Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Nat Commun ; 15(1): 3987, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734698

RESUMO

Despite advances in active drug targeting for blood-brain barrier penetration, two key challenges persist: first, attachment of a targeting ligand to the drug or drug carrier does not enhance its brain biodistribution; and second, many brain diseases are intricately linked to microcirculation disorders that significantly impede drug accumulation within brain lesions even after they cross the barrier. Inspired by the neuroprotective properties of vinpocetine, which regulates cerebral blood flow, we propose a molecular library design centered on this class of cyclic tertiary amine compounds and develop a self-enhanced brain-targeted nucleic acid delivery system. Our findings reveal that: (i) vinpocetine-derived ionizable-lipidoid nanoparticles efficiently breach the blood-brain barrier; (ii) they have high gene-loading capacity, facilitating endosomal escape and intracellular transport; (iii) their administration is safe with minimal immunogenicity even with prolonged use; and (iv) they have potent pharmacologic brain-protective activity and may synergize with treatments for brain disorders as demonstrated in male APP/PS1 mice.


Assuntos
Barreira Hematoencefálica , Encéfalo , Circulação Cerebrovascular , Nanopartículas , Alcaloides de Vinca , Animais , Alcaloides de Vinca/farmacologia , Alcaloides de Vinca/farmacocinética , Alcaloides de Vinca/administração & dosagem , Alcaloides de Vinca/química , Nanopartículas/química , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Camundongos , Circulação Cerebrovascular/efeitos dos fármacos , Masculino , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/irrigação sanguínea , Humanos , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Camundongos Transgênicos
2.
Pharm Dev Technol ; 25(4): 464-471, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31910066

RESUMO

This study aimed to develop a novel monomethoxy poly(ethylene glycol)-b-poly(D, L-lactide) (mPEG5000-PLA10 000) micelle drug delivery system to improve vinpocetine's (VP) dissolution and sustain VP concentrations in plasma. Three micelle fabrication methods were examined to maximize VP loading, followed by structurally characterization and investigation in vitro release and in vivo pharmacokinetics in Sprague-Dawley rats. The thin-film hydration is the most appropriate method of the three methods because of its high loading content. The loaded micelles exhibited a sustained release behavior up to 48 h. Following intraperitoneal administration (9 mg/kg), VP loaded micelles provided significantly higher (335%) AUC (area under concentration-time) compared to VP injection. And also increased the mean residence time [MRT(0-t)] and elimination half-life (t1/2z). There were obviously two peaks at 2 h and 9 h in VP loaded micelles concentration-time profile. In summary, these data demonstrated that poly mPEG-PLA micelles can efficiently sustain VP concentrations in plasma for 36 h, thus apprehending polymeric micelles suitability as poor aqueous solubility drug carriers.


Assuntos
Preparações de Ação Retardada/química , Fármacos Neuroprotetores/administração & dosagem , Poliésteres/química , Polietilenoglicóis/química , Vasodilatadores/administração & dosagem , Alcaloides de Vinca/administração & dosagem , Animais , Liberação Controlada de Fármacos , Masculino , Micelas , Fármacos Neuroprotetores/farmacocinética , Ratos , Ratos Sprague-Dawley , Vasodilatadores/farmacocinética , Alcaloides de Vinca/farmacocinética
3.
Xenobiotica ; 50(5): 580-587, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31424307

RESUMO

The effect of different doses of borneol on the pharmacokinetics of vinpocetine after intraocular administration in the rat plasma and the brain was investigated.Intraocular administration of vinpocetine (3 mg/kg) was performed, in combination with different doses (0, 5, 10, and 20 mg/kg) of borneol. Intravenous administration of vinpocetine was used as a control (1 mg/kg). The concentrations of vinpocetine in the rat plasma and the brain were determined using a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. Using the non-compartmental models with the DSA 2.0 software, the main pharmacokinetics parameters and the brain-targeting effect evaluated.In comparison with intravenous administration, after intraocular administration of vinpocetine alone, the absolute bioavailability (F) of vinpocetine was 43.82% for the plasma, and the drug target index (DTI) was 1.05 for the brain. After intraocular administration of vinpocetine combined with different doses of borneol, the relative bioavailability (Fr) of vinpocetine in the plasma was increased by 130.46-182.90%. The relative bioavailability (Fr) of vinpocetine in the brain was improved (147.19-225.36%). The DTI was 1.12, 1.18, and 1.21 for 5, 10, and 20 mg/kg of borneol, respectively.Compared with the intraocular administration of vinpocetine alone, the co-administration of different doses of borneol resulted in an obvious brain targeting effect.


Assuntos
Canfanos/metabolismo , Alcaloides de Vinca/farmacocinética , Animais , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Injeções Intraoculares , Plasma/metabolismo , Ratos
4.
Int J Nanomedicine ; 14: 5555-5567, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413562

RESUMO

Background: Vinpocetine (VPN) is a synthetic derivative of the Vinca minor alkaloids. The drug is characterized by a short half-life, limited water solubility and high hepatic first-pass effect. The objective was to develop different lipid-based nanocarriers (NCs) loaded into a thermosensitive in situ gelling (ISG) system to improve VPN bioavailability and brain targeting via intranasal (IN) delivery. Methods:  Different lipid-based NCs were developed and characterized for vesicle size, zeta potential, VPN entrapment efficiency (EE) and morphological characterization using transmission electron microscope (TEM). The prepared NCs were loaded into ISG formulations and characterized for their mucoadhesive properties. Ex-vivo permeation and histological study of the nasal mucosa were conducted. Pharmacokinetic and brain tissue distribution were investigated and compared to a marketed VPN product following administration of a single dose to rats. Results: VPN-D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) micelles nano-formulation showed the smallest particle size, highest EE among the studied NCs. TEM images revealed an almost spherical shape for all the prepared NCs. Among the NCs studied, VPN-loaded TPGS micelles demonstrated the highest percent cumulative VPN ex vivo permeation. All the prepared ISG formulations revealed the presence of mucoadhesive properties and showed no signs of inflammation or necrosis upon histological examination. Rats administered IN VPN-loaded TPGS-micelles ISG showed superior VPN concentration in the brain tissue and significant high relative bioavailability when compared to that received raw VPN-loaded ISG and marketed drug oral tablets. VPN-D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) micelles nano-formulation showed the smallest particle size, highest EE among the studied NCs. TEM images revealed an almost spherical shape for all the prepared NCs. Among the NCs studied, VPN-loaded TPGS micelles demonstrated the highest percent cumulative VPN ex vivo permeation. All the prepared ISG formulations revealed the presence of mucoadhesive properties and showed no signs of inflammation or necrosis upon histological examination. Rats administered IN VPN-loaded TPGS-micelles ISG showed superior VPN concentration in the brain tissue and significant high relative bioavailability when compared to that received raw VPN-loaded ISG and marketed drug oral tablets. Conclusion: VPN-loaded TPGS-micelles ISG formulation is a successful brain drug delivery system with enhanced bioavailability for drugs with poor bioavailability and those that are frequently administered.


Assuntos
Géis/administração & dosagem , Micelas , Temperatura , Alcaloides de Vinca/administração & dosagem , Vitamina E/química , Administração Intranasal , Animais , Disponibilidade Biológica , Encéfalo/metabolismo , Bovinos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Lipídeos/química , Masculino , Nanopartículas/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Ratos Sprague-Dawley , Solubilidade , Distribuição Tecidual , Alcaloides de Vinca/sangue , Alcaloides de Vinca/farmacocinética
5.
Bioorg Med Chem Lett ; 29(16): 2270-2274, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31257082

RESUMO

Despite of various PET radioligands targeting the translocator protein TSPO 18-KDa are used for the investigations of neuroinflammatory conditions associated with neurological disorders, development of new TSPO radiotracers is still an active area of the researches with a major focus on the 18F-labelled radiotracers. Here, we report the radiochemical synthesis of [18F]vinpocetine, fluorinated analogue of previously reported TSPO radioligand, [11C]vinpocetine. Radiolabeling was achieved by [18F]fluoroethylation of apovincaminic acid with [18F]fluoroethyl bromide. [18F]vinpocetine was obtained in quantities >2.7 GBq in RCY of 13% (non-decay corrected), and molar activity >60 GBq/µmol within 95 min synthesis time. Preliminary PET studies in a cynomolgus monkey and metabolite studies by HPLC demonstrated similar results by [18F]vinpocetine as for [11C]vinpocetine, including high blood-brain barrier permeability, regional uptake pattern and fast washout from the NHP brain. These results demonstrate that [18F]fluorovinpocetine warrants further evaluation as an easier accessible alternative to [11C]vinpocetine.


Assuntos
Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/química , Receptores de GABA/análise , Alcaloides de Vinca/química , Animais , Relação Dose-Resposta a Droga , Radioisótopos de Flúor , Ligantes , Macaca fascicularis , Modelos Moleculares , Estrutura Molecular , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/farmacocinética , Relação Estrutura-Atividade , Distribuição Tecidual , Alcaloides de Vinca/síntese química , Alcaloides de Vinca/farmacocinética
6.
Drug Dev Ind Pharm ; 45(6): 1017-1028, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30922119

RESUMO

PURPOSE: A series of ß-CD amphiphilic star-shaped copolymers with exceptional characteristics were synthesized and their potential as carriers for micelles drug delivery was investigated. METHODS: A series of amphiphilic copolymers based on ß-CD were synthesized by introducing poly (acrylic acid)-co-poly(methyl methacrylate)-poly (vinyl pyrrolidone) or poly (acrylic acid)-co-poly(methyl methacrylate)-co-poly(monoacylated-ß-CD)-poly (vinyl pyrrolidone) blocks to the primary hydroxyl group positions of ß-CD. The micellization behavior of the copolymers, the synthesis conditions, characteristics, drug release in vitro and tissue distribution of vinpocetine (VP) micelles in vivo were investigated. RESULTS: Around 60 types of ß-CD amphiphilic star-shaped copolymers were successfully synthesized and the critical micelle concentration ranged from 9.80 × 10-4 to 5.24 × 10-2g/L. The particle size, drug loading and entrapment efficiency of VP-loaded ß-CD-P4 micelles prepared with optimal formulation were about 65 nm, 21.44 ± 0.14%, and 49.05 ± 0.36%, respectively. The particles had good sphericity. The cumulative release rates at 72 h of VP-loaded ß-CD-P4 micelles in pH 1.0, pH 4.5, pH 6.5, or pH 7.4 media were 93%, 69%, 49%, and 43%, respectively. And, the lung targeting efficiency of VP-loaded ß-CD-P4 micelles was 8.98 times higher than that of VP injection. CONCLUSION: The VP-loaded ß-CD-P4 micelles exhibited controlled-release property, pH-induced feature and lung targeting capacity compared with VP injection, suggesting that the ß-CD-P4 copolymers are an excellent candidate for micelles drug delivery.


Assuntos
Preparações de Ação Retardada/farmacocinética , Portadores de Fármacos/química , Polímeros/química , Alcaloides de Vinca/farmacocinética , beta-Ciclodextrinas/química , Animais , Disponibilidade Biológica , Preparações de Ação Retardada/administração & dosagem , Composição de Medicamentos/métodos , Avaliação Pré-Clínica de Medicamentos , Liberação Controlada de Fármacos , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Injeções Intravenosas , Micelas , Ratos , Ratos Sprague-Dawley , Tensoativos/química , Distribuição Tecidual , Alcaloides de Vinca/administração & dosagem
7.
Drug Des Devel Ther ; 13: 205-220, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30643387

RESUMO

BACKGROUND: This work aimed to develop a new solid dosage formulation of vinpocetine (VPN) in the form of buccal freeze-dried pullulan-based tablets (lyoplant-tabs) loaded with physically modified drug binary system. METHODS: Different polyvinyl pyrrolidone (PVP) grades were studied to prepare an efficient VPN binary system characterized by enhanced equilibrium saturation solubility, solubilization efficiency, thermodynamic stability, and permeation through oral mucosal cell lines. The concentrations of pullulan and swelling-aid polymer that affect the quality attributes of lyoplant-tabs were optimized. Clinical pharmacokinetics study on human volunteers for the optimized lyoplant-tabs compared to marketed product was accomplished. RESULTS: A promising drug binary system with polyvinyl pyrrolidone vinyl acetate (PVP-VA64) utilizing the lyophilization technique was developed. Solid-state characterization confirmed transformation of VPN completely into the amorphous form. The concentrations of pullulan and swelling-aid polymer were significantly affecting the characteristics of the tablets. Compared to the commercial VPN tablets, pullulan-based buccal tablets demonstrated enhancement in the studied pharmacokinetic parameters with positive impact on the drug bioavailability. CONCLUSION: These VPN lyoplant-tabs containing lyophilized PVP-VA64-VPN binary system can be considered as an alternative to currently available marketed tablets; however, further preclinical investigations using large number of volunteers are required.


Assuntos
Alcaloides de Vinca/farmacocinética , Composição de Medicamentos , Liofilização , Voluntários Saudáveis , Humanos , Povidona/química , Solubilidade , Comprimidos/química , Comprimidos/farmacocinética , Termodinâmica , Alcaloides de Vinca/química , Compostos de Vinila/química
8.
Molecules ; 24(2)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646543

RESUMO

10-Dehydroxyl-12-demethoxy-conophylline is a natural anticancer candidate. The motivation of this study was to explore the pharmacokinetic profiles, tissue distribution, and plasma protein binding of 10-dehydroxyl-12-demethoxy-conophylline in Sprague Dawley rats. A rapid, sensitive, and specific ultra-performance liquid chromatography (UPLC) system with a fluorescence (FLR) detection method was developed for the determination of 10-dehydroxyl-12-demethoxy-conophylline in different rat biological samples. After intravenous (i.v.) dosing of 10-dehydroxyl-12-demethoxy-conophylline at different levels (4, 8, and 12 mg/kg), the half-life t1/2α of intravenous administration was about 7 min and the t1/2ß was about 68 min. The AUC0→∞ increased in a dose-proportional manner from 68.478 µg/L·min for 4 mg/kg to 305.616 mg/L·min for 12 mg/kg. After intragastrical (i.g.) dosing of 20 mg/kg, plasma levels of 10-dehydroxyl-12-demethoxy-conophylline peaked at about 90 min. 10-dehydroxyl-12-demethoxy-conophyllinea absolute oral bioavailability was only 15.79%. The pharmacokinetics process of the drug was fit to a two-room model. Following a single i.v. dose (8 mg/kg), 10-dehydroxyl-12-demethoxy-conophylline was detected in all examined tissues with the highest in kidney, liver, and lung. Equilibrium dialysis was used to evaluate plasma protein binding of 10-dehydroxyl-12-demethoxy-conophylline at three concentrations (1.00, 2.50, and 5.00 µg/mL). Results indicated a very high protein binding degree (over 80%), reducing substantially the free fraction of the compound.


Assuntos
Antineoplásicos Fitogênicos/farmacocinética , Proteínas Sanguíneas/metabolismo , Alcaloides de Vinca/farmacocinética , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/química , Feminino , Masculino , Estrutura Molecular , Ligação Proteica , Ratos , Distribuição Tecidual , Alcaloides de Vinca/administração & dosagem , Alcaloides de Vinca/química
9.
J Chromatogr Sci ; 56(3): 225-232, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29206914

RESUMO

A specific, rapid and sensitive ultra-performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method was developed for simultaneous determination of vinpocetine (VP) and its active metabolite, apovincaminic acid (AVA) in rat brain regions, such as hypothalamus, striatum, cortex, cerebellum and hippocampus. Phenacetin was used as internal standard (IS). Brain tissue samples were precipitated protein by using 500 µL methanol. The separation was achieved on a Waters ACQUITY UPLC BEH C18 column (100 mm × 2.1 mm, 1.7 µm), using a methanol-water gradient elution at the flow rate of 0.20 mL/min. The detection was performed on a triple quadrupole tandem mass spectrometer in multiple reaction monitoring (MRM) mode via positive electrospray ionization source (ESI). The quantification was operated using the transitions of m/z 351 → m/z 280 for VP, m/z 323 → m/z 280 for AVA and m/z 180 → m/z 110 for IS, respectively. The calibration curve was linear in concentration range from 0.100 to 60.0 ng/mL for VP and 0.103 to 6.18 ng/mL for AVA. The intra-day and inter-day precision (relative standard deviation, RSD) values were within 11.8%, the accuracy (relative error, RE) was from -1.7% to 3.0% for VP and 2.7% to 9.5% for AVA at all the three concentration levels of quality-control (QC) samples. The improved UPLC-MS/MS method was specific, rapid and sensitive, which was further successfully applied to simultaneous determination of VP and AVA in different rat brain regions after intragastric administration of 4 mg/kg VP. It was indicated that VP could be eliminated quickly in brain, while the elimination of AVA was slow and it could be maintained for more than 12 h in brain. Moreover, it was found that the contents of VP and AVA were much higher in the hypothalamus, striatum and cortex than those in the cerebellum and hippocampus, which verified the distribution characteristics of VP and AVA in different brain regions from the point of quantitation in rats.


Assuntos
Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Alcaloides de Vinca/análise , Alcaloides de Vinca/farmacocinética , Animais , Química Encefálica , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual , Alcaloides de Vinca/química
10.
Toxicol Appl Pharmacol ; 338: 83-92, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29155086

RESUMO

Vinpocetine is being used worldwide by people of all ages, including pregnant women, for its purported multiple health benefits. However, limited data is available addressing the safety/toxicity of vinpocetine. The National Toxicology Program conducted studies to examine potential effects of vinpocetine on the developing rat. Disposition data is helpful to put the fetal findings into context and provide information on the potential risk for humans. The current study reports the systemic exposure and toxicokinetic (TK) parameters of vinpocetine and metabolite, apovincaminic acid (AVA), in pregnant Harlan Sprague Dawley rats, fetuses and amniotic fluid following oral gavage exposure of dams to 5 and 20mg/kg vinpocetine from gestational day 6 to 18. Vinpocetine was absorbed rapidly in dams with a maximum plasma concentration (Cmax) reaching ≤1.37h. Predicted Cmax and area under the concentration versus time curve (AUC) increased less than proportionally to the dose. Vinpocetine was rapidly distributed to the peripheral compartment. More importantly, significant transfer of vinpocetine from dam to fetuses was observed with fetal Cmax and AUC≥55% of dams. Vinpocetine was cleared rapidly from dam plasma with an elimination half-life of ≤4.02h with no apparent dose-related effect. Vinpocetine was rapidly and highly metabolized to AVA with AVA plasma levels in dams ≥2.7-fold higher than vinpocetine, although in the fetuses, AVA levels were much lower than vinpocetine. Comparison of current rat data with literature human data demonstrates that systemic exposure to vinpocetine in rats following repeated exposure to 5mg/kg is similar to that following a single human relevant dose of 10mg suggesting that the findings from the toxicology study may be relevant to humans.


Assuntos
Troca Materno-Fetal , Alcaloides de Vinca/farmacocinética , Líquido Amniótico/metabolismo , Animais , Área Sob a Curva , Feminino , Gravidez , Ratos , Ratos Sprague-Dawley
11.
Pharm Dev Technol ; 23(9): 900-910, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28540754

RESUMO

Solid self-nanoemulsifying (S-SNEDDS) asymmetrically coated osmotic tablets of the poorly water-soluble drug Vinpocetine (VNP) were designed. The aim was to control the release of VNP by the osmotic technology taking advantage of the solubility and bioavailability-enhancing capacity of S-SNEDDS. Liquid SNEDDS loaded with 2.5 mg VNP composed of Maisine™ 35-1, Transcutol® HP, and Cremophor® EL was adsorbed on the solid carrier Aeroperl®. S-SNEDDS was mixed with the osmotic tablet excipients (sodium chloride, Avicel®, HPMC-K4M, PVP-K30, and Lubripharm®), then directly compressed to form the core tablet. The tablets were dip coated and mechanically drilled. A 32*21 full factorial design was adopted. The independent variables were: type of coating material (X1), concentration of coating solution (X2), and number of drills (X3). The dependent variables included % release at 2 h (Y1), at 4 h (Y2), and at 8 h (Y3). The in vivo performance of the optimum formula was assessed in rabbits. Zero-order VNP release was obtained by the single drilled 1.5% Opadry® CA coated osmotic tablets and twofold increase in VNP bioavailability was achieved. The combination of SNEDDS and osmotic pump tablet system was successful in enhancing the solubility and absorption of VNP as well as controlling its release.


Assuntos
Emulsificantes/farmacocinética , Bombas de Infusão Implantáveis , Osmose/fisiologia , Alcaloides de Vinca/farmacocinética , Animais , Anticonvulsivantes/química , Anticonvulsivantes/farmacocinética , Disponibilidade Biológica , Emulsificantes/química , Masculino , Coelhos , Solubilidade , Comprimidos , Alcaloides de Vinca/química
12.
Drug Deliv ; 24(1): 1598-1604, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29043863

RESUMO

The main objective of this study was to develop a pH gradient release pellet with self-emulsifying drug delivery system (SEDDS), which could not only improve the oral bioavailability of Vinpocetine (VIN), a poor soluble drug, but reduce the fluctuation of plasma concentration. First, the liquid VIN SEDDS formulation was prepared. Then the self-emulsifying pH gradient release pellets were prepared by extrusion spheronization technique, and formulation consisted by the liquid SEDDS, absorbent (colloidal silicon dioxide), penetration enhancer (sodium chloride), microcrystalline cellulose, ethyl alcohol, and three coating materials (HPMC, Eudragit L30D55, Eudragit FS30D) were eventually selected. Three kinds of coated pellets were mixed in capsules with the mass ratio of 1:1:1. The release curves of capsules were investigated in vitro under the simulated gastrointestinal conditions. In addition, the oral bioavailability and pharmacokinetics of VIN self-emulsifying pH gradient release pellets, commercial tablets and liquid VIN SEDDS were evaluated in Beagle dogs. The oral bioavailability of self-emulsifying pH gradient release pellets was about 149.8% of commercial VIN tablets, and it was about 86% of liquid VIN SEDDS, but there were no significant difference between liquid SEDDS and self-emulsifying pH gradient release pellets. In conclusion, the self-emulsifying pH gradient release pellets could significantly enhance the absorption of VIN and effectively achieve a pH gradient release. And the self-emulsifying pH gradient release pellet was a promising method to improve bioavailability of insoluble drugs.


Assuntos
Química Farmacêutica/métodos , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacocinética , Alcaloides de Vinca/administração & dosagem , Alcaloides de Vinca/farmacocinética , Administração Oral , Animais , Cães , Sistemas de Liberação de Medicamentos , Emulsificantes/química , Emulsões/química , Ácidos Polimetacrílicos , Força Próton-Motriz , Solubilidade
13.
Nutr Cancer ; 69(4): 555-563, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28353359

RESUMO

The etiology of undernourishment in cancer patients is multifactorial: tumor-related mechanisms (such as obstruction, metabolic abnormalities, and functionality changes) in addition to the influence of anticancer therapies, which can induce or worsen undernutrition. The evident role of undernutrition in cancer treatment outcomes suggests the need of considering nutritional status when evaluating anticancer drugs. In order to merge the available data and offer researchers and clinicians a global view of this phenomenon, the present manuscript reviews on a drug-by-drug basis the undernutrition-related pharmacokinetic and pharmacodynamic aspects of anticancer treatments. This review notes interesting trends in the relationship between undernourishment and pharmacokinetics across studies, and indicates that dosing modifications of these drugs may be necessary to optimize chemotherapeutic treatments. Furthermore, this review has compiled evidence regarding undernourishment's capacity of enhancing treatment-related myelosuppression, cardiotoxicity, ototoxicity, neurotoxicity, and malignancies.


Assuntos
Antineoplásicos/farmacocinética , Desnutrição/fisiopatologia , Antraciclinas/farmacocinética , Etoposídeo/farmacocinética , Fluoruracila/farmacocinética , Humanos , Metotrexato/farmacocinética , Alcaloides de Vinca/farmacocinética
14.
J Drug Target ; 25(6): 532-540, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28151022

RESUMO

The blood-brain barrier represents an insurmountable obstacle for the therapy of central nervous system related diseases. Polymeric micelles have many desirable properties for brain targeting by oral delivery, but the stability and targeting efficiency needs to be improved. In this study, it was demonstrated that binary micelle system can compensate the drawbacks of mono system by preparing mixed micelles in combination with PEG-based copolymers. Here, we explored a brain targeting drug delivery system via facile approaches using P123 based mixed micelles in combination with a message guider from traditional Chinese medicine, borneol, for oral delivery. With higher drug-loading, improved stability, prolonged in vitro release profile, increased bioavailability and enhanced brain targeting effect was achieved after peroral delivery of the mixed micelles. More importantly, without extra structure modification for active targeting, it was demonstrated for the first time that oral delivery of vinpocetine loaded mixed micelles together with borneol is an effective way to increase drug concentration in the brain and the targeting efficiency is borneol dose dependent. Such a "simple but effective" modality may shed light on the potential use of polymeric micelles in combination with a message drug to achieve drug brain targeting or other targeting sites via oral delivery.


Assuntos
Barreira Hematoencefálica/metabolismo , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Alcaloides de Vinca/administração & dosagem , Administração Oral , Animais , Disponibilidade Biológica , Transporte Biológico , Encéfalo/metabolismo , Canfanos/química , Relação Dose-Resposta a Droga , Liberação Controlada de Fármacos , Masculino , Micelas , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacocinética , Polietilenoglicóis/química , Polímeros/química , Ratos , Ratos Sprague-Dawley , Alcaloides de Vinca/farmacocinética
15.
Artif Cells Nanomed Biotechnol ; 45(1): 157-162, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26838484

RESUMO

The aim of present study was to develop VIN-loaded mPEG-PLA nanoparticle systems. The VIN mPEG-PLA nanoparticles were prepared using an emulsion solvent evaporation method, and studied their particle size, morphology, encapsulation efficiency and drug-loading coefficient. Moreover, the nanoparticles were evaluated on the drug release behaviors in vitro and bioavailability in vivo. The results show that the spherical nanoparticles obtained were negatively charged with a zeta potential of about -23.4 mV and characterized ∼110 nm with a narrow size distribution. The encapsulation efficiency and drug loading of prepared NPs were 76.4 ± 6.3 and 9.2 ± 2.2% (n=5), respectively. The in vitro release showed that the percent of accumulated dissolution of VIN NPs in phosphate-buffered saline 6.8 over 24 h was <80%, which was almost 100% of VIN in commercial injections. The in vivo study indicated that systemic absorption of VIN was significantly enhanced by incorporating into mPEG-PLA NPs compared with VIN injection (2.87-fold in AUC0-t). The results suggested that the form of VIN in mPEG-PLA NPs could enter the body circulation to perform sustained release in vitro and in vivo.


Assuntos
Nanopartículas/química , Poliésteres , Polietilenoglicóis , Alcaloides de Vinca , Animais , Preparações de Ação Retardada/química , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/farmacologia , Avaliação Pré-Clínica de Medicamentos , Masculino , Poliésteres/química , Poliésteres/farmacocinética , Poliésteres/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Polietilenoglicóis/farmacologia , Ratos , Ratos Wistar , Alcaloides de Vinca/química , Alcaloides de Vinca/farmacocinética , Alcaloides de Vinca/farmacologia
16.
Biomed Chromatogr ; 29(1): 97-102, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24828449

RESUMO

Vinblastine and vincristine, both of which are bisindole alkaloids derived from vindoline and catharanthine, have been used for cancer chemotherapy; their monomeric precursor molecules are vindoline and catharanthine. A simple and selective liquid chromatography mass spectrometry method for simultaneous determination of vindoline and catharanthine in rat plasma was developed. Chromatographic separation was achieved on a C18 (2.1 × 50 mm, 3.5 µm) column with acetonitrile-0.1% formic acid in water as mobile phase with gradient elution. The flow rate was set at 0.4 mL/min. An electrospray ionization source was applied and operated in positive ion mode; selective ion monitoring mode was used for quantification. Mean recoveries were in the range of 87.3-92.6% for vindoline in rat plasma and 88.5-96.5% for catharanthine. Matrix effects for vindoline and catharanthine were measured to be between 95.3 and 104.7%. Coefficients of variation of intra-day and inter-day precision were both <15%. The accuracy of the method ranged from 93.8 to 108.1%. The method was successfully applied in a pharmacokinetic study of vindoline and catharanthine in rats. The bioavailability of vindoline and catharanthine were 5.4 and 4.7%, respectively.


Assuntos
Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Vimblastina/análogos & derivados , Alcaloides de Vinca/sangue , Alcaloides de Vinca/farmacocinética , Administração Intravenosa , Administração Oral , Animais , Disponibilidade Biológica , Modelos Lineares , Masculino , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Vimblastina/administração & dosagem , Vimblastina/sangue , Vimblastina/química , Vimblastina/farmacocinética , Alcaloides de Vinca/administração & dosagem , Alcaloides de Vinca/química
17.
Int J Pharm ; 477(1-2): 39-46, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25290813

RESUMO

The aim of this study was to increase the in vivo mean residence time of vinpocetine after IV injection utilizing long circulating mixed micellar systems. Mixed micelles were prepared using Pluronics L121, P123 and F127. The systems were characterized by testing their entrapment efficiency, particle size, polydispersity index, zeta potential, transmission electron microscopy and in vitro drug release. Simple lattice mixture design was planned for the optimization using Design-Expert(®) software. The optimized formula was lyophilized, sterilized and imaged by scanning electron microscope. Moreover, the in vivo behavior of the optimized formula was evaluated after IV injection in rabbits. The optimized formula, containing 68% w/w Pluronic L121 and 32% w/w Pluronic F127, had the highest desirability value (0.621). Entrapment efficiency, particle size, polydispersity index and zeta potential of the optimized formula were 50.74 ± 3.26%, 161.50 ± 7.39 nm, 0.21 ± 0.03 and -22.42 ± 1.72 mV, respectively. Lyophilization and sterilization did not affect the characteristics of the optimized formula. Upon in vivo investigation in rabbits, the optimized formula showed a significantly higher elimination half-life and mean residence time than the market product. Finally, mixed micelles could be considered as a promising long circulating nanocarrier for lipophilic drugs.


Assuntos
Portadores de Fármacos/química , Nanopartículas , Polímeros/química , Alcaloides de Vinca/administração & dosagem , Animais , Anti-Hipertensivos/administração & dosagem , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacocinética , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Liofilização , Meia-Vida , Injeções Intravenosas , Masculino , Micelas , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Coelhos , Alcaloides de Vinca/química , Alcaloides de Vinca/farmacocinética
18.
Int J Pharm ; 465(1-2): 90-6, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24530388

RESUMO

The purpose of this study was to develop a new delivery system based on drug cyclodextrin (CD) complexation and loading into nanostructured lipid carriers (NLC) to improve the oral bioavailability of vinpocetine (VP). Three different CDs and three different methods to obtain solid vinpocetine-cyclodextrin-tartaric acid complexes (VP-CD-TA) were contrasted. The co-evaporation vinpocetine-ß-cyclodextrin-tartaric acid loaded NLC (VP-ß-CD-TA COE-loaded NLC) was obtained by emulsification ultrasonic dispersion method. VP-ß-CD-TA COE-loaded NLC was suitably characterized for particle size, polydispersity index, zeta potential, entrapment efficiency and the morphology. The crystallization of drug in VP-CD-TA and NLC was investigated by differential scanning calorimetry (DSC). The in vitro release study was carried out at pH 1.2, pH 6.8 and pH 7.4 medium. New Zealand rabbits were applied to investigate the pharmacokinetic behavior in vivo. The VP-ß-CD-TA COE-loaded NLC presented a superior physicochemical property and selected to further study. In the in vitro release study, VP-ß-CD-TA COE-loaded NLC exhibited a higher dissolution rate in the pH 6.8 and pH 7.4 medium than VP suspension and VP-NLC. The relative bioavailability of VP-ß-CD-TA COE-loaded NLC was 592% compared with VP suspension and 92% higher than VP-NLC. In conclusion, the new formulation significantly improved bioavailability of VP for oral delivery, demonstrated a perspective way for oral delivery of poorly water-soluble drugs.


Assuntos
Portadores de Fármacos , Lipídeos/química , Nanoestruturas , Alcaloides de Vinca/administração & dosagem , Água/química , beta-Ciclodextrinas/química , Administração Oral , Animais , Disponibilidade Biológica , Varredura Diferencial de Calorimetria , Química Farmacêutica , Concentração de Íons de Hidrogênio , Masculino , Nanotecnologia , Coelhos , Solubilidade , Tartaratos/química , Tecnologia Farmacêutica/métodos , Alcaloides de Vinca/química , Alcaloides de Vinca/farmacocinética
19.
Pharmazie ; 68(5): 381-2, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23802438

RESUMO

The purpose of the present study was to develop a novel transdermal vinpocetine patch containing a stable formulation and with good entrapment efficiency, and percutaneous absorption which via ethosome. Ethosome was found to be a more efficient delivery carrier with high encapsulation capacities (79.5% +/- 1.8%) and nanometric size (180.7 +/- 1.5 nm). In vitro percutaneous permeation experiments demonstrated that the permeation of vinpocetine through abdominal skin of Sprague Dawley was significantly increased when ethosome was used. The vinpocetine transdermal fluxes from ethosome gel (3.56 +/- 0.13 microg/cm2/h) were 6.72 and 3.10 times higher than that of vinpocetine gel solution and vinpocetine aueous solution, respectively. Furthermore, the AUC(0 --> infinity), and eliminiation half-life by the transdermal administration were significantly higher than those by the intragastric administration (P < 0.01). The study demonstrated that ethosome is a promising vesicular carrier for enhancing percutaneous absorption of vinpocetine.


Assuntos
Anti-Hipertensivos/administração & dosagem , Lipossomos/química , Alcaloides de Vinca/administração & dosagem , Administração Cutânea , Animais , Anti-Hipertensivos/farmacocinética , Química Farmacêutica , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Géis , Técnicas In Vitro , Intubação Gastrointestinal , Ratos , Ratos Sprague-Dawley , Soluções , Alcaloides de Vinca/farmacocinética
20.
Anticancer Drugs ; 24(4): 327-36, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23411683

RESUMO

About 10% of the drugs in the preclinical stage are poorly soluble, 40% of the drugs in the pipeline have poor solubility, and even 60% of drugs coming directly from synthesis have aqueous solubility below 0.1 mg/ml. Out of the research around, 40% of lipophilic drug candidates fail to reach the market despite having potential pharmacodynamic activities. Microtubule-modulating chemotherapeutics is an important class of cancer chemotherapy. Most chemotherapeutics that belong to this category are plant-derived active constituents, such as vincristine, vinblastine, colchicine, docetaxel, paclitaxel, and noscapinoids. The pKa of a drug considerably affects its solubility in physiological fluids and consequently bioavailability. It usually ranges from 5 to 12 for microtubule-modulating drugs. Hence, the solubility of these drugs in physiological fluids is considerably affected by a change in pH. However, because of unpredictable parameters involved in poor solubility and the low oral bioavailability of these chemotherapeutics during the early phases of drug development, they often have an unusual pharmacokinetic profile. This makes the development process of novel chemotherapeutics slow, inefficient, patient-unfriendly, and very costly, emphasizing a need for more rational approaches on the basis of preclinical concepts. Nanosolvation is a process of increasing the polarity of a hydrophobic molecule either by solvation or cavitization in a hydrophilic macrocycle. The present review therefore focuses on the techniques applied in nanosolvation of microtubule-modulating chemotherapeutics to enhance solubility and bioavailability. The methodologies described will be highly beneficial for anticancer researchers to follow a trend of rational drug development.


Assuntos
Microtúbulos/efeitos dos fármacos , Nanotecnologia/métodos , Moduladores de Tubulina/farmacologia , Administração Oral , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacocinética , Antineoplásicos Fitogênicos/farmacologia , Disponibilidade Biológica , Colchicina/administração & dosagem , Colchicina/farmacocinética , Colchicina/farmacologia , Ciclodextrinas/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Absorção Intestinal , Lipossomos/administração & dosagem , Micelas , Microtúbulos/fisiologia , Noscapina/administração & dosagem , Noscapina/farmacocinética , Noscapina/farmacologia , Noscapina/uso terapêutico , Tamanho da Partícula , Polimerização , Solubilidade , Taxoides/administração & dosagem , Taxoides/farmacocinética , Taxoides/farmacologia , Tubulina (Proteína)/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/administração & dosagem , Alcaloides de Vinca/administração & dosagem , Alcaloides de Vinca/farmacocinética , Alcaloides de Vinca/farmacologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA