Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 235
Filtrar
1.
Plant J ; 108(2): 600-612, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34369027

RESUMO

Agroinfiltration in Nicotiana benthamiana is widely used to transiently express heterologous proteins in plants. However, the state of Agrobacterium itself is not well studied in agroinfiltrated tissues, despite frequent studies of immunity genes conducted through agroinfiltration. Here, we generated a bioluminescent strain of Agrobacterium tumefaciens GV3101 to monitor the luminescence of Agrobacterium during agroinfiltration. By integrating a single copy of the lux operon into the genome, we generated a stable 'AgroLux' strain, which is bioluminescent without affecting Agrobacterium growth in vitro and in planta. To illustrate its versatility, we used AgroLux to demonstrate that high light intensity post infiltration suppresses both Agrobacterium luminescence and protein expression. We also discovered that AgroLux can detect Avr/Cf-induced immune responses before tissue collapse, establishing a robust and rapid quantitative assay for the hypersensitive response (HR). Thus, AgroLux provides a non-destructive, versatile and easy-to-use imaging tool to monitor both Agrobacterium and plant responses.


Assuntos
Agrobacterium tumefaciens/genética , Agricultura Molecular/métodos , Nicotiana/microbiologia , Imunidade Vegetal , Proteínas Recombinantes/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Luz , Medições Luminescentes , Microrganismos Geneticamente Modificados , Óperon , Folhas de Planta/microbiologia , Proteínas Recombinantes/metabolismo , Nicotiana/imunologia
2.
mBio ; 12(3)2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006657

RESUMO

The Agrobacterium growth pole ring (GPR) protein forms a hexameric ring at the growth pole (GP) that is essential for polar growth. GPR is large (2,115 amino acids) and contains 1,700 amino acids of continuous α-helices. To dissect potential GPR functional domains, we created deletions of regions with similarity to human apolipoprotein A-IV (396 amino acids), itself composed of α-helical domains. We also tested deletions of the GPR C terminus. Deletions were inducibly expressed as green fluorescent protein (GFP) fusion proteins and tested for merodiploid interference with wild-type (WT) GPR function, for partial function in cells lacking GPR, and for formation of paired fluorescent foci (indicative of hexameric rings) at the GP. Deletion of domains similar to human apolipoprotein A-IV in GPR caused defects in cell morphology when expressed in trans to WT GPR and provided only partial complementation to cells lacking GPR. Agrobacterium-specific domains A-IV-1 and A-IV-4 contain predicted coiled coil (CC) regions of 21 amino acids; deletion of CC regions produced severe defects in cell morphology in the interference assay. Mutants that produced the most severe effects on cell shape also failed to form paired polar foci. Modeling of A-IV-1 and A-IV-4 reveals significant similarity to the solved structure of human apolipoprotein A-IV. GPR C-terminal deletions profoundly blocked complementation. Finally, peptidoglycan (PG) synthesis is abnormally localized circumferentially in cells lacking GPR. The results support the hypothesis that GPR plays essential roles as an organizing center for membrane and PG synthesis during polar growth.IMPORTANCE Bacterial growth and division are extensively studied in model systems (Escherichia coli, Bacillus subtilis, and Caulobacter crescentus) that grow by dispersed insertion of new cell wall material along the length of the cell. An alternative growth mode-polar growth-is used by some Actinomycetales and Proteobacteria species. The latter phylum includes the family Rhizobiaceae, in which many species, including Agrobacterium tumefaciens, exhibit polar growth. Current research aims to identify growth pole (GP) factors. The Agrobacterium growth pole ring (GPR) protein is essential for polar growth and forms a striking hexameric ring structure at the GP. GPR is long (2,115 amino acids), and little is known about regions essential for structure or function. Genetic analyses demonstrate that the C terminus of GPR, and two internal regions with homology to human apolipoproteins (that sequester lipids), are essential for GPR function and localization to the GP. We hypothesize that GPR is an organizing center for membrane and cell wall synthesis during polar growth.


Assuntos
Agrobacterium tumefaciens/genética , Apolipoproteínas/genética , Proteínas de Ciclo Celular/genética , Polaridade Celular/genética , Parede Celular/metabolismo , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/crescimento & desenvolvimento , Apolipoproteínas/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas de Fluorescência Verde
3.
Arch Microbiol ; 203(4): 1743-1752, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33471134

RESUMO

Beneficial rhizobacteria can inhibit soilborne pathogens by secreting an array of polyketides, lipopeptides and dipeptides, but the effect of polyketides on crown gall disease caused by Agrobacterium tumefaciens C58 is unclear. In this study, the antagonistic compounds of the plant growth-promoting rhizobacterium Bacillus velezensis CLA178 was sorted with different organic phases, purified by high-pressure liquid chromatography, and detected by a liquid chromatography ionization-mass spectrometry system. Macrolactins were found to be the compounds with antagonistic activity against A. tumefaciens C58. When the macrolactin synthesis pathway was disrupted, the mutant △mlnA only showed slight antagonistic activity against A. tumefaciens C58. Transmission electron microscopy showed that the inhibition of C58 cell division by cell-free culture from the mutant △mlnA was weaker than that by cell-free culture from CLA178. The mutant deficient in production of macrolactin showed a weaker transcription of genes involved in attachment of C58 to plant and lower biocontrol of crown gall disease in rose than the wild-type strain CLA178. The effect of macrolactins on pathogen C58 has been also confirmed by the purified macrolactins. These results reveal that macrolactins contribute to the biocontrol activity of C58 by inhibiting cell division and downregulating the transcription of chvB and chvE.


Assuntos
Agrobacterium tumefaciens/crescimento & desenvolvimento , Antibiose/fisiologia , Bacillus/metabolismo , Tumores de Planta/microbiologia , Agrobacterium tumefaciens/genética , Divisão Celular/fisiologia , Lipopeptídeos/metabolismo , Espectrometria de Massas , Microscopia Eletrônica de Transmissão , Doenças das Plantas/microbiologia , Plantas/metabolismo , Rosa/microbiologia
4.
Can J Microbiol ; 67(1): 75-84, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32846104

RESUMO

The preparation of Agrobacterium tumefaciens cultures with strains encoding proteins intended for therapeutic or industrial purposes is an important activity prior to treatment of plants for transient expression of valuable protein products. The rising demand for biologic products such as these underscores the expansion of molecular pharming and warrants the need to produce transformed plants at an industrial scale. This requires large quantities of A. tumefaciens culture, which is challenging using traditional growth methods (e.g., shake flask). To overcome this limitation, we investigate the use of bioreactors as an alternative to shake flasks to meet production demands. Here, we observe differences in bacterial growth among the tested parameters and define conditions for consistent bacterial culturing between shake flask and bioreactor. Quantitative proteomic profiling of cultures from each growth condition defines unique growth-specific responses in bacterial protein abundance and highlights the functional roles of these proteins, which may influence bacterial processes important for effective agroinfiltration and transformation. Overall, our study establishes and optimizes comparable growth conditions for shake flask versus bioreactors and provides novel insights into fundamental biological processes of A. tumefaciens influenced by such growth conditions.


Assuntos
Agrobacterium tumefaciens/crescimento & desenvolvimento , Agrobacterium tumefaciens/metabolismo , Reatores Biológicos/microbiologia , Agricultura Molecular/métodos , Proteínas de Bactérias/biossíntese , Técnicas de Cultura Celular por Lotes/instrumentação , Técnicas de Cultura Celular por Lotes/métodos , Proteômica
5.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33361371

RESUMO

Agrobacterium tumefaciens GW4 is a heterotrophic arsenite-oxidizing bacterium with a high resistance to arsenic toxicity. It is now a model organism for studying the processes of arsenic detoxification and utilization. Previously, we demonstrated that under low-phosphate conditions, arsenate [As(V)] could enhance bacterial growth and be incorporated into biomolecules, including lipids. While the basic microbial As(V) resistance mechanisms have been characterized, global metabolic responses under low phosphate remain largely unknown. In the present work, the impacts of As(V) and low phosphate on intracellular metabolite and lipid profiles of GW4 were quantified using liquid chromatography-mass spectroscopy (LC-MS) in combination with transcriptional assays and the analysis of intracellular ATP and NADH levels. Metabolite profiling revealed that oxidative stress response pathways were altered and suggested an increase in DNA repair. Changes in metabolite levels in the tricarboxylic acid (TCA) cycle along with increased ATP are consistent with As(V)-enhanced growth of A. tumefaciens GW4. Lipidomics analysis revealed that most glycerophospholipids decreased in abundance when As(V) was available. However, several glycerolipid classes increased, an outcome that is consistent with maximizing growth via a phosphate-sparing phenotype. Differentially regulated lipids included phosphotidylcholine and lysophospholipids, which have not been previously reported in A. tumefaciens The metabolites and lipids identified in this study deepen our understanding of the interplay between phosphate and arsenate on chemical and metabolic levels.IMPORTANCE Arsenic is widespread in the environment and is one of the most ubiquitous environmental pollutants. Parodoxically, the growth of certain bacteria is enhanced by arsenic when phosphate is limited. Arsenate and phosphate are chemically similar, and this behavior is believed to represent a phosphate-sparing phenotype in which arsenate is used in place of phosphate in certain biomolecules. The research presented here uses a global approach to track metabolic changes in an environmentally relevant bacterium during exposure to arsenate when phosphate is low. Our findings are relevant for understanding the environmental fate of arsenic as well as how human-associated microbiomes respond to this common toxin.


Assuntos
Agrobacterium tumefaciens/efeitos dos fármacos , Arseniatos/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Fosfatos/metabolismo , Agrobacterium tumefaciens/crescimento & desenvolvimento , Agrobacterium tumefaciens/metabolismo
6.
Biomed Res ; 41(6): 259-268, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33268670

RESUMO

Recently, opportunistic nosocomial infections caused by Acinetobacter baumannii have become increasingly prevalent worldwide. The pathogen often establishes biofilms that adhere to medical devices, causing chronic infections refractory to antimicrobial therapy. Clinical reports have indicated that some macrolide antibiotics are effective against chronic biofilm-related infections. In this study, we examined the direct anti-biofilm effects of seven macrolides (azithromycin, clarithromycin, erythromycin, josamycin, spiramycin, fidaxomicin, and ivermectin) on A. baumannii using a simple and newly established in vitro assay system for the swift and serial spectrophotometric determinations of two biofilm-amount indexes of viability and biomass. These macrolides were found to possess direct anti-biofilm effects exerting specific anti-biofilm effects not exclusively depending on their bacteriostatic/bactericidal effects. The anti-biofilm effect of azithromycin was found to be the strongest, while those of fidaxomicin and ivermectin were weak and limited. These results provide insights into possible adjunctive chemotherapy with macrolides for A. baumannii infection. Common five macrolides also interfered with the Agrobacterium tumefaciens NTL(pCF218) (pCF372) bioassay system of N-acyl homoserine lactones, providing insights into sample preparation for the bioassay, and putatively suggesting the actions of macrolides as remote signals in bacterial quorum sensing systems.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Acil-Butirolactonas/antagonistas & inibidores , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Percepção de Quorum/efeitos dos fármacos , Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/crescimento & desenvolvimento , Acinetobacter baumannii/metabolismo , Acil-Butirolactonas/metabolismo , Agrobacterium tumefaciens/efeitos dos fármacos , Agrobacterium tumefaciens/crescimento & desenvolvimento , Agrobacterium tumefaciens/metabolismo , Azitromicina/farmacologia , Biofilmes/crescimento & desenvolvimento , Bioensaio , Claritromicina/farmacologia , Eritromicina/farmacologia , Fidaxomicina/farmacologia , Humanos , Ivermectina/farmacologia , Josamicina/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Espiramicina/farmacologia
7.
Genes (Basel) ; 11(11)2020 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143066

RESUMO

Mycorrhizal desert truffles such as Terfezia boudieri, Tirmania nivea, and Terfezia claveryi, form mycorrhizal associations with plants of the Cistaceae family. These valued truffles are still collected from the wild and not cultivated under intensive farming due to the lack of basic knowledge about their biology at all levels. Recently, several genomes of desert truffles have been decoded, enabling researchers to attempt genetic manipulations to enable cultivation. To execute such manipulations, the development of molecular tools for genes transformation into truffles is needed. We developed an Agrobacterium tumefaciens-mediated genetic transformation system in T. boudieri. This system was optimized for the developmental stage of the mycelia explants, bacterial optical density, infection and co-cultivation durations, and concentrations of the selection antibiotics. The pFPL-Rh plasmid harboring hph gene conferring hygromycin resistance as a selection marker and the red fluorescent protein gene were used as visual reporters. The optimal conditions were incubation with 200 µM of acetosyringone, attaining a bacterial optical density of 0.3 OD600; transfer time of 45 min; and co-cultivation for 3 days. This is the first report on a transformation system for T. boudieri, and the proposed protocol can be adapted for the transformation of other important desert truffles as well as ectomycorrhizal species.


Assuntos
Agrobacterium tumefaciens/genética , Ascomicetos/genética , Transformação Genética/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Ascomicetos/crescimento & desenvolvimento , Cistaceae/microbiologia , Engenharia Genética/métodos , Micélio/genética , Micélio/crescimento & desenvolvimento , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento
8.
Proc Natl Acad Sci U S A ; 117(42): 26366-26373, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33024016

RESUMO

Agrobacterium tumefaciens C58 contains four replicons, circular chromosome (CC), linear chromosome (LC), cryptic plasmid (pAt), and tumor-inducing plasmid (pTi), and grows by polar growth from a single growth pole (GP), while the old cell compartment and its old pole (OP) do not elongate. We monitored the replication and segregation of these four genetic elements during polar growth. The three largest replicons (CC, LC, pAt) reside in the OP compartment prior to replication; post replication one copy migrates to the GP prior to division. CC resides at a fixed location at the OP and replicates first. LC does not stay fixed at the OP once the cell cycle begins and replicates from varied locations 20 min later than CC. pAt localizes similarly to LC prior to replication, but replicates before the LC and after the CC. pTi does not have a fixed location, and post replication it segregates randomly throughout old and new cell compartments, while undergoing one to three rounds of replication during a single cell cycle. Segregation of the CC and LC is dependent on the GP and OP identity factors PopZ and PodJ, respectively. Without PopZ, replicated CC and LC do not efficiently partition, resulting in sibling cells without CC or LC. Without PodJ, the CC and LC exhibit abnormal localization to the GP at the beginning of the cell cycle and replicate from this position. These data reveal PodJ plays an essential role in CC and LC tethering to the OP during early stages of polar growth.


Assuntos
Agrobacterium tumefaciens/genética , Segregação de Cromossomos/genética , Replicon/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Cromossomos Bacterianos/metabolismo
9.
J Biosci Bioeng ; 130(1): 82-88, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32280054

RESUMO

Acylase is known as a quorum quenching enzyme that degrades N-acyl-homoserine lactones (AHLs), a key signaling molecule in a quorum sensing (QS) mechanism. Acylase I cleaves the acyl-chain in the chemical structures of AHLs, thereby exerting an anti-biofilm effect by the inhibition of bacterial cell-cell communication and resultant secretion of extracellular polymeric substances (EPS). However, the physical and physiological impacts of acylase on bacterial cells remain to be systematically elucidated. This study, therefore, investigated the effect of active and inactive acylase addition on the growth, viability, and cell morphologies of Agrobacterium tumefaciens. For comparison, active and inactive lysozymes were taken as positive controls. The results showed that active acylase inhibited A. tumefaciens cell growth at concentrations ranging from 0.1 to 1000 µg mL-1, and so did active lysozyme. Fluorescent detection by Live/Dead staining underpinned that cell viability of A. tumefaciens decreased at concentrations higher than 0.1 µg mL-1 for both acylase and lysozyme, although lysozyme inflicted higher degree of cellular damage. Moreover, atomic force microscopy unraveled a noticeable distortion of A. tumefaciens cells by both acylase and lysozyme. Together, the results showed that acylase not only blocked AHLs-based QS mechanisms but also compromised cell viability and altered surface morphology of A. tumefaciens cells, as observed by the addition of hydrolase.


Assuntos
Agrobacterium tumefaciens/enzimologia , Agrobacterium tumefaciens/crescimento & desenvolvimento , Amidoidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Acil-Butirolactonas/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/fisiologia , Amidoidrolases/genética , Proteínas de Bactérias/genética , Biofilmes , Percepção de Quorum
10.
J Vis Exp ; (150)2019 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-31475981

RESUMO

Parasponia andersonii is a fast-growing tropical tree that belongs to the Cannabis family (Cannabaceae). Together with 4 additional species, it forms the only known non-legume lineage able to establish a nitrogen-fixing nodule symbiosis with rhizobium. Comparative studies between legumes and P. andersonii could provide valuable insight into the genetic networks underlying root nodule formation. To facilitate comparative studies, we recently sequenced the P. andersonii genome and established Agrobacterium tumefaciens-mediated stable transformation and CRISPR/Cas9-based genome editing. Here, we provide a detailed description of the transformation and genome editing procedures developed for P. andersonii. In addition, we describe procedures for the seed germination and characterization of symbiotic phenotypes. Using this protocol, stable transgenic mutant lines can be generated in a period of 2-3 months. Vegetative in vitro propagation of T0 transgenic lines allows phenotyping experiments to be initiated at 4 months after A. tumefaciens co-cultivation. Therefore, this protocol takes only marginally longer than the transient Agrobacterium rhizogenes-based root transformation method available for P. andersonii, though offers several clear advantages. Together, the procedures described here permit P. andersonii to be used as a research model for studies aimed at understanding symbiotic associations as well as potentially other aspects of the biology of this tropical tree.


Assuntos
Cannabaceae/genética , Cannabaceae/metabolismo , Nitrogênio/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Sequência de Bases , Cannabaceae/crescimento & desenvolvimento , Edição de Genes , Fixação de Nitrogênio , Fenótipo , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Simbiose
11.
PLoS One ; 14(6): e0218120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31199821

RESUMO

Arabidopsis thaliana's VirE2-Interacting Protein 1 (VIP1) interacts with Agrobacterium tumefaciens VirE2 protein and regulates stress responses and plant immunity signaling occurring downstream of the Mitogen-Activated Protein Kinase (MPK3) signal transduction pathway. In this study, a full-length cDNA of 972bp encoding HvVIP1 was obtained from barley (Hordeum vulgare L.) leaves. A corresponding 323 amino acid poly-peptide was shown to carry the conserved bZIP (Basic Leucine Zipper) domain within its 157th and 223rd amino acid residue. 13 non-synonymous SNPs were spotted within the HvVIP1 bZIP domain sequence when compared with AtVIP1. Moreover, minor differences in the bZIP domain locations and lengths were noted when comparing Arabidopsis thaliana and Hordeum vulgare VIP1 proteins through the 3D models, structural domain predictions and disorder prediction profiling. The expression of HvVIP1 was stable in barley tissues infected by pathogen (whether Agrobacterium tumefaciens or Fusarium culmorum), but was induced at specific time points. We found a strong correlation between the transcript accumulation of HvVIP1 and barley PR- genes HvPR1, HvPR4 and HvPR10, but not with HvPR3 and HvPR5, probably due to low induction of those particular genes. In addition, a gene encoding for a member of the barley MAPK family, HvMPK1, showed significantly higher expression after pathogenic infection of barley cells. Collectively, our results might suggest that early expression of PR genes upon infection in barley cells play a pivotal role in the Agrobacterium-resistance of this plant.


Assuntos
Agrobacterium tumefaciens/crescimento & desenvolvimento , Fusarium/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Hordeum , Doenças das Plantas/microbiologia , Proteínas de Plantas/biossíntese , Estresse Fisiológico , Resistência à Doença , Perfilação da Expressão Gênica , Hordeum/metabolismo , Hordeum/microbiologia , Zíper de Leucina
12.
Proc Natl Acad Sci U S A ; 116(22): 10962-10967, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31085632

RESUMO

Polar growth in Agrobacterium pirates and repurposes well-known bacterial cell cycle proteins, such as FtsZ, FtsA, PopZ, and PodJ. Here we identify a heretofore unknown protein that we name GROWTH POLE RING (GPR) due to its striking localization as a hexameric ring at the growth pole during polar growth. GPR also localizes at the midcell late in the cell cycle just before division, where it is then poised to be precisely localized at new growth poles in sibling cells. GPR is 2,115 aa long, with two N-terminal transmembrane domains placing the bulk of the protein in the cytoplasm, N- and C-terminal proline-rich disordered regions, and a large 1,700-aa central region of continuous α-helical domains. This latter region contains 12 predicted adjacent or overlapping apolipoprotein domains that may function to sequester lipids during polar growth. Stable genetic deletion or riboswitch-controlled depletion results in spherical cells that grow poorly; thus, GPR is essential for wild-type growth and morphology. As GPR has no predicted enzymatic domains and it forms a distinct 200-nm-diameter ring, we propose that GPR is a structural component of an organizing center for peptidoglycan and membrane syntheses critical for cell envelope formation during polar growth. GPR homologs are found in numerous Rhizobiales; thus, our results and proposed model are fundamental to understanding polar growth strategy in a variety of bacterial species.


Assuntos
Agrobacterium tumefaciens , Proteínas de Bactérias , Proteínas de Ciclo Celular , Agrobacterium tumefaciens/citologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Divisão Celular/fisiologia , Forma Celular/genética , Forma Celular/fisiologia
13.
Microbiol Res ; 222: 14-24, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30928026

RESUMO

Analysis of the Agrobacterium tumefaciens C58 genome revealed a potential Zur (zinc uptake regulator) binding site (5'-GATATGTTATTACATTAC-3', the underlined letters are the center of symmetry of the inverted palindrome) located in the upstream region of atu3184, whose gene product is a member of the COG0523 subfamily of G3E GTPases. The specific interaction of the Zur protein with the 18-bp inverted repeat operator motif in the presence of zinc was demonstrated in vitro by a DNA band shift assay and a DNase I footprinting assay. A LacZ reporter fusion assay further confirmed that Zur negatively regulates atu3184 promoter activity in vivo. The expression of atu3184 was upregulated in response to zinc limitation in the wild-type strain, but the zur mutant strain exhibited high-level constitutive expression of atu3184 under all conditions, irrespective of the zinc levels. It is likely that A. tumefaciens Zur senses zinc and directly regulates the atu3184 promoter by a molecular mechanism similar to that of Escherichia coli Zur, where the operator DNA is surrounded by four Zur monomers forming two dimers bound on the opposite sides of the DNA duplex. Disruption of atu3184 did not affect cell growth under metal-limited conditions and had no effect on the total cellular zinc content. Furthermore, an A. tumefaciens strain lacking atu3184 caused a tumor disease in a host plant.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , GTP Fosfo-Hidrolases/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Pegada de DNA , DNA Bacteriano , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Chaperonas Moleculares , Óperon , Regiões Promotoras Genéticas , Proteínas Recombinantes , Virulência/genética , Zinco/metabolismo
14.
J Hazard Mater ; 365: 932-941, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30616304

RESUMO

Nanotechnology, new fascinating field of science, is bringing many application's options. However, it is necessary to understand their potential environmental risk and toxicity. Zinc selenide quantum dots (ZnSe QDs) are getting valuable due to wide industrial usage, mainly as cadmium free diodes or stabilizing ligand. Thanks to unique properties, they could also open the possibilities of application in the agriculture. Their effects on living organisms, including plants, are still unknown. Therefore, the attention of this work was given to antioxidant response of Arabidopsis thaliana to 100 and 250 µM ZnSe QDs foliar feeding. ZnSe QDs treatment had no statistically significant differences in morphology but led to increased antioxidant response in the leaves at the level of gene expression and production secondary antioxidant metabolites. Concurrently, analysis of growth properties of Agrobacterium tumefaciens was done. 250 µM ZnSe solution inhibited the Agrobacterium tumefaciens viability by 60%. This is the first mention about effect ZnSe QDs on the plants. Although QDs induced oxidative stress, the apply treatment dose of ZnSe QDs did not have significant toxic effect on the plants and even no morphological changes were observed. However, the same amount of ZnSe QD induced an inhibitory effect on Agrobacterium tumefaciens.


Assuntos
Agrobacterium tumefaciens/efeitos dos fármacos , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Expressão Gênica , Metabolômica , Pontos Quânticos/toxicidade , Compostos de Selênio/administração & dosagem , Compostos de Zinco/administração & dosagem , Agrobacterium tumefaciens/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Compostos de Selênio/toxicidade , Compostos de Zinco/toxicidade
15.
Microbiology (Reading) ; 165(2): 146-162, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30620265

RESUMO

A core regulatory pathway that directs developmental transitions and cellular asymmetries in Agrobacterium tumefaciens involves two overlapping, integrated phosphorelays. One of these phosphorelays putatively includes four histidine sensor kinase homologues, DivJ, PleC, PdhS1 and PdhS2, and two response regulators, DivK and PleD. In several different alphaproteobacteria, this pathway influences a conserved downstream phosphorelay that ultimately controls the phosphorylation state of the CtrA master response regulator. The PdhS2 sensor kinase reciprocally regulates biofilm formation and swimming motility. In the current study, the mechanisms by which the A. tumefaciens sensor kinase PdhS2 directs this regulation are delineated. PdhS2 lacking a key residue implicated in phosphatase activity is markedly deficient in proper control of attachment and motility phenotypes, whereas a kinase-deficient PdhS2 mutant is only modestly affected. A genetic interaction between DivK and PdhS2 is revealed, unmasking one of several connections between PdhS2-dependent phenotypes and transcriptional control by CtrA. Epistasis experiments suggest that PdhS2 may function independently of the CckA sensor kinase, the cognate sensor kinase for CtrA, which is inhibited by DivK. Global expression analysis of the pdhS2 mutant reveals a restricted regulon, most likely functioning through CtrA to separately control motility and regulate the levels of the intracellular signal cyclic diguanylate monophosphate (cdGMP), thereby affecting the production of adhesive polysaccharides and attachment. We hypothesize that in A. tumefaciens the CtrA regulatory circuit has expanded to include additional inputs through the addition of PdhS-type sensor kinases, likely fine-tuning the response of this organism to the soil microenvironment.


Assuntos
Agrobacterium tumefaciens/fisiologia , Biofilmes/crescimento & desenvolvimento , Histidina Quinase/metabolismo , Locomoção , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Agrobacterium tumefaciens/metabolismo , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Epistasia Genética , Regulação Bacteriana da Expressão Gênica , Histidina Quinase/genética , Mutação , Fosforilação , Polissacarídeos Bacterianos/biossíntese , Transdução de Sinais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Mol Microbiol ; 111(1): 269-286, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30353924

RESUMO

Agrobacterium tumefaciens transfers oncogenic T-DNA via the type IV secretion system (T4SS) into plants causing tumor formation. The acvB gene encodes a virulence factor of unknown function required for plant transformation. Here we specify AcvB as a periplasmic lysyl-phosphatidylglycerol (L-PG) hydrolase, which modulates L-PG homeostasis. Through functional characterization of recombinant AcvB variants, we showed that the C-terminal domain of AcvB (residues 232-456) is sufficient for full enzymatic activity and defined key residues for catalysis. Absence of the hydrolase resulted in ~10-fold increase in L-PG in Agrobacterium membranes and abolished T-DNA transfer and tumor formation. Overproduction of the L-PG synthase gene (lpiA) in wild-type A. tumefaciens resulted in a similar increase in the L-PG content (~7-fold) and a virulence defect even in the presence of intact AcvB. These results suggest that elevated L-PG amounts (either by overproduction of the synthase or absence of the hydrolase) are responsible for the virulence phenotype. Gradually increasing the L-PG content by complementation with different acvB variants revealed that cellular L-PG levels above 3% of total phospholipids interfere with T-DNA transfer. Cumulatively, this study identified AcvB as a novel virulence factor required for membrane lipid homeostasis and T-DNA transfer.


Assuntos
Agrobacterium tumefaciens/patogenicidade , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Homeostase , Lisina/metabolismo , Fosfatidilgliceróis/metabolismo , Fatores de Virulência/metabolismo , Agrobacterium tumefaciens/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Domínio Catalítico , Análise Mutacional de DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Deleção de Genes , Teste de Complementação Genética , Proteínas Periplásmicas/genética , Proteínas Periplásmicas/metabolismo , Doenças das Plantas/microbiologia , Solanum tuberosum/microbiologia , Transformação Genética , Virulência , Fatores de Virulência/genética
17.
PLoS One ; 13(11): e0200972, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30412579

RESUMO

A native repABC replication origin from pRiA4b was previously reported as a single copy plasmid in Agrobacterium tumefaciens and can improve the production of transgenic plants with a single copy insertion of transgenes when it is used in binary vectors for Agrobacterium-mediated transformation. A high copy pRi-repABC variant plasmid, pTF::Ri, which does not improve the frequency of single copy transgenic plants, has been reported in the literature. Sequencing the high copy pTF::Ri repABC operon revealed the presence of two mutations: one silent mutation and one missense mutation that changes a tyrosine to a histidine (Y299H) in a highly conserved area of the C-terminus of the RepB protein (RepBY299H). Reproducing these mutations in the wild-type pRi-repABC binary vector showed that Agrobacterium cells with the RepBY299H mutation grow faster on both solidified and in liquid medium, and have higher plasmid copy number as determined by ddPCR. In order to investigate the impact of the RepBY299H mutation on transformation and quality plant production, the RepBY299H mutated pRi-repABC binary vector was compared with the original wild-type pRi-repABC binary vector and a multi-copy oriV binary vector in canola transformation. Molecular analyses of the canola transgenic plants demonstrated that the multi-copy pRi-repABC with the RepBY299H mutation provides no advantage in generating high frequency single copy, backbone-free transgenic plants in comparison with the single copy wild-type pRi-repABC binary vector.


Assuntos
Agrobacterium tumefaciens/genética , Proteínas de Bactérias/genética , Brassica rapa/genética , Vetores Genéticos/genética , Plantas Geneticamente Modificadas/genética , Plasmídeos/genética , Mutação Puntual , Agrobacterium tumefaciens/química , Agrobacterium tumefaciens/crescimento & desenvolvimento , Sequência de Aminoácidos , Proteínas de Bactérias/química , Sequência de Bases , Vetores Genéticos/química , Plasmídeos/química , Origem de Replicação , Alinhamento de Sequência , Transformação Genética , Transgenes
18.
Cell Rep ; 25(2): 302-311.e6, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304671

RESUMO

Agrobacterium tumefaciens transfers oncogenic DNA (T-DNA) and effector proteins into various host plants. T-DNA is generated inside the bacteria and subsequently delivered into plant cells along with the companion effectors VirD2, VirE2, and VirE3. However, it is not clear how the T-complex consisting of VirD2 and VirE2 is assembled inside plant cells. Here, we report that the effector protein VirE3 localized to plant plasma membranes as an anchorage through a conserved α-helical-bundle domain. VirE3 interacted with itself and enabled VirE2 accumulation at host entry sites through direct interactions. VirE3 was critical for VirE2 function in T-DNA protection. Our data indicate that VirE3 functions as a previously unrecognized anchorage protein consisting of membrane-binding, self-interacting, and VirE2-interacting domains. Both VirE2 and VirE3 are conserved among Agrobacterium and rhizobia species but not other organisms, suggesting that a group of anchorage proteins have been generated through evolution to facilitate the nucleoprotein assembly at plant membranes.


Assuntos
Agrobacterium tumefaciens/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , DNA Bacteriano , Proteínas de Ligação a DNA/metabolismo , Canais Iônicos/metabolismo , Nicotiana/metabolismo , Fatores de Virulência/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/crescimento & desenvolvimento , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Canais Iônicos/genética , Transporte Proteico , Nicotiana/genética , Nicotiana/microbiologia , Fatores de Virulência/genética
19.
Curr Top Microbiol Immunol ; 418: 185-194, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30182196

RESUMO

Elevation of temperature is a frequent and considerable stress for mesophilic bacteria. Therefore, several molecular mechanisms have evolved to cope with high temperature. We have been studying the response of Agrobacterium tumefaciens to temperature stress, focusing on two aspects: the heat-shock response and the temperature-dependent regulation of methionine biosynthesis. The results indicate that the molecular mechanisms involved in A. tumefaciens control of growth at high temperature are unique and we are still missing important information essential for understanding how these bacteria cope with temperature stress.


Assuntos
Aclimatação , Agrobacterium tumefaciens/metabolismo , Resposta ao Choque Térmico , Temperatura Alta , Agrobacterium tumefaciens/crescimento & desenvolvimento , Metionina/metabolismo
20.
Mol Plant Pathol ; 19(11): 2502-2515, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30073764

RESUMO

A major limitation of molecular studies in powdery mildew fungi (Erysiphales) is their genetic intractability. This is because they are obligate biotrophs. In these parasites, biotrophy is determined by the presence of haustoria, which are specialized structures of parasitism that play an essential role in the acquisition of nutrients and the deliverance of effectors. Podosphaera xanthii is the main causal agent of cucurbit powdery mildew and a major limitation for crop productivity. In a previous study using P. xanthii conidia, we showed, for the first time, the transformation of powdery mildew fungi by Agrobacterium tumefaciens. In this work, we hypothesized that the haustorium could also act as a natural route for the acquisition of DNA. To test our hypothesis, melon cotyledons were agro-infiltrated with A. tumefaciens that contained diverse transfer DNA (T-DNA) constructs harbouring different marker genes under the control of fungal promoters and, after elimination of the bacterium, the cotyledons were subsequently inoculated with P. xanthii conidia. Our results conclusively demonstrated the transfer of different T-DNAs from A. tumefaciens to P. xanthii, including two fungicide resistance markers (hph and tub2), a reporter gene (gfp) and a translational fusion (cfp-PxEC2). These results were further supported by the co-localization of translational fluorescent fusions of A. tumefaciens VirD2 and P. xanthii Rab5 proteins into small vesicles of haustorial and hyphal cells, suggesting endocytosis as the mechanism for T-DNA uptake, presumably by the haustorium. From our perspective, transformation by growth onto agro-infiltrated tissues (TGAT) is the easiest and most reliable method for the transient transformation of powdery mildew fungi.


Assuntos
Agrobacterium tumefaciens/crescimento & desenvolvimento , Ascomicetos/fisiologia , Cucurbita/genética , Cucurbita/microbiologia , Doenças das Plantas/microbiologia , Transformação Genética , Núcleo Celular/metabolismo , Endocitose , Endossomos/metabolismo , Proteínas Fúngicas/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA