-23-0102). Written informed consent will be obtained from all participants, who may withdraw from the study at any time. Confidentiality of collected data will be given high priority during each stage of data handling. The study's findings will be disseminated through stakeholder workshops, local and international conferences, journal articles and technical reports.


Assuntos
Aflatoxina M1 , Contaminação de Alimentos , Leite , Humanos , Etiópia/epidemiologia , Aflatoxina M1/análise , Lactente , Animais , Contaminação de Alimentos/análise , Medição de Risco/métodos , Feminino , Masculino , Projetos de Pesquisa , Laticínios , Aflatoxina B1/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA