Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.192
Filtrar
1.
Food Res Int ; 186: 114410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729706

RESUMO

Protein and lipid are two major components that undergo significant changes during processing of aquatic products. This study focused on the protein oxidation, protein conformational states, lipid oxidation and lipid molecule profiling of salted large yellow croaker during storage, and their correlations were investigated. The degree of oxidation of protein and lipid was time-dependent, leading to an increase in carbonyl content and surface hydrophobicity, a decrease in sulfhydryl groups, and an increase in conjugated diene, peroxide value and thiobarbituric acid reactive substances value. Oxidation caused protein structure denaturation and aggregation during storage. Lipid composition and content changed dynamically, with polyunsaturated phosphatidylcholine (PC) was preferentially oxidized compared to polyunsaturated triacylglycerol. Correlation analysis showed that the degradation of polyunsaturated key differential lipids (PC 18:2_20:5, PC 16:0_22:6, PC 16:0_20:5, etc.) was closely related to the oxidation of protein and lipid. The changes in protein conformation and the peroxidation of polyunsaturated lipids mutually promote each other's oxidation process.


Assuntos
Proteínas de Peixes , Armazenamento de Alimentos , Oxirredução , Perciformes , Animais , Perciformes/metabolismo , Proteínas de Peixes/química , Peroxidação de Lipídeos , Interações Hidrofóbicas e Hidrofílicas , Lipídeos/química , Conformação Proteica , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Alimentos Marinhos/análise
2.
Food Res Int ; 186: 114363, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729725

RESUMO

This study evaluates the impact of high-intensity ultrasound (HIU) on the physicochemical properties and in-vitro digestibility of Atlantic cod (Gadus morhua). Various ultrasound durations (0-60 min) were applied to assess changes in color attributes, total antioxidant capacity (TAC), total flavonoid content (TFC), total phenolic content (TPC), total protein content, and in-vitro protein digestibility (IVPD). Results indicated HIU maximumly increased TAC, TFC, TPC, and peptide content before digestion by 7.28 % (US60), 3.00 % (US30), 32.43 % (US10), and 18.93 % (US60), respectively. While HIU reduced total protein content, it enhanced IVPD by up to 12.24 % (US30). Color attributes electron microscopy reflected structural changes in the cod samples, suggesting the effectiveness of HIU in altering protein structures. These findings highlight HIU's potential as a non-thermal technique for improving the sensory and nutritional quality of Atlantic cod, offering valuable insights for the seafood processing industry and consumers.


Assuntos
Antioxidantes , Digestão , Manipulação de Alimentos , Gadus morhua , Valor Nutritivo , Alimentos Marinhos , Gadus morhua/metabolismo , Animais , Alimentos Marinhos/análise , Antioxidantes/análise , Antioxidantes/química , Manipulação de Alimentos/métodos , Fenóis/análise , Ondas Ultrassônicas , Flavonoides/análise , Nutrientes/análise , Paladar , Cor
3.
Analyst ; 149(10): 2988-2995, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38602359

RESUMO

The use of formalin to preserve raw food items such as fish, meat, vegetables etc. is very commonly practiced in the present day. Also, formaldehyde (FA), which is the main constituent of formalin solution, is known to cause serious health issues on exposure. Considering the ill effects of formaldehyde, herein we report synthesis of highly sensitive triphenylmethane based formaldehyde (FA) sensors from a single step reaction of inexpensive reagents namely 4-hydroxy benzaldehyde and 2,6-dimethyl phenol. The synthetic method also provides highly pure product in bulk quantity. The analytical activity of the triphenylmethane sensor 1 with a limit of detection (LOD) value of 2.31 × 10-6 M for FA was significantly enhanced through induced deprotonation and thereafter a LOD value of 1.82 × 10-8 M could be achieved. To the best of our knowledge, the LOD value of the deprotonated form (sensor 2) for FA was superior to those of all the FA optical sensors reported so far. The mechanism of sensing was demonstrated by 1H-NMR titration and recording mass spectra before and after addition of FA to a solution of sensor 2. Both sensor 1 and sensor 2 exhibit quenching in emission upon addition of FA. A fluorescence study also demonstrates enhancement in analytical activity of the sensor upon induced deprotonation. Then the sensor was effectively immobilized into a hydrophilic and biocompatible starch-PVA polymer matrix which enabled detection of FA in a 100% aqueous system reversibly. Again, quick and effective sensing of FA in real food samples (stored fish) with the help of a computational application was demonstrated. The sensors have significant practical applicability as they effectively detect FA in real food samples qualitatively and quantitatively.


Assuntos
Peixes , Formaldeído , Limite de Detecção , Compostos de Tritil , Formaldeído/análise , Formaldeído/química , Animais , Compostos de Tritil/química , Compostos de Tritil/análise , Gases/química , Gases/análise , Alimentos Marinhos/análise , Contaminação de Alimentos/análise , Soluções , Análise de Alimentos/métodos , Análise de Alimentos/instrumentação , Espectrometria de Fluorescência/métodos
4.
Int J Biol Macromol ; 267(Pt 1): 131485, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38604429

RESUMO

Global seafood consumption is estimated at 156 million tons annually, with an economic loss of >25 billion euros annually due to marine fish spoilage. In contrast to traditional smart packaging which can only roughly estimate food freshness, an intelligent platform integrating machine learning and smart aerogel can accurately predict remaining shelf life in food products, reducing economic losses and food waste. In this study, we prepared aerogels based on anthocyanin complexes that exhibited excellent environmental responsiveness, high porosity, high color-rendering properties, high biocompatibility, high stability, and irreversibility. The aerogel showed excellent indication properties for rainbow trout and proved suitable for fish storage environments. Among the four machine learning models, the radial basis function neural network and backpropagation network optimized by genetic algorithm demonstrated excellent monitoring performance. Also, the two-channel dataset provided more comprehensive information and superior descriptive capability. The three-layer structure of the monitoring platform provided a new paradigm for intelligent and sophisticated food packaging. The results of the study might be of great significance to the food industry and sustainable development.


Assuntos
Alginatos , Antocianinas , Colorimetria , Embalagem de Alimentos , Géis , Antocianinas/química , Embalagem de Alimentos/métodos , Alginatos/química , Géis/química , Colorimetria/métodos , Animais , Porosidade , Alimentos Marinhos/análise , Oncorhynchus mykiss , Aprendizado de Máquina
5.
Sci Total Environ ; 929: 172332, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38615776

RESUMO

Nanobiotechnology and the engineering of nanomaterials are currently the main focus of many researches. Seafood waste carbon nanomaterials (SWCNs) are a renewable resource with large surface area, porous structure, high reactivity, and abundant active sites. They efficiently adsorb food contaminants through π-π conjugated, ion exchange, and electrostatic interaction. Furthermore, SWCNs prepared from seafood waste are rich in N and O functional groups. They have high quantum yield (QY) and excellent fluorescence properties, making them promising materials for the removal and detection of pollutants. It provides an opportunity by which solutions to the long-term challenges of the food industry in assessing food safety, maintaining food quality, detecting contaminants and pretreating samples can be found. In addition, carbon nanomaterials can be used as adsorbents to reduce environmental pollutants and prevent food safety problems from the source. In this paper, the types of SWCNs are reviewed; the synthesis, properties and applications of SWCNs are reviewed and the raw material selection, preparation methods, reaction conditions and formation mechanisms of biomass-based carbon materials are studied in depth. Finally, the advantages of seafood waste carbon and its composite materials in pollutant removal and detection were discussed, and existing problems were pointed out, which provided ideas for the future development and research directions of this interesting and versatile material. Based on the concept of waste pricing and a recycling economy, the aim of this paper is to outline current trends and the future potential to transform residues from the seafood waste sector into valuable biological (nano) materials, and to apply them to food safety.


Assuntos
Carbono , Inocuidade dos Alimentos , Nanoestruturas , Alimentos Marinhos , Alimentos Marinhos/análise , Inocuidade dos Alimentos/métodos , Nanoestruturas/análise , Carbono/análise , Contaminação de Alimentos/análise
6.
Mar Pollut Bull ; 202: 116375, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621352

RESUMO

The massive industrial growth in Gresik, East Java, Indonesia has the potential to result in metal contamination in the nearby coastal waters. The purpose of this study was to analyze the metal concentrations in edible species from the Gresik coastal waters and evaluate the potential health risks linked to this metal contamination. Metal concentrations (Cu, Fe, Pb, Zn, As, Cd, Ni, Hg, and Cr) in fish and shrimp samples mostly met the maximum limits established by national and international regulatory organizations. The concentrations of As in Scatophagus argus exceed both the permissible limit established by Indonesia and the provisional tolerable weekly intake (PTWI). The As concentration in Arius bilineatus is equal to the PTWI. The target cancer risk (TCR) values for both As and Cr in all analyzed species exceed the threshold of 0.0001, suggesting that these two metals possess the potential to provide a cancer risk to humans.


Assuntos
Monitoramento Ambiental , Peixes , Metais , Poluentes Químicos da Água , Indonésia , Poluentes Químicos da Água/análise , Animais , Metais/análise , Medição de Risco , Metais Pesados/análise , Humanos , Contaminação de Alimentos/análise , Alimentos Marinhos/análise
7.
Sci Total Environ ; 929: 172535, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38641109

RESUMO

Microplastics (MPs) are emerging contaminants of increasing concern as they may cause adverse effects and carry other contaminants, which may potentially compromise human health. Despite occurring in aquatic ecosystems worldwide, the knowledge about MP presence in different aquaculture systems and their potential impact on seafood products is still limited. This study aimed to determine the levels of MPs in water, feed, and European seabass (Dicentrarchus labrax) from three relevant aquaculture systems and estimate human exposure to MPs and metals through seabass consumption. The recirculating aquaculture system (RAS) had the highest MP occurrence in water and feed. MP levels in seabass followed the aquaculture system's levels in water and feed, with RAS-farmed fish presenting the highest MP load, both in the fish gastrointestinal tract (GIT) and muscle, followed by pond-, and cage-farmed fish. MPs' characteristics across aquaculture systems and fish samples remained consistent, with the predominant recovered particles falling within the MP size range. The particles were visually characterized and chemically identified by micro-Fourier Transform Infrared Spectroscopy (µFTIR). Most of these particles were fibres composed of man-made cellulose and PET. MP levels in GIT were significantly higher than in muscle for pond- and RAS-farmed fish, MPs' bioconcentration factors >1 indicated bioconcentration in farmed seabass. Metal concentrations in fish muscle were below permissible limits, posing low intake risks for consumers according to the available health-based guidance values and estimated dietary scenarios.


Assuntos
Aquicultura , Bass , Metais , Microplásticos , Poluentes Químicos da Água , Bass/metabolismo , Animais , Poluentes Químicos da Água/análise , Microplásticos/análise , Humanos , Metais/análise , Inocuidade dos Alimentos , Monitoramento Ambiental , Contaminação de Alimentos/análise , Medição de Risco , Alimentos Marinhos/análise , Exposição Ambiental/estatística & dados numéricos
8.
Mar Drugs ; 22(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667793

RESUMO

Tetrodotoxin (TTX) is a marine toxin responsible for many intoxications around the world. Its presence in some pufferfish species and, as recently reported, in shellfish, poses a serious health concern. Although TTX is not routinely monitored, there is a need for fast, sensitive, reliable, and simple methods for its detection and quantification. In this work, we describe the use of an automated patch clamp (APC) system with Neuro-2a cells for the determination of TTX contents in pufferfish samples. The cells showed an IC50 of 6.4 nM for TTX and were not affected by the presence of muscle, skin, liver, and gonad tissues of a Sphoeroides pachygaster specimen (TTX-free) when analysed at 10 mg/mL. The LOD achieved with this technique was 0.05 mg TTX equiv./kg, which is far below the Japanese regulatory limit of 2 mg TTX equiv./kg. The APC system was applied to the analysis of extracts of a Lagocephalus sceleratus specimen, showing TTX contents that followed the trend of gonads > liver > skin > muscle. The APC system, providing an in vitro toxicological approach, offers the advantages of being sensitive, rapid, and reliable for the detection of TTX-like compounds in seafood.


Assuntos
Técnicas de Patch-Clamp , Tetraodontiformes , Tetrodotoxina , Tetrodotoxina/análise , Animais , Alimentos Marinhos/análise , Camundongos , Contaminação de Alimentos/análise , Limite de Detecção
9.
An Acad Bras Cienc ; 96(1): e20230238, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629657

RESUMO

Fish consumption is the main path of human exposure to Hg and may represent a risk to public health, even with low Hg concentrations in fish, if consumption rates are high. This study quantifies, for the first time, the Hg concentrations in nine most commercialized species in the São Luís (MA) fish market, where fish consumption is high, and estimates human exposure. Average Hg concentrations were highest in carnivorous species, yellow hake (Cynoscion acoupa) (0.296 mg kg-1), the Atlantic croaker (Micropogonias undulatus) (0.263 mg kg-1), whereas lowest concentrations were recorded in iliophagous Mullets (Mugil curema) (0.021 mg kg-1) and the Shorthead drum Larimus breviceps (0.025 mg kg-1). Significant correlations were observed between Hg concentrations and fish length in two species: the Coco-Sea catfish (Bagre bagre) and the Atlantic bumper (Chloroscombrus crysurus), but not in the other species, since they presented relatively uniform size of individuals and/or a small number of samples. Risk coefficients, despite the relatively low Hg concentrations, suggest that consumers should limit their consumption of Yellow hake and Atlantic croaker, as they can present some risk to human health (EDI > RfD and THQ > 1), depending on the frequency of their consumption and the consumer's body weight.


Assuntos
Peixes-Gato , Mercúrio , Smegmamorpha , Poluentes Químicos da Água , Animais , Humanos , Mercúrio/análise , Poluentes Químicos da Água/análise , Peixes , Alimentos Marinhos/análise , Monitoramento Ambiental , Contaminação de Alimentos
10.
Sci Rep ; 14(1): 8017, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580836

RESUMO

Cyanobacteria produce neurotoxic non-protein amino acids (NPAAs) that accumulate in ecosystems and food webs. American lobsters (Homarus americanus H. Milne-Edwards) are one of the most valuable seafood industries in Canada with exports valued at > $2 billion. Two previous studies have assessed the occurrence of ß-N-methylamino-L-alanine (BMAA) in a small number of lobster tissues but a complete study has not previously been undertaken. We measured NPAAs in eyeballs, brain, legs, claws, tails, and eggs of 4 lobsters per year for the 2021 and 2022 harvests. Our study included 4 male and 4 female lobsters. We detected BMAA and its isomers, N-(2-aminoethyl)glycine (AEG), 2,4-diaminobutyric acid (DAB) and ß-aminomethyl-L-alanine (BAMA) by a fully validated reverse phase chromatography-tandem mass spectrometry method. We quantified BMAA, DAB, AEG and BAMA in all of the lobster tissues. Our quantification data varied by individual lobster, sex and collection year. Significantly more BMAA was quantified in lobsters harvested in 2021 than 2022. Interestingly, more BAMA was quantified in lobsters harvested in 2022 than 2021. Monitoring of lobster harvests for cyanobacterial neurotoxins when harmful algal bloom events occur could mitigate risks to human health.


Assuntos
Diamino Aminoácidos , Decápodes , Síndromes Neurotóxicas , Animais , Masculino , Feminino , Humanos , Nephropidae/metabolismo , Ecossistema , Neurotoxinas/toxicidade , Diamino Aminoácidos/metabolismo , Alimentos Marinhos/análise , Decápodes/metabolismo , beta-Alanina
11.
Food Chem Toxicol ; 187: 114598, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493981

RESUMO

Seafood products accumulate methylmercury throughout the food chain and are the main source of methylmercury exposure. Methylmercury may trigger a number of adverse health effects, such as neurodevelopmental or nephrotoxic effects, the risk of which cannot be ruled out for the French high consumers of seafood. The characterisation of methylmercury-related risks is generally based on short-term dietary exposure without considering changes in consumption and exposure over the lifetime. Additionally, focusing on short-term dietary exposure, the fate of methylmercury (especially its accumulation) in the organism is not considered. The present study proposes a methodology basing risk characterization on estimates of body burden over a lifetime. First, trajectories of dietary exposures throughout lifetime were constructed based on the actual concentrations of total diet studies for a fictive representative French population, taking into account the social, economic and demographic parameters of individuals. Next, the fate of methylmercury in the body was estimated, based on these trajectories, using a specific physiologically-based kinetic (PBK) model that generated a representative pool of body burden trajectories. Simulated hair mercury concentrations were closed to previously reported French representative human biomonitoring data. Results showed that at certain stages of life, concentrations of methylmercury in hair were higher than the human biomonitoring guidance value set at 2.5 µg/g of hair by JECFA. This study showed the added value, in the case of substances accumulating in the body, of estimating dietary exposure over a lifetime and using exposure biomarkers estimated by a PBK model characterize the risk.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Humanos , Compostos de Metilmercúrio/toxicidade , Compostos de Metilmercúrio/análise , Alimentos Marinhos/análise , Contaminação de Alimentos/análise , Dieta , Exposição Dietética , Mercúrio/análise
12.
Nat Food ; 5(3): 221-229, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509235

RESUMO

Wild fish used as aquafeeds could be redirected towards human consumption to support sustainable marine resource use. Here we use mass-balance fish-in/fish-out ratio approaches to assess nutrient retention in salmon farming and identify scenarios that provide more nutrient-rich food to people. Using data on Norway's salmon farms, our study revealed that six of nine dietary nutrients had higher yields in wild fish used for feeds, such as anchovies and mackerel, than in farmed salmon production. Reallocating one-third of food-grade wild feed fish towards direct human consumption would increase seafood production, while also retaining by-products for use as aquafeeds, thus maximizing nutrient utilization of marine resources.


Assuntos
Óleos de Peixe , Perciformes , Animais , Humanos , Peixes , Alimentos Marinhos/análise , Salmão , Nutrientes
13.
Food Chem Toxicol ; 186: 114558, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432438

RESUMO

The mucilage phenomenon observed in the Sea of Marmara in 2021, has raised public concern about seafood safety. Mediterranean mussels serve as a vehicle in food chain, enabling the transfer of pollutants. Farmed and wild mussels were collected from 4 different stations throughout the fishing season. Biotoxins causing amnesic, paralytic, or diarrhetic shellfish poisonings (ASP, PSP, or DSP) were examined during monthly samplings. Potential health risks posed by cadmium, lead and arsenic were assessed. Health risks were evaluated considering 150 g/week mussel consumption, accounting for the different age groups of consumers (50, 60, 70 kg). Estimated Weekly Intake calculations of metals were determined to be lower than Provisional Tolerable Weekly Intake at all age groups throughout the sampling period in all stations. Target Hazard QuotientCd of mussels captured from Istanbul Strait was always determined <1, while it was equal to 1 for 50 kg individuals in Gelibolu samples. All THQAs were >1. Target carcinogenic Risk was evaluated for Pb and iAs, which were found to be negligible and acceptable, respectively. No biotoxins responsible for ASP, PSP, or DSP were detected. Hg levels were under detectable limits. Excluding Cd, the results did not reveal any risks associated with mussel consumption during mucilage.


Assuntos
Bivalves , Mercúrio , Poluentes Químicos da Água , Humanos , Animais , Cádmio/análise , Contaminação de Alimentos/análise , Alimentos Marinhos/análise , Mercúrio/análise , Intoxicação por Metais Pesados , Monitoramento Ambiental , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
14.
Food Chem ; 448: 139049, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38518443

RESUMO

There is limited research on the occurrence of microplastics (MPs) in canned seafood. All types of canned seafood investigated in the present study were contaminated. After sample digestion in 30 % hydrogen peroxide, a total of 40 MPs were recovered. Fibers were the most common type, blue was the dominant colour, and Fourier Transform Infrared Spectroscopy (FTIR) identified polyester as the most common polymer. Considering all samples, an average of 3.5 ± 5.2 MPs/can was obtained, with octopus in tomato sauce and tuna in olive oil presenting the highest contamination (5.2 ± 7.5 MPs/can and 5.2 ± 5.1 MPs/can, respectively). Also, significant differences between the number of MPs in the seafood tissues and immersion liquids were verified. The present study demonstrates MPs occurrence in canned seafood, a potential contamination pathway for humans. More research on the different stages of the canning processing is vital for understanding MPs contamination in cans.


Assuntos
Contaminação de Alimentos , Microplásticos , Alimentos Marinhos , Alimentos Marinhos/análise , Contaminação de Alimentos/análise , Microplásticos/análise , Animais , Alimentos em Conserva/análise
15.
Food Chem ; 448: 139045, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537549

RESUMO

This article summarizes the characterization, by shotgun proteomics, of 11 bacterial strains identified as responsible for seafood spoilage. A total of 4455 peptide spectrum matches, corresponding to 4299 peptides and 3817 proteins were identified. Analyses of data determined the functional pathways they are involved in. The proteins identified were integrated into a protein-protein network that involves 371 nodes and 3016 edges. Those proteins are implicated in energy pathways, peptidoglycan biosynthesis, spermidine/putrescine metabolism. An additional 773 peptides were characterized as virulence factors, that participates in bacterial pathogenesis; while 14 peptides were defined as biomarkers, as they can be used to differentiate the bacterial species present. This report represents the most extensive proteomic repository available in the field of seafood spoilage bacteria; the data substantially advances the understanding of seafood decay, as well as provides fundamental bases for the recognition of the bacteria existent in seafood that cause spoilage during food processing/storage.


Assuntos
Bactérias , Proteínas de Bactérias , Proteômica , Alimentos Marinhos , Fatores de Virulência , Alimentos Marinhos/microbiologia , Alimentos Marinhos/análise , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Bactérias/metabolismo , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Animais , Microbiologia de Alimentos
16.
Harmful Algae ; 133: 102608, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38485442

RESUMO

The study of marine toxins in shellfish is of the utmost importance to ensure people's food safety. Marine toxins in shellfish and microalgae in the water column off the south-central coast of Chile (36°â€’43° S) were studied in a network of 64 stations over a 14-month period. The relative abundance of harmful species Alexandrium catenella, Alexandrium ostenfeldii, Protoceratium reticulatum, Dinophysis acuminata, Dinophysis acuta, Pseudo-nitzschia seriata group and P. delicatissima group was analyzed. The detection and quantification of lipophilic toxins and domoic acid (DA) in shellfish was determined by UHPLC-MS/MS, and for Paralytic Shellfish Toxins (PSTs) by HPLC-FD with post-column oxidation, while for a culture of A. ostenfeldii a Hylic-UHPLC-MS/MS was used. Results showed that DA, gonyautoxin (GTX)-2, GTX-3 and pectenotoxin (PTX)-2 were detected below the permitted limits, while Gymnodimine (GYM)-A and 13-desmethylespirolide C (SPX-1) were below the limit of quantitation. According to the distribution and abundance record of microalgae, DA would be associated to P. seriata and P. delicatissima-groups, PTX-2 to D. acuminata, and GTX-2, GTX-3, GYM-A, and SPX-1 to A. ostenfeldii. However, the toxin analysis of an A. ostenfeldii culture from the Biobío region only showed the presence of the paralytic toxins C2, GTX-2, GTX-3, GTX-5 and saxitoxin, therefore, the source of production of GYM and SPX is still undetermined.


Assuntos
Dinoflagellida , Compostos Heterocíclicos com 3 Anéis , Hidrocarbonetos Cíclicos , Iminas , Microalgas , Humanos , Espectrometria de Massas em Tandem , Chile , Toxinas Marinhas/análise , Frutos do Mar/análise , Alimentos Marinhos/análise
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124157, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492462

RESUMO

Tracking pH fluctuations in food samples is important for ensuring food freshness. Fluorescent probes have been widely applied as promising tools for the on-site detection of pH changes; however, most of them can be applied only at either lower or higher pH ranges because their response structures commonly have a single acid dissociation constant (pKa). To address this problem, we designed a fluorescent sensor, called HMB, containing a methylpiperazine group with two pKa values, which exhibited a unique dual-color response to pH changes over a wide pH range. Furthermore, the HMB-based test strips are easily prepared and used as portable labels for the visual monitoring of food spoilage that results in microbial and anaerobic glycolytic pathways in real food (such as cheese and shrimp). To the best of our knowledge, this is the first fluorescent pH sensor with two pKa values, and we expect that this work will inspire more sensor designs for food quality control.


Assuntos
Corantes Fluorescentes , Alimentos Marinhos , Alimentos Marinhos/análise , Corantes Fluorescentes/química , Qualidade dos Alimentos , Embalagem de Alimentos/métodos , Concentração de Íons de Hidrogênio
18.
Ecotoxicol Environ Saf ; 274: 116201, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38489901

RESUMO

Seafood products are globally consumed, and there is an increasing demand for the quality and safety of these products among consumers. Some seafoods are easily contaminated by marine biotoxins in natural environments or cultured farming processes. When humans ingest different toxins accumulated in seafood, they may exhibit different poisoning symptoms. According to the investigations, marine toxins produced by harmful algal blooms and various other marine organisms mainly accumulate in the body organs such as liver and digestive tract of seafood animals. Several regions around the world have reported incidents of seafood poisoning by biotoxins, posing a threat to human health. Thus, most countries have legislated to specify the permissible levels of these biotoxins in seafood. Therefore, it is necessary for seafood producers and suppliers to conduct necessary testing of toxins in seafood before and after harvesting to prohibit excessive toxins containing seafood from entering the market, which therefore can reduce the occurrence of seafood poisoning incidents. In recent years, some technologies which can quickly, conveniently, and sensitively detect biological toxins in seafood, have been developed and validated, these technologies have the potential to help seafood producers, suppliers and regulatory authorities. This article reviews the seafood toxins sources and types, mechanism of action and bioaccumulation of marine toxins, as well as legislation and rapid detection technologies for biotoxins in seafood for official and fishermen supervision.


Assuntos
Doenças Transmitidas por Alimentos , Toxinas Marinhas , Animais , Humanos , Toxinas Marinhas/toxicidade , Alimentos Marinhos/análise , Bioacumulação , Doenças Transmitidas por Alimentos/epidemiologia , Proliferação Nociva de Algas
19.
J Hazard Mater ; 469: 134003, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38492394

RESUMO

In this study, we have effectively prepared a novel fluorescent probe named HDXM based on benzopyran derivatives for the ultrafast detection (within 3 s) of SO2 derivatives or biogenic amines. HDXM showed a noticeable color change after the addition of SO2 derivatives (from purple to colorless) or biogenic amines (from purple to blue), indicating that HDXM can identify two analytes with the naked eye. It is worth noting that HDXM can be used to detect SO2 derivatives in actual sugar samples, and to image HSO3-/SO32- in living cells. More importantly, sensing labels (HDXM-loaded filter paper or agarose hydrogel) enable real-time visual monitoring of salmon freshness through colorimetric and fluorescence dual channels. Compared with the Chinese national standard method, the sensing label is an effective tool for evaluating the freshness of fish. Benefiting from its excellent solubility and fluorescence performance, HDXM can be used as a versatile fluorescent material in various applications, including flexible films, glass coatings, impregnating dyes, printing, and fingerprint ink. HDXM is expected to be a promising and valuable multifunctional tool for food safety and fluorescent materials.


Assuntos
Aminas Biogênicas , Corantes Fluorescentes , Animais , Fluorescência , Alimentos Marinhos/análise , Carboidratos , Peixes
20.
Food Chem ; 446: 138889, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452504

RESUMO

Seafood product labels with accurate allergen contents can avoid and/or minimize allergic reactions. Therefore, an electrochemical immunosensor for the analysis of ß-parvalbumin (ß-PV, a major fish allergen) was developed. Screen-printed carbon electrodes were nanostructured with reduced graphene oxide and gold nanoparticles. The platform was characterized by scanning electron microscopy and elemental analysis. In a sandwich-type assay (∼75 min), the antigen-antibody interaction was detected by chronoamperometry using horseradish peroxidase and TMB-H2O2. A linear range of 25-3000 ng/mL, a sensitivity of 2.99 µA.mL/ng, and a limit of detection of 9.9 ng/mL (corresponding to 0.40 ng in the analysed aliquot) were obtained. The selectivity and possible interferences were assessed by analysing several other food allergens and a marine toxin. The sensor was applied to the analysis of 17 commercial foods and the effect of culinary processing (e.g., grilled, canned, smoked) on the ß-PV concentration was assessed. Traces of ß-PV were successfully quantified and ELISA was used to assess the results.


Assuntos
Técnicas Biossensoriais , Grafite , Nanopartículas Metálicas , Animais , Grafite/química , Ouro/química , Alérgenos/análise , Técnicas Biossensoriais/métodos , Peróxido de Hidrogênio/química , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , Nanopartículas Metálicas/química , Alimentos Marinhos/análise , Limite de Detecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA