Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38520304

RESUMO

The impact of ergot toxicosis on livestock industries is detrimental and treatments are needed in many countries. The objective of this study was to evaluate the effects of acute exposure to ergot alkaloids and 5-hydroxytryptophan (5-HTP) supplementation on feed intake, serotonin metabolism, and blood metabolites in cattle. Eight Holstein steers (538 ±â€…18 kg) fitted with ruminal cannulas were used in a replicated 4 × 4 Latin Square design experiment with a 2 × 2 factorial treatment structure. The treatments were the combination of 0 (E-) or 15 µg ergovaline/kg BW (E+) and 0 (5HTP-) or 0.5 mg of 5-hydroxy-l-tryptophan/kg BW (5HTP+) administered daily for 6 d. Toxic endophyte-infected tall fescue seed was used to supply the daily dose of ergovaline. Endophyte-free seed was used to equalize seed intake between treatments. Ground seed was placed into the rumen immediately before feeding. The 5-HTP was dissolved in water and infused into the abomasum via the reticulo-omasal orifice. Blood was collected from a jugular vein catheter at 0, 1, 2, 4, 8, and 24 h after treatment administration. Ergovaline without 5-HTP (E+/5HTP-) decreased dry matter intake (DMI) in comparison to steers without ergovaline and 5-HTP (E-/5HTP-). However, 5-HTP infusion in association with ergovaline (E+/5HTP+) normalized the DMI. Although E + did not affect (P > 0.05) the area under the curve (AUC) of serum 5-HTP, 5-hydroxyindoleacetic acid, tryptophan, and kynurenine, serum and plasma serotonin concentrations were decreased (P < 0.05). The infusion of 5-HTP increased (P < 0.05) the AUC of serum 5-HTP, serum and plasma serotonin, and serum 5-hydroxyindoleacetic acid. In conclusion, acute exposure to ergot alkaloids reduced DMI and circulating serotonin in cattle but 5-HTP administration showed potential to normalize both circulating serotonin and feed intake.


Some grass species have a symbiotic relationship with an endophytic fungus that produces toxic ergot alkaloids which have detrimental impacts on herbivores. Ergot alkaloids have a significant impact on livestock production causing annual loss to the livestock industry that likely exceeds $1 billion. Effective treatment for this toxicosis is still needed. The objective of this study was to evaluate the effects of acute exposure to ergot alkaloids and 5-hydroxytryptophan supplementation on feed intake, serotonin metabolism, and blood metabolites in cattle. We found that 5-hydroxytryptophan administration has the potential to normalize both circulating serotonin and feed intake reduced by ergot alkaloid consumption.


Assuntos
Alcaloides de Claviceps , Serotonina , Bovinos , Animais , 5-Hidroxitriptofano , Ácido Hidroxi-Indolacético , Alcaloides de Claviceps/toxicidade , Ingestão de Alimentos , Ração Animal/análise
2.
J Anim Sci ; 1022024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502533

RESUMO

Consumption of ergot alkaloids from endophyte-infected tall fescue results in losses to the livestock industry in many countries and a means to mitigate these losses is needed. The objective of this study was to evaluate intra-abomasal infusion of the dopamine precursor, levodopa (L-DOPA), on dopamine metabolism, feed intake, and serum metabolites of steers exposed to ergot alkaloids. Twelve Holstein steers (344.9 ±â€…9.48 kg) fitted with ruminal cannula were housed with a cycle of heat challenge during the daytime (32 °C) and thermoneutral at night (25 °C). The steers received a basal diet of alfalfa cubes containing equal amounts of tall fescue seed composed of a mixture of endophyte-free (E-) or endophyte-infected tall fescue seeds (E+) equivalent to 15 µg ergovaline/kg body weight (BW) for 9 d followed by intra-abomasal infusion of water (L-DOPA-) or levodopa (L-DOPA+; 2 mg/kg BW) for an additional 9 d. Afterward, the steers were pair-fed for 5 d to conduct a glucose tolerance test. The E+ treatment decreased (P = 0.005) prolactin by approximately 50%. However, prolactin increased (P = 0.050) with L-DOPA+. Steers receiving E+ decreased (P < 0.001) dry matter intake (DMI); however, when supplemented with L-DOPA+ the decrease in DMI was less severe (L-DOPA × E, P = 0.003). Also, L-DOPA+ infusion increased eating duration (L-DOPA × E, P = 0.012) when steers were receiving E+. The number of meals, meal duration, and intake rate were not affected (P > 0.05) by E+ or L-DOPA+. The L-DOPA+ infusion increased (P < 0.05) free L-DOPA, free dopamine, total L-DOPA, and total dopamine. Conversely, free epinephrine and free norepinephrine decreased (P < 0.05) with L-DOPA+. Total epinephrine and total norepinephrine were not affected (P > 0.05) by L-DOPA+. Ergot alkaloids did not affect (P > 0.05) circulating free or total L-DOPA, dopamine, or epinephrine. However, free and total norepinephrine decreased (P = 0.046) with E+. Glucose clearance rates at 15 to 30 min after glucose infusion increased with L-DOPA+ (P < 0.001), but not with E+ (P = 0.280). Administration of L-DOPA as an agonist therapy to treat fescue toxicosis provided a moderate increase in DMI and eating time and increased plasma glucose clearance for cattle dosed with E+ seed.


Fescue has become the dominant cool-season perennial grass in the southeastern region of the United States and is also found in other countries. Endophytes from a plant­fungus symbiotic relationship produce toxic alkaloids that have caused significant annual economic losses to the livestock industry. Treatments to alleviate this toxicosis are still demanded. This study evaluates the infusion of the dopamine precursor, levodopa (L-DOPA), to mitigate the toxicosis caused by ergot alkaloids. When L-DOPA was infused, eating duration increased and the decrease in feed intake caused by ergot alkaloids was less severe. Additionally, circulating dopamine and glucose clearance increased with L-DOPA. These results suggest that L-DOPA has the potential to aid in the mitigation of the toxicosis caused by ergot alkaloids.


Assuntos
Alcaloides de Claviceps , Festuca , Lolium , Bovinos , Animais , Alcaloides de Claviceps/toxicidade , Levodopa , Dopamina , Prolactina , Ingestão de Alimentos , Endófitos , Norepinefrina , Ração Animal/análise , Epinefrina , Glucose
3.
Vet Clin North Am Equine Pract ; 40(1): 95-111, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38281896

RESUMO

"Fescue toxicosis" and reproductive ergotism present identical toxidromes in late-gestational mares and, likely, other equids. Both toxic syndromes are caused by ergopeptine alkaloids (EPAs) of fungal origin, and they are collectively referred to as equine ergopeptine alkaloid toxicosis (EEPAT). EPAs are produced by either a toxigenic endophyte (Epichloë coenophiala) in tall fescue and/or a nonendophytic fungus (Claviceps purpurea), infecting small grains and grasses. EEPAT can cause hypoprolactinemia-induced agalactia/dysgalactia, prolonged gestation, dystocia, and other reproductive abnormalities in mares, as well as failure of passive transfer in their frequently dysmature/overmature/postmature foals. Prevention relies on eliminating exposures and/or reversing hypoprolactinemia.


Assuntos
Alcaloides de Claviceps , Festuca , Doenças dos Cavalos , Animais , Cavalos , Feminino , Gravidez , Alcaloides de Claviceps/toxicidade , Endófitos , Doenças dos Cavalos/induzido quimicamente , Festuca/microbiologia , Poaceae
4.
Toxins (Basel) ; 15(5)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37235377

RESUMO

Fescue toxicosis is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue (E+). Summer grazing of E+ leads to decreased productivity, associated impaired thermoregulation, and altered behavior. The goal of this study was to determine the role of E+ grazing-climate interaction on animal behavior and thermoregulation during late fall. Eighteen Angus steers were placed on nontoxic (NT), toxic (E+) and endophyte-free (E-) fescue pastures for 28 days. Physiological parameters, such as rectal temperature (RT), respiration rate (RR), ear and ankle surface temperature (ET, AT), and body weights, were measured. Skin surface temperature (SST) and animal activity were recorded continuously with temperature and behavioral activity sensors, respectively. Environmental conditions were collected using paddocks-placed data loggers. Across the trial, steers on E+ gained about 60% less weight than the other two groups. E+ steers also had higher RT than E- and NT, and lower SST than NT post-pasture placement. Importantly, animals grazing E+ spent more time lying, less time standing, and took more steps. These data suggest that late fall E+ grazing impairs core and surface temperature regulation and increases non-productive lying time, which may be partly responsible for the observed decreased weight gains.


Assuntos
Alcaloides de Claviceps , Festuca , Lolium , Animais , Endófitos , Alcaloides de Claviceps/toxicidade , Comportamento Animal , Ração Animal/toxicidade , Ração Animal/análise
5.
J Anim Sci ; 1012023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-37004204

RESUMO

Ergovaline (ERV), produced in toxic endophyte-infected tall fescue, causes potent vasoconstriction of bovine peripheral and visceral vasculature. Ergovaline acts as both an agonist and an antagonist in bovine gut blood vessels through serotonin (5-HT) receptors and it appears that the type of action could be influenced by the extent of ERV exposure. Because it was unclear how the duration of ERV exposure influences 5-HT-mediated vasoactivity, experiments were designed to evaluate how simultaneous or prior ERV exposure influenced 5-HT-mediated vasoactivity of mesenteric artery (MA) and vein (MV) segments from Holstein steers (N = 10). Vessels were incubated in Krebs-Henseleit buffer containing 0, 0.01, or 0.1 µM ERV for 24 h prior to the 5-HT dose-response or exposed to fixed concentrations of 0, 0.01, or 0.1 µM ERV simultaneously during the 5-HT dose-response. Vessels were suspended in chambers of a multimyograph containing Krebs-Henseleit buffer and equilibrated to 1 g tension for 90 min. Vessels were exposed to increasing concentrations of 5-HT (5 × 10-8 M to 1 × 10-4 M) every 15 min and contractile responses were normalized as a percentage of the maximum contractile response induced by 120 mM KCl reference addition. Two-way analysis of variance was used to separately analyze data for each vessel type and duration of exposure using the MIXED procedure of SAS. When 5-HT concentration increased from 5 × 10-8 to 1 × 10-6 M, simultaneous addition of 0.1 µM ERV increased (P < 0.01) the contractile response of MV compared with additions of 0 and 0.01 µM ERV. At 1 × 10-4 M 5-HT, the simultaneous presence of 0.01 and 0.1 µM ERV decreased (P < 0.01) the contractile response of both MA and MV compared with 0 µM ERV addition. As 5-HT concentrations increased, the contractile response increased (P < 0.01) in both MA and MV with no previous ERV exposure, but decreased in MA and MV with 24 h prior exposure to 0.01 and 0.1 µM ERV. These data demonstrate that the duration of ERV exposure influences 5-HT-mediated vasoconstriction and likely vasorelaxation in bovine mesenteric vasculature. If ERV and 5-HT exposure occur simultaneously, ERV can act as a partial agonist of 5-HT-mediated vasoconstriction. If 5-HT exposure occurs after blood vessels have had prior ERV exposure, it appears that 5-HT may induce vasorelaxation of blood vessels. More research is needed to identify cellular and molecular mechanisms involved with 5-HT-mediated vasoactivity.


Consumption of ergot alkaloids found in endophyte-infected tall fescue can lead to symptoms of fescue toxicosis, such as vasoconstriction, in ruminant livestock species. Ergovaline is one of the primary ergot alkaloids responsible for causing vasoconstriction when toxic varieties of fescue are consumed. It has been previously shown that ergovaline causes vasoconstriction by interacting with vascular serotonin receptors in cattle and sheep. Depending on when ergovaline exposure occurs, ergovaline can function as an agonist (stimulant) or antagonist (inhibitor) of vascular activity. However, it is unclear how the duration of ergovaline exposure affects vasoconstriction caused by serotonin. Experiments were conducted using the bovine mesenteric artery and mesenteric vein that were exposed to either 0, 0.01, or 0.1 µM ergovaline for 24-h prior to serotonin additions or simultaneously with serotonin additions. Maximum contractile response data were recorded using a multimyograph system and normalized as a percentage of the contractile response produced by the reference compound, KCl. The results of these experiments demonstrated that the duration of ergovaline exposure influences serotonin-mediated vasoconstriction and possibly vasorelaxation in bovine mesenteric vasculature. If ergovaline and serotonin exposure occur simultaneously, ergovaline can act as an agonist or antagonist of serotonin-mediated vasoconstriction. If serotonin exposure occurs after prior ergovaline exposure, serotonin can induce vasorelaxation of blood vessels. Understanding how complex interactions between ergovaline and serotonin occur and affect vascular function will aid in the development of strategies to mitigate sustained vasoconstriction caused during fescue toxicosis.


Assuntos
Alcaloides de Claviceps , Serotonina , Bovinos , Animais , Serotonina/farmacologia , Alcaloides de Claviceps/toxicidade , Ergotaminas/toxicidade , Receptores de Serotonina , Ração Animal/análise
6.
Can J Vet Res ; 86(2): 108-112, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35388236

RESUMO

The objective of this study was to evaluate the pharmacokinetics profile of ergot alkaloids when administered to sheep orally. Although ergot alkaloids frequently contaminate animal feed, current understanding of their pharmacokinetics in animals cannot adequately predict toxicity. Blood samples were collected from ewes at 0.5, 1, 3, 5, and 12 h after oral exposure to 4 ergot alkaloids: ergocornine, ergocristine, ergocryptine, and ergosine, followed by serum analysis of these alkaloids using high performance liquid chromatography and tandem mass spectrometry. The alkaloids showed extended absorption time, in addition to clear signs of enterohepatic circulation. This pharmacokinetic profile suggests potential enhanced toxicity in animals with disorders related to secretion of bile acid. It may also explain the high susceptibility of sheep to ergot poisoning compared to other species. An extended sampling protocol (> 12 h) is necessary, however, to identify the pharmacokinetic properties of ergot alkaloids in ewes. In conclusion, ewes exposed to ergot alkaloids showed a prolonged absorption phase and enterohepatic circulation, which is in contrast with human ergot pharmacokinetics.


L'objectif de cette étude était d'évaluer le profil pharmacocinétique des alcaloïdes de l'ergot lorsqu'ils sont administrés à des moutons par voie orale. Bien que les alcaloïdes de l'ergot contaminent fréquemment les aliments pour animaux, la compréhension actuelle de leur pharmacocinétique chez les animaux ne permet pas de prédire de manière adéquate la toxicité. Des échantillons de sang ont été prélevés chez les brebis à 0,5, 1, 3, 5 et 12 h après exposition orale à quatre alcaloïdes de l'ergot : ergocornine, ergocristine, ergocryptine et ergosine, suivi d'une analyse sérique de ces alcaloïdes par chromatographie liquide à haute performance et spectrométrie de masse en tandem. Les alcaloïdes ont montré un temps d'absorption prolongé, en plus de signes évidents de circulation entérohépatique. Ce profil pharmacocinétique suggère une toxicité potentiellement accrue chez les animaux présentant des troubles liés à la sécrétion d'acide biliaire. Cela peut également expliquer la forte sensibilité des moutons à l'empoisonnement par l'ergot par rapport aux autres espèces. Un protocole de prélèvement étendu (> 12 h) est cependant nécessaire pour identifier les propriétés pharmacocinétiques des alcaloïdes de l'ergot chez les brebis. En conclusion, les brebis exposées aux alcaloïdes ont montré une phase d'absorption prolongée et une circulation entérohépatique, ce qui contraste avec la pharmacocinétique de l'ergot chez l'humain.(Traduit par Docteur Serge Messier).


Assuntos
Alcaloides de Claviceps , Administração Oral , Animais , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia Líquida de Alta Pressão/veterinária , Circulação Êntero-Hepática , Alcaloides de Claviceps/análise , Alcaloides de Claviceps/toxicidade , Feminino , Ovinos , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/veterinária
7.
Toxins (Basel) ; 14(3)2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35324683

RESUMO

For many years, ergot alkaloids have been considered both a problem to be mitigated and a potential medical cure [...].


Assuntos
Alcaloides de Claviceps , Alcaloides de Claviceps/toxicidade , Compostos Heterocíclicos de 4 ou mais Anéis
8.
Sci Rep ; 12(1): 4899, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35318361

RESUMO

Bovine fescue toxicosis (FT) is caused by grazing ergot alkaloid-producing endophyte (Epichloë coenophiala)-infected tall fescue. Endophyte's effects on the animal's microbiota and metabolism were investigated recently, but its effects in planta or on the plant-animal interactions have not been considered. We examined multi-compartment microbiota-metabolome perturbations using multi-'omics (16S and ITS2 sequencing, plus untargeted metabolomics) in Angus steers grazing non-toxic (Max-Q) or toxic (E+) tall fescue for 28 days and in E+ plants. E+ altered the plant/animal microbiota, decreasing most ruminal fungi, with mixed effects on rumen bacteria and fecal microbiota. Metabolic perturbations occurred in all matrices, with some plant-animal overlap (e.g., Vitamin B6 metabolism). Integrative interactomics revealed unique E+ network constituents. Only E+ had ruminal solids OTUs within the network and fecal fungal OTUs in E+ had unique taxa (e.g., Anaeromyces). Three E+-unique urinary metabolites that could be potential biomarkers of FT and targeted therapeutically were identified.


Assuntos
Alcaloides de Claviceps , Festuca , Lolium , Micotoxicose , Ração Animal/análise , Animais , Bovinos , Alcaloides de Claviceps/metabolismo , Alcaloides de Claviceps/toxicidade , Festuca/metabolismo , Lolium/microbiologia
9.
Theriogenology ; 176: 163-173, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34619437

RESUMO

Our objectives were to determine if feeding mature and yearling Angus bulls ergot alkaloids (from Claviceps purpurea) within the Canadian permissible limit (∼3 mg/kg) affect post-thaw sperm quality. In Experiment 1, mature Angus bulls were group-fed ergot alkaloids (∼1 and ∼2 mg/kg of daily dry matter intake, DMI; n = 8 and n = 6 bulls, respectively) for 61 d; semen was collected and cryopreserved bi-weekly, from 12 wk pre-exposure to 10 wk post-exposure. In Experiment 2, yearling Angus bulls (12-13 mo) were individually fed placebo or ergot alkaloids (3.4 mg/kg of DMI; n = 7 bulls/group) daily for 9 wk, with semen collected and cryopreserved once weekly, from 5 wk before to 9 wk after exposure. All frozen semen was assessed 0 and 2 h post-thaw. In Experiment 1, post-thaw total and progressive sperm motilities decreased (P ≤ 0.05) from pre-exposure to exposure period, then returned to pre-exposure level. Likewise, during exposure, VAP and VSL decreased (P ≤ 0.01) at 0 h compared to pre-exposure and subsequently returned. Live sperm with intact acrosomes at 2 h post-thaw was affected by ergot (P = 0.01). Medium mitochondrial membrane potential increased (P ≤ 0.01) during exposure compared to pre-exposure and subsequently decreased. In Experiment 2, total and progressive sperm motilities at 0 and 2 h increased (P ≤ 0.01) throughout the study. During post-exposure, VCL, VAP and VSL at 0 h increased (P ≤ 0.01) whereas VSL at 2 h increased (P ≤ 0.01) from pre-exposure to exposure to post-exposure. Live sperm with intact acrosomes increased (P ≤ 0.01) at both 0 and 2 h during post-exposure. Medium mitochondrial membrane potential increased (P ≤ 0.01) from pre-exposure to exposure, followed by a slight decrease post-exposure. Mature Angus bulls partially supported our hypothesis, with only transient effects of ergot on sperm motilities and velocities. Post-thaw sperm characteristics in yearling bulls underwent expected age-related improvements, with any effects of ergot alkaloids potentially masked by sexual maturation. Overall, results partially supported our hypotheses that ergot has no detectable adverse effect on post-thaw sperm characteristics in mature and yearling bulls.


Assuntos
Alcaloides de Claviceps , Preservação do Sêmen , Animais , Canadá , Bovinos , Criopreservação/veterinária , Alcaloides de Claviceps/toxicidade , Masculino , Preservação do Sêmen/veterinária , Motilidade dos Espermatozoides , Espermatozoides
11.
Toxins (Basel) ; 13(3)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803203

RESUMO

Grazing endophyte-infected, toxic tall fescue reduces cow/calf production; therefore, this study examines alternate strategies such as use of novel endophyte fescue varieties during late gestation and early lactation or genetic selection of resistant cows. Pregnant cows (n = 75) were randomly assigned to fescue endophyte type: 1) endophyte-infected ergot alkaloid producing tall fescue (E+) or 2) novel endophyte-infected, non-toxic tall fescue (NOV) within maternal (A|A, n = 38 and G|G, n = 37) DRD2 genotype to examine changes in cow/calf performance and milk production during late gestation and early lactation. Grazing E+ fescue pastures during late gestation reduced cow body weight gain but did not alter calf birth weight compared to NOV. Milk production and calf ADG during the first 30 day of lactation were lower for E+ than NOV. The calving rate was reduced, but not calving interval for E+ cows. The adjusted 205-day weight of calves was lower in those grazing E+ with their dams compared to NOV. There were no interactions between DRD2 genotype and fescue endophyte type indicating that genotype was not associated with response to E+ fescue in this study. Overall, grazing NOV tall fescue pastures rather than E+ during critical stages of production improved cow gain during late gestation, calving rate, early milk production and calf growth.


Assuntos
Endófitos/metabolismo , Alcaloides de Claviceps/metabolismo , Lactação , Lolium/microbiologia , Polimorfismo de Nucleotídeo Único , Receptores de Dopamina D2/genética , Ração Animal/microbiologia , Animais , Animais Lactentes , Peso ao Nascer , Bovinos , Endófitos/crescimento & desenvolvimento , Alcaloides de Claviceps/toxicidade , Feminino , Microbiologia de Alimentos , Genótipo , Idade Gestacional , Ganho de Peso na Gestação , Herbivoria , Gravidez , Receptores de Dopamina D2/metabolismo , Fatores de Tempo
12.
Toxins (Basel) ; 13(4)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924041

RESUMO

Ergotism is a common and increasing problem in Saskatchewan's livestock. Chronic exposure to low concentrations of ergot alkaloids is known to cause severe arterial vasoconstriction and gangrene through the activation of adrenergic and serotonergic receptors on vascular smooth muscles. The acute vascular effects of a single oral dose with high-level exposure to ergot alkaloids remain unknown and are examined in this study. This study had two main objectives; the first was to evaluate the role of α1-adrenergic receptors in mediating the acute vasocontractile response after single-dose exposure in sheep. The second was to examine whether terazosin (TE) could abolish the vascular contractile effects of ergot alkaloids. Twelve adult female sheep were randomly placed into control and exposure groups (n = 6/group). Ergot sclerotia were collected and finely ground. The concentrations of six ergot alkaloids (ergocornine, ergocristine, ergocryptine, ergometrine, ergosine, and ergotamine) were determined using HPLC/MS at Prairie Diagnostic Services Inc., (Saskatoon, SK, Canada). Each ewe within the treatment group received a single oral treatment of ground ergot sclerotia at a dose of 600 µg/kg BW (total ergot) while each ewe in the control group received water. Animals were euthanized 12 h after the treatment, and the pedal artery (dorsal metatarsal III artery) from the left hind limb from each animal was carefully dissected and mounted in an isolated tissue bath. The vascular contractile response to phenylephrine (PE) (α1-adrenergic agonist) was compared between the two groups before and after TE (α1-adrenergic antagonist) treatment. Acute exposure to ergot alkaloids resulted in a 38% increase in vascular sensitivity to PE compared to control (Ctl EC50 = 1.74 × 10-6 M; Exp EC50 = 1.079 × 10-6 M, p = 0.046). TE treatment resulted in a significant dose-dependent increase in EC50 in both exposure and control groups (p < 0.05 for all treatments). Surprisingly, TE effect was significantly more pronounced in the ergot exposed group compared to the control group at two of the three concentrations of TE (TE 30 nM, p = 0.36; TE 100 nM, p < 0.001; TE 300 nM, p < 0.001). Similar to chronic exposure, acute exposure to ergot alkaloids results in increased vascular sensitivity to PE. TE is a more potent dose-dependent antagonist for the PE contractile response in sheep exposed to ergot compared to the control group. This study may indicate that the dry gangrene seen in sheep, and likely other species, might be related to the activation of α1-adrenergic receptor. This effect may be reversed using TE, especially at early stages of the disease before cell death occurs. This study may also indicate that acute-single dose exposure scenario may be useful in the study of vascular effects of ergot alkaloids.


Assuntos
Alcaloides de Claviceps/toxicidade , Ergotismo/fisiopatologia , Membro Posterior/irrigação sanguínea , Músculo Liso Vascular/efeitos dos fármacos , Receptores Adrenérgicos alfa 1/metabolismo , Vasoconstrição/efeitos dos fármacos , Vasoconstritores/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Animais , Artérias/efeitos dos fármacos , Artérias/metabolismo , Ergotismo/metabolismo , Ergotismo/prevenção & controle , Feminino , Músculo Liso Vascular/metabolismo , Prazosina/análogos & derivados , Prazosina/farmacologia , Carneiro Doméstico , Transdução de Sinais
13.
Toxins (Basel) ; 13(2)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33669319

RESUMO

The Epichloë species of fungi include seed-borne symbionts (endophytes) of cool-season grasses that enhance plant fitness, although some also produce alkaloids that are toxic to livestock. Selected or mutated toxin-free endophytes can be introduced into forage cultivars for improved livestock performance. Long-read genome sequencing revealed clusters of ergot alkaloid biosynthesis (EAS) genes in Epichloë coenophiala strain e19 from tall fescue (Lolium arundinaceum) and Epichloë hybrida Lp1 from perennial ryegrass (Lolium perenne). The two homeologous clusters in E. coenophiala-a triploid hybrid species-were 196 kb (EAS1) and 75 kb (EAS2), and the E. hybrida EAS cluster was 83 kb. As a CRISPR-based approach to target these clusters, the fungi were transformed with ribonucleoprotein (RNP) complexes of modified Cas9 nuclease (Cas9-2NLS) and pairs of single guide RNAs (sgRNAs), plus a transiently selected plasmid. In E. coenophiala, the procedure generated deletions of EAS1 and EAS2 separately, as well as both clusters simultaneously. The technique also gave deletions of the EAS cluster in E. hybrida and of individual alkaloid biosynthesis genes (dmaW and lolC) that had previously proved difficult to delete in E. coenophiala. Thus, this facile CRISPR RNP approach readily generates non-transgenic endophytes without toxin genes for use in research and forage cultivar improvement.


Assuntos
Sistemas CRISPR-Cas , Endófitos/genética , Epichloe/genética , Alcaloides de Claviceps/genética , Edição de Genes , Técnicas de Inativação de Genes , Família Multigênica , Proteína 9 Associada à CRISPR/genética , Proteína 9 Associada à CRISPR/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endófitos/crescimento & desenvolvimento , Endófitos/metabolismo , Epichloe/crescimento & desenvolvimento , Epichloe/metabolismo , Alcaloides de Claviceps/biossíntese , Alcaloides de Claviceps/toxicidade , Regulação Fúngica da Expressão Gênica , Reprodução Assexuada , Metabolismo Secundário
14.
Toxins (Basel) ; 12(12)2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327425

RESUMO

Fescue toxicosis is a multifaceted syndrome common in cattle grazing endophyte-infected tall fescue; however, varying symptomatic responses potentially imply genetic tolerance to the syndrome. It was hypothesized that a subpopulation of animals within a herd would develop tolerance to ergot alkaloid toxicity. Therefore, the goals of this study were to develop selection criteria to identify tolerant and susceptible animals within a herd based on animal performance, and then examine responsive phenotypic and cytokine profiles to fescue toxicosis. Angus cows grazed endophyte-infected tall fescue at two locations for 13 weeks starting in mid-April 2016. Forage measurements were collected to evaluate ergot alkaloid exposure during the study. A post hoc analysis of animal performance was utilized to designate cattle into either tolerant or susceptible groups, and weekly physiological measurements and blood samples were collected to evaluate responses to chronic exposure to endophyte-infected tall fescue. Findings from this study support the proposed fescue toxicosis selection method formulated herein, could accurately distinguish between tolerant and susceptible animals based on the performance parameters in cattle chronically exposed to ergot alkaloids, and provides evidence to warrant additional analysis to examine the impact of ergot alkaloids on immune responsiveness in cattle experiencing fescue toxicosis.


Assuntos
Doenças dos Bovinos/metabolismo , Citocinas/metabolismo , Alcaloides de Claviceps/toxicidade , Herbivoria/efeitos dos fármacos , Herbivoria/fisiologia , Poaceae/toxicidade , Ração Animal/análise , Ração Animal/toxicidade , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Bovinos , Doenças dos Bovinos/induzido quimicamente , Doenças dos Bovinos/microbiologia , Alcaloides de Claviceps/análise , Poaceae/microbiologia
15.
Toxins (Basel) ; 12(12)2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256042

RESUMO

Fescue toxicosis impacts beef cattle production via reductions in weight gain and muscle development. Isoflavone supplementation has displayed potential for mitigating these effects. The objective of the current study was to evaluate isoflavone supplementation with fescue seed consumption on rumen and serum metabolomes. Angus steers (n = 36) were allocated randomly in a 2 × 2 factorial arrangement of treatments including endophyte-infected (E+) or endophyte-free (E-) tall fescue seed, with (P+) or without (P-) isoflavones. Steers were provided a basal diet with fescue seed for 21 days, while isoflavones were orally administered daily. Following the trial, blood and rumen fluid were collected for metabolite analysis. Metabolites were extracted and then analyzed by UPLC-MS. The MAVEN program was implemented to identify metabolites for MetaboAnalyst 4.0 and SAS 9.4 statistical analysis. Seven differentially abundant metabolites were identified in serum by isoflavone treatment, and eleven metabolites in the rumen due to seed type (p < 0.05). Pathways affected by treatments were related to amino acid and nucleic acid metabolism in both rumen fluid and serum (p < 0.05). Therefore, metabolism was altered by fescue seed in the rumen; however, isoflavones altered metabolism systemically to potentially mitigate detrimental effects of seed and improve animal performance.


Assuntos
Isoflavonas/administração & dosagem , Metaboloma/efeitos dos fármacos , Rúmen/efeitos dos fármacos , Soro/metabolismo , Aminoácidos/metabolismo , Ração Animal/microbiologia , Ração Animal/intoxicação , Animais , Bovinos , Cromatografia Líquida , Suplementos Nutricionais , Endófitos/fisiologia , Alcaloides de Claviceps/toxicidade , Ergotismo/tratamento farmacológico , Festuca/microbiologia , Festuca/intoxicação , Ácidos Nucleicos/metabolismo , Intoxicação por Plantas/veterinária , Sementes/intoxicação , Espectrometria de Massas em Tandem
16.
BMC Genomics ; 21(1): 680, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32998709

RESUMO

BACKGROUND: Ergot alkaloids (E+) are mycotoxins produced by the endophytic fungus, Epichloë coenophiala, in tall fescue that are associated with ergotism in animals. Exposure to ergot alkaloids during gestation reduces fetal weight and placental mass in sheep. These reductions are related to vasoconstrictive effects of ergot alkaloids and potential alterations in nutrient transport to the fetus. Cotyledon samples were obtained from eight ewes that were fed E+ (n = 4; E+/E+) or E- (endophyte-free without ergot alkaloids; n = 4; E-/E-) seed during both mid (d 35 to 85) and late (d 85-133) gestation to assess differentially expressed genes associated with ergot alkaloid induced reductions in placental mass and fetal weight, and discover potential adaptive mechanisms to alter nutrient supply to fetus. RESULTS: Ewes fed E+/E+ fescue seed during both mid and late gestation had 20% reduction in fetal body weight and 33% reduction in cotyledon mass compared to controls (E-/E-). Over 13,000 genes were identified with 110 upregulated and 33 downregulated. Four genes had a |log2FC| > 5 for ewes consuming E+/E+ treatment compared to controls: LECT2, SLC22A9, APOC3, and MBL2. REViGO revealed clusters of upregulated genes associated glucose, carbohydrates, lipid, protein, macromolecular and cellular metabolism, regulation of wound healing and response to starvation. For downregulated genes, no clusters were present, but all enriched GO terms were associated with anion and monocarboxylic acid transport. The complement and coagulation cascade and the peroxisome proliferator-activated receptor signaling pathway were found to be enriched for ewes consuming E+/E+ treatment. CONCLUSIONS: Consumption of ergot alkaloids during gestation altered the cotyledonary transcriptome specifically related to macronutrient metabolism, wound healing and starvation. These results show that ergot alkaloid exposure upregulates genes involved in nutrient metabolism to supply the fetus with additional substrates in attempts to rescue fetal growth.


Assuntos
Alcaloides de Claviceps/toxicidade , Micotoxinas/toxicidade , Placenta/metabolismo , Ovinos/microbiologia , Transcriptoma , Ração Animal/microbiologia , Animais , Apolipoproteína C-III/genética , Apolipoproteína C-III/metabolismo , Epichloe/metabolismo , Epichloe/patogenicidade , Feminino , Festuca/microbiologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lectina de Ligação a Manose/genética , Lectina de Ligação a Manose/metabolismo , Transportadores de Ânions Orgânicos Sódio-Independentes/genética , Transportadores de Ânions Orgânicos Sódio-Independentes/metabolismo , Placenta/efeitos dos fármacos , Gravidez , Ovinos/genética , Ovinos/metabolismo
17.
Toxins (Basel) ; 12(10)2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33019560

RESUMO

Rapid scientific advances are increasing our understanding of the way complex biological interactions integrate to maintain homeostatic balance and how seemingly small, localized perturbations can lead to systemic effects. The 'omics movement, alongside increased throughput resulting from statistical and computational advances, has transformed our understanding of disease mechanisms and the multi-dimensional interaction between environmental stressors and host physiology through data integration into multi-dimensional analyses, i.e., integrative interactomics. This review focuses on the use of high-throughput technologies in farm animal research, including health- and toxicology-related papers. Although limited, we highlight recent animal agriculture-centered reports from the integrative multi-'omics movement. We provide an example with fescue toxicosis, an economically costly disease affecting grazing livestock, and describe how integrative interactomics can be applied to a disease with a complex pathophysiology in the pursuit of novel treatment and management approaches. We outline how 'omics techniques have been used thus far to understand fescue toxicosis pathophysiology, lay out a framework for the fescue toxicosis integrome, identify some challenges we foresee, and offer possible means for addressing these challenges. Finally, we briefly discuss how the example with fescue toxicosis could be used for other agriculturally important animal health and welfare problems.


Assuntos
Ração Animal/toxicidade , Exposição Ambiental/efeitos adversos , Epichloe/metabolismo , Alcaloides de Claviceps/toxicidade , Ergotismo/veterinária , Lolium/microbiologia , Metabolômica , Toxicologia , Criação de Animais Domésticos , Bem-Estar do Animal , Animais , Alcaloides de Claviceps/metabolismo , Ergotismo/metabolismo , Ergotismo/microbiologia , Ergotismo/prevenção & controle , Microbioma Gastrointestinal , Ensaios de Triagem em Larga Escala
18.
PLoS One ; 15(7): e0229192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32701945

RESUMO

Tall fescue (Lolium arundinaceum) is a widely used forage grass which shares a symbiosis with the endophytic fungus Epichloë coenophiala. The endophyte produces an alkaloid toxin that provides herbivory, heat and drought resistance to the grass, but can cause fescue toxicosis in grazing livestock. Fescue toxicosis can lead to reduced weight gain and milk yields resulting in significant losses to the livestock industry. The objective of this study was to identify bacterial and fungal communities associated with fescue toxicosis tolerance. In this trial, 149 Angus cows across two farms were continuously exposed to toxic, endophyte-infected, fescue for a total of 13 weeks. Of those 149 cows, 40 were classified into either high (HT) or low (LT) tolerance groups according to their growth performance (weight gain). 20 HT and 20 LT cattle balanced by farm were selected for amplicon sequencing to compare the fecal microbiota of the two tolerance groups. This study reveals significantly (q<0.05) different bacterial and fungal microbiota between HT and LT cattle, and indicates that fungal phylotypes may be important for an animal's response to fescue toxicosis: We found that fungal phylotypes affiliating to the Neocallimastigaceae, which are known to be important fiber-degrading fungi, were consistently more abundant in the HT cattle. Whereas fungal phylotypes related to the genus Thelebolus were more abundant in the LT cattle. This study also found more pronounced shifts in the microbiota in animals receiving higher amounts of the toxin. We identified fungal phylotypes which were consistently more abundant either in HT or LT cattle and may thus be associated with the respective animal's response to fescue toxicosis. Our results thus suggest that some fungal phylotypes might be involved in mitigating fescue toxicosis.


Assuntos
Epichloe/metabolismo , Microbioma Gastrointestinal , Lolium/microbiologia , Animais , Ascomicetos/isolamento & purificação , Ascomicetos/metabolismo , Bovinos , Análise Discriminante , Alcaloides de Claviceps/análise , Alcaloides de Claviceps/toxicidade , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Neocallimastigales/isolamento & purificação , Neocallimastigales/metabolismo , Simbiose , Toxinas Biológicas/análise , Toxinas Biológicas/toxicidade
19.
Sci Rep ; 10(1): 9714, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546814

RESUMO

The complex ergot alkaloids, ergovaline and ergotamine, cause dysregulation of physiological functions, characterised by vasoconstriction as well as thermoregulatory and cardiovascular effects in grazing livestock. To assess the effect of the mycotoxins, blood pressure and heart rate of male mice were measured, and metabolite profiling undertaken to determine relative abundances of both ergotamine and its metabolic products in body and brain tissue. Ergotamine showed similar cardiovascular effects to ergovaline, causing elevations in blood pressure and reduced heart rate. Bradycardia was preserved at low-levels of ergovaline despite no changes in blood pressure. Ergotamine was identified in kidney, liver and brainstem but not in other regions of the brain, which indicates region-specific effects of the toxin. The structural configuration of two biotransformation products of ergotamine were determined and identified in the liver and kidney, but not the brain. Thus, the dysregulation in respiratory, thermoregulatory, cardiac and vasomotor function, evoked by ergot alkaloids in animals observed in various studies, could be partially explained by dysfunction in the autonomic nervous system, located in the brainstem.


Assuntos
Alcaloides de Claviceps/metabolismo , Alcaloides de Claviceps/toxicidade , Micotoxinas/toxicidade , Ração Animal/análise , Animais , Pressão Sanguínea/efeitos dos fármacos , Alcaloides de Claviceps/química , Ergotamina/metabolismo , Ergotamina/farmacologia , Ergotamina/toxicidade , Ergotaminas/metabolismo , Ergotaminas/farmacologia , Ergotaminas/toxicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Micotoxinas/metabolismo , Micotoxinas/farmacologia , Toxinas Biológicas/farmacologia , Vasoconstrição/efeitos dos fármacos
20.
Toxins (Basel) ; 11(8)2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31349616

RESUMO

Ergot, fungal genus Claviceps, are worldwide distributed grass pathogens known for their production of toxic ergot alkaloids (EAs) and the great agricultural impact they have on both cereal crop and farm animal production. EAs are traditionally considered as the only factor responsible for ergot toxicity. Using broad sampling covering 13 ergot species infecting wild or agricultural grasses (including cereals) across Europe, USA, New Zealand, and South Africa we showed that the content of ergochrome pigments were comparable to the content of EAs in sclerotia. While secalonic acids A-C (SAs), the main ergot ergochromes (ECs), are well known toxins, our study is the first to address the question about their contribution to overall ergot toxicity. Based on our and published data, the importance of SAs in acute intoxication seems to be negligible, but the effect of chronic exposure needs to be evaluated. Nevertheless, they have biological activities at doses corresponding to quantities found in natural conditions. Our study highlights the need for a re-evaluation of ergot toxicity mechanisms and further studies of SAs' impact on livestock production and food safety.


Assuntos
Claviceps/química , Alcaloides de Claviceps/toxicidade , Micotoxinas/toxicidade , Xantenos/toxicidade , Apoptose/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Alcaloides de Claviceps/análise , Células HeLa , Humanos , Células Jurkat , Mitocôndrias/efeitos dos fármacos , Micotoxinas/análise , Micotoxinas/farmacologia , Xantenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA