RESUMO
Hallucinations can occur in the healthy population, are clinically relevant and frequent symptoms in many neuropsychiatric conditions, and have been shown to mark disease progression in patients with neurodegenerative disorders where antipsychotic treatment remains challenging. Here, we combine MR-robotics capable of inducing a clinically-relevant hallucination, with real-time fMRI neurofeedback (fMRI-NF) to train healthy individuals to up-regulate a fronto-parietal brain network associated with the robotically-induced hallucination. Over three days, participants learned to modulate occurrences of and transition probabilities to this network, leading to heightened sensitivity to induced hallucinations after training. Moreover, participants who became sensitive and succeeded in fMRI-NF training, showed sustained and specific neural changes after training, characterized by increased hallucination network occurrences during induction and decreased hallucination network occurrences during a matched control condition. These data demonstrate that fMRI-NF modulates specific hallucination network dynamics and highlights the potential of fMRI-NF as a novel antipsychotic treatment in neurodegenerative disorders and schizophrenia.
Assuntos
Encéfalo , Alucinações , Imageamento por Ressonância Magnética , Neurorretroalimentação , Humanos , Alucinações/fisiopatologia , Alucinações/diagnóstico por imagem , Alucinações/terapia , Imageamento por Ressonância Magnética/métodos , Neurorretroalimentação/métodos , Masculino , Feminino , Adulto , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Adulto Jovem , Mapeamento Encefálico/métodos , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico por imagemRESUMO
BACKGROUND: Psychotic symptoms (hallucinations and delusions) are a type of neuropsychiatric symptom found during Alzheimer's Disease (AD). OBJECTIVE: This systematic review aims to comprehensively capture, analyse, and evaluate the body of evidence that has investigated associations between brain regions/networks and psychotic symptoms in AD. METHODS: The protocol, created according to the PRISMA guidelines, was pre-registered on OSF (https://osf.io/tg8xp/). Searches were performed using PubMed, Web of Science and PsycInfo. A partial coordinate-based meta-analysis (CBMA) was performed based on data availability. RESULTS: Eighty-two papers were selected: delusions were found to be associated mainly with right fronto-temporal brain regions and the insula; hallucinations mainly with fronto-occipital areas; both were frequently associated with the anterior cingulate cortex. The CBMA, performed on the findings of fourteen papers on delusions, identified a cluster in the frontal lobe, one in the putamen, and a smaller one in the insula. CONCLUSIONS: The available evidence highlights that key brain regions, predominantly in the right frontal lobe, the anterior cingulate cortex, and temporo-occipital areas, appear to underpin the different manifestations of psychotic symptoms in AD and MCI. The fronto-temporal areas identified in relation to delusions may underpin a failure to assimilate correct information and consider alternative possibilities (which might generate and maintain the delusional belief), and dysfunction within the salience network (anterior cingulate cortex and insula) may suggest a contribution for how internal and external stimuli are identified; the fronto-occipital areas linked to hallucinations may indicate diminished sensory processing and non-optimal predictive processing, that together contribute to misinterpretation of stimuli and misperceptions; the fronto-temporal and occipital areas, as well as the anterior cingulate cortex were linked to the psychotic cluster.
Assuntos
Doença de Alzheimer , Delusões , Alucinações , Transtornos Psicóticos , Humanos , Doença de Alzheimer/patologia , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/complicações , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/patologia , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/complicações , Delusões/diagnóstico por imagem , Delusões/patologia , Delusões/etiologia , Delusões/fisiopatologia , Alucinações/etiologia , Alucinações/diagnóstico por imagem , Alucinações/patologia , Alucinações/fisiopatologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologiaRESUMO
Neuropsychiatric symptoms (including anxiety, depression, apathy, impulse-compulsive behaviors and hallucinations) are among the most common non-motor features of Parkinson's disease. Whether these symptoms should be considered as a direct consequence of the pathophysiologic mechanisms of Parkinson's disease is controversial. Morphometric similarity network analysis and epicenter mapping approach were performed on T1-weighted images of 505 patients with Parkinson's disease and 167 age- and sex-matched healthy participants from Parkinson's Progression Markers Initiative database to reveal the commonalities and specificities of distinct neuropsychiatric symptoms. Abnormal cortical co-alteration pattern in patients with neuropsychiatric symptoms was in somatomotor, vision and frontoparietal regions, with epicenters in somatomotor regions. Apathy, impulse-compulsive behaviors and hallucinations shares structural abnormalities in somatomotor and vision regions, with epicenters in somatomotor regions. In contrast, the cortical abnormalities and epicenters of anxiety and depression were prominent in the default mode network regions. By embedding each symptom within their co-alteration space, we observed a cluster composed of apathy, impulse-compulsive behaviors and hallucinations, while anxiety and depression remained separate. Our findings indicate different structural mechanisms underlie the occurrence and progression of different neuropsychiatric symptoms. Based upon these results, we propose that apathy, impulse-compulsive behaviors and hallucinations are directly related to damage of motor circuit, while anxiety and depression may be the combination effects of primary pathophysiology of Parkinson's disease and psychosocial causes.
Assuntos
Ansiedade , Apatia , Córtex Cerebral , Alucinações , Imageamento por Ressonância Magnética , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/fisiopatologia , Doença de Parkinson/complicações , Doença de Parkinson/psicologia , Doença de Parkinson/patologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Alucinações/fisiopatologia , Alucinações/etiologia , Alucinações/diagnóstico por imagem , Alucinações/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Apatia/fisiologia , Ansiedade/fisiopatologia , Ansiedade/diagnóstico por imagem , Depressão/diagnóstico por imagem , Depressão/fisiopatologia , Transtornos Disruptivos, de Controle do Impulso e da Conduta/fisiopatologia , Transtornos Disruptivos, de Controle do Impulso e da Conduta/diagnóstico por imagemRESUMO
Schizophrenia spectrum disorders (SSD) are debilitating, with auditory verbal hallucinations (AVHs) being a core characteristic. While gray matter volume (GMV) reductions are commonly replicated in SSD populations, the neural basis of AVHs remains unclear. Using previously published data, this study comprises two main analyses, one of GMV dissimilarities between SSD and healthy controls (HC), and one of GMV differences specifically associated with AVHs. Structural brain images from 71 adults with (n = 46) and without (n = 25) SSD were employed. Group differences in GMVs of the cortex, anterior cingulate (ACC), superior temporal gyrus (STG), hippocampi, and thalami were assessed. Additionally, volumes of left Heschl's gyrus (HG) in a subgroup experiencing AVHs (AVH+, n = 23) were compared with those of patients who did not (AVH-, n = 23). SSD patients displayed reduced GMVs of the cortex, ACC, STG, hippocampi, and thalami compared to HC. AVH+ had significantly reduced left HG volume when compared to AVH-. Finally, a right-lateralized ventral prefrontal cluster was found to be uniquely associated with AVH severity. This study corroborates previous findings of GMV reductions in SSD cohorts. Chiefly, our secondary analysis suggests that AVHs are associated with language areas and their contralateral homologues.
Assuntos
Substância Cinzenta , Alucinações , Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Alucinações/diagnóstico por imagem , Alucinações/patologia , Alucinações/fisiopatologia , Masculino , Feminino , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Adulto , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Pessoa de Meia-IdadeRESUMO
Hallucinations are a prominent transdiagnostic psychiatric symptom but are also prevalent in individuals who do not require clinical care. Moreover, persistent psychosis-like experience in otherwise healthy individuals may be related to an increased risk to transition to a psychotic disorder. This suggests a common etiology across clinical and non-clinical individuals along a multidimensional psychosis continuum that may be detectable in structural variations of the brain. The current diffusion tensor imaging study assessed 50 healthy individuals (35 females) to identify possible differences in white matter associated with hallucination proneness (HP). This approach circumvents potential confounds related to medication, hospitalization, and disease progression common in clinical individuals. We determined how HP relates to white matter structure in selected association, commissural, and projection fiber pathways putatively linked to psychosis. Increased HP was associated with enhanced fractional anisotropy (FA) in the right uncinate fasciculus, the right anterior and posterior arcuate fasciculus, and the corpus callosum. These findings support the notion of a psychosis continuum, providing first evidence of structural white matter variability associated with HP in healthy individuals. Furthermore, alterations in the targeted pathways likely indicate an association between HP-related structural variations and the putative salience and attention mechanisms that these pathways subserve.
Assuntos
Imagem de Tensor de Difusão , Alucinações , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Feminino , Masculino , Alucinações/diagnóstico por imagem , Alucinações/patologia , Alucinações/fisiopatologia , Imagem de Tensor de Difusão/métodos , Adulto , Adulto Jovem , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Anisotropia , AdolescenteRESUMO
BACKGROUND: Individuals with schizophrenia (SZ) and auditory hallucinations (AHs) display a distorted sense of self and self-other boundaries. Alterations of activity in midline cortical structures such as the prefrontal cortex (mPFC) and anterior cingulate cortex (ACC) during self-reference as well as in the superior temporal gyrus (STG) have been proposed as neuromarkers of SZ and AHs. METHODS: In this randomized, participant-blinded, sham-controlled trial, 22 adults (18 males) with SZ spectrum disorders (SZ or schizoaffective disorder) and frequent medication-resistant AHs received one session of real-time fMRI neurofeedback (NFB) either from the STG (n = 11; experimental group) or motor cortex (n = 11; control group). During NFB, participants were instructed to upregulate their STG activity by attending to pre-recorded sentences spoken in their own voice and downregulate it by ignoring unfamiliar voices. Before and after NFB, participants completed a self-reference task where they evaluated if trait adjectives referred to themselves (self condition), Abraham Lincoln (other condition), or whether adjectives had a positive valence (semantic condition). FMRI activation analyses of self-reference task data tested between-group changes after NFB (self>semantic, post>pre-NFB, experimental>control). Analyses were pre-masked within a self-reference network. RESULTS: Activation analyses revealed significantly (p < 0.001) greater activation increase in the experimental, compared to the control group, after NFB within anterior regions of the self-reference network (mPFC, ACC, superior frontal cortex). CONCLUSIONS: STG-NFB was associated with activity increase in the mPFC, ACC, and superior frontal cortex during self-reference. Modulating the STG is associated with activation changes in other, not-directly targeted, regions subserving higher-level cognitive processes associated with self-referential processes and AHs psychopathology in SZ. CLINICALTRIALS: GOV: Rt-fMRI Neurofeedback and AH in Schizophrenia; https://clinicaltrials.gov/study/NCT03504579.
Assuntos
Alucinações , Imageamento por Ressonância Magnética , Neurorretroalimentação , Esquizofrenia , Lobo Temporal , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/fisiopatologia , Esquizofrenia/terapia , Masculino , Feminino , Adulto , Projetos Piloto , Neurorretroalimentação/métodos , Alucinações/fisiopatologia , Alucinações/diagnóstico por imagem , Alucinações/terapia , Alucinações/etiologia , Lobo Temporal/fisiopatologia , Lobo Temporal/diagnóstico por imagem , Método Simples-Cego , Transtornos Psicóticos/fisiopatologia , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/terapia , Pessoa de Meia-Idade , Autoimagem , Adulto JovemRESUMO
Visual hallucinations in Lewy body disease (LBD) can be differentiated based on phenomenology into minor phenomena (MVH) and complex hallucinations (CVH). MVH include a variety of phenomena, such as illusions, presence and passage hallucinations occurring at early stages of LBD. The neural mechanisms of visual hallucinations are largely unknown. The hodotopic model posits that the hallucination state is due to abnormal activity in specialized visual areas, that occurs in the context of wider network connectivity alterations and that phenomenology of VH, including content and temporal characteristics, may help identify brain regions underpinning these phenomena. Here we investigated both the topological and hodological neural basis of visual hallucinations integrating grey and white matter imaging analyses. We studied LBD patients with VH and age matched healthy controls (HC). VH were assessed using a North-East-Visual-Hallucinations-Interview that captures phenomenological detail. Then we applied voxel-based morphometry and tract based spatial statistics approaches to identify grey and white matter changes. First, we compared LBD patients and HC. We found a reduced grey matter volume and a widespread damage of white tracts in LBD compared to HC. Then we tested the association between CVH and MVH and grey and white matter indices. We found that CVH duration was associated with decreased grey matter volume in the fusiform gyrus suggesting that LBD neurodegeneration-related abnormal activity in this area is responsible for CVH. An unexpected finding was that MVH severity was associated with a greater integrity of white matter tracts, specifically those connecting dorsal, ventral attention networks and visual areas. Our results suggest that networks underlying MVH need to be partly intact and functional for MVH experiences to occur, while CVH occur when cortical areas are damaged. The findings support the hodotopic view and the hypothesis that MVH and CVH relate to different neural mechanisms, with wider implications for the treatment of these symptoms in a clinical context.
Assuntos
Substância Cinzenta , Alucinações , Doença por Corpos de Lewy , Substância Branca , Humanos , Alucinações/fisiopatologia , Alucinações/etiologia , Alucinações/diagnóstico por imagem , Doença por Corpos de Lewy/fisiopatologia , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Substância Cinzenta/fisiopatologia , Feminino , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Substância Branca/fisiopatologia , Masculino , Idoso , Imageamento por Ressonância Magnética , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Persistent auditory verbal hallucinations (pAVHs) are a fundamental manifestation of schizophrenia (SCZ), yet the exact connection between pAVHs and brain structure remains contentious. This study aims to explore the potential correlation between pAVHs and alterations in grey matter volume (GMV) within specific brain regions among individuals diagnosed with SCZ. METHODS: 76 SCZ patients with pAVHs (pAVH group), 57 SCZ patients without AVHs (non-AVH group), and 83 healthy controls (HC group) were investigated using 3 T magnetic resonance imaging. The P3 hallucination item of the Positive and Negative Syndrome Scale was used to assess the severity of pAVHs. Voxel-based morphometry was used to analyze the GMV profile between the three groups. RESULTS: Compared to the non-AVH and HC groups, the pAVH group exhibited extensive reduction in GMV within the frontotemporal cortex. Conversely, no significant difference in GMV was observed between the non-AVH and HC groups. The severity of pAVHs showed a negative correlation with GMV in several regions, including the right fusiform, right inferior temporal, right medial orbitofrontal, right superior frontal, and right temporal pole (p = 0.0036, Bonferroni correction). Stepwise linear regression analysis revealed that GMV in the right temporal pole (ß = -0.29, p = 0.001) and right fusiform (ß = -0.21, p = 0.01) were significantly associated with the severity of pAVHs. CONCLUSIONS: Widespread reduction in GMV is observed within the frontotemporal cortex, particularly involving the right temporal pole and right fusiform, which potentially contribute to the pathogenesis of pAVHs in individuals with chronic SCZ.
Assuntos
Substância Cinzenta , Alucinações , Imageamento por Ressonância Magnética , Esquizofrenia , Lobo Temporal , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Alucinações/diagnóstico por imagem , Alucinações/etiologia , Alucinações/patologia , Alucinações/fisiopatologia , Masculino , Feminino , Adulto , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/patologia , Doença Crônica , Lobo Frontal/diagnóstico por imagem , Lobo Frontal/patologia , Pessoa de Meia-Idade , Adulto Jovem , China , População do Leste AsiáticoRESUMO
Auditory verbal hallucinations (AVHs) involve perceptions, often voices, in the absence of external stimuli, and rank among the most common symptoms of schizophrenia. Metrical stress evaluation requires determination of the stronger syllable in words, and therefore requires auditory imagery, of interest for investigation of hallucinations in schizophrenia. The current functional magnetic resonance imaging study provides an updated whole-brain network analysis of a previously published study on metrical stress, which showed reduced directed connections between Broca's and Wernicke's regions of interest (ROIs) for hallucinations. Three functional brain networks were extracted, with the language network (LN) showing an earlier and shallower blood-oxygen-level dependent (BOLD) response for hallucinating patients, in the auditory imagery condition only (the reduced activation for hallucinations observed in the original ROI-based results were not specific to the imagery condition). This suggests that hypoactivation of the LN during internal auditory imagery may contribute to the propensity to hallucinate. This accords with cognitive accounts holding that an impaired balance between internal and external linguistic processes (underactivity in networks involved in internal auditory imagery and overactivity in networks involved in speech perception) contributes to our understanding of the biological underpinnings of hallucinations.
Assuntos
Alucinações , Imageamento por Ressonância Magnética , Esquizofrenia , Humanos , Alucinações/fisiopatologia , Alucinações/diagnóstico por imagem , Alucinações/psicologia , Alucinações/etiologia , Esquizofrenia/fisiopatologia , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/complicações , Adulto , Masculino , Feminino , Imaginação/fisiologia , Idioma , Mapeamento Encefálico/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiopatologia , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagem , Percepção Auditiva/fisiologiaRESUMO
BACKGROUND AND HYPOTHESIS: Persistent auditory verbal hallucinations (pAVHs) and olfactory identification impairment are common in schizophrenia (SCZ), but the neuroimaging mechanisms underlying both pAVHs and olfactory identification impairment are unclear. This study aimed to investigate whether pAVHs and olfactory identification impairment in SCZ patients are associated with changes in cortical thickness. STUDY DESIGN: In this study, cortical thickness was investigated in 78 SCZ patients with pAVHs (pAVH group), 58 SCZ patients without AVHs (non-AVH group), and 83 healthy controls (HC group) using 3T magnetic resonance imaging. The severity of pAVHs was assessed by the Auditory Hallucination Rating Scale. Olfactory identification deficits were assessed using the Odor Stick Identification Test for Japanese (OSIT-J). In addition, the relationship between the severity of pAVHs and olfactory identification disorder and cortical thickness abnormalities was determined. STUDY RESULTS: Significant reductions in cortical thickness were observed in the right medial orbital sulcus (olfactory sulcus) and right orbital sulcus (H-shaped sulcus) in the pAVH group compared to both the non-AVH and HC groups (Pâ <â .003, Bonferroni correction). Furthermore, the severity of pAVHs was found to be negatively correlated with the reduction in cortical thickness in the olfactory sulcus and H-shaped sulcus. Additionally, a decrease in cortical thickness in the olfactory sulcus showed a positive correlation with the OSIT-J scores (Pâ <â .05, false discovery rate correction). CONCLUSIONS: Cortical thickness abnormalities in the olfactory sulcus may be a common neuroimaging mechanism for pAVHs and olfactory identification deficits in SCZ patients.
Assuntos
Alucinações , Imageamento por Ressonância Magnética , Transtornos do Olfato , Córtex Olfatório , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Masculino , Feminino , Alucinações/diagnóstico por imagem , Alucinações/patologia , Alucinações/fisiopatologia , Alucinações/etiologia , Adulto , Transtornos do Olfato/diagnóstico por imagem , Transtornos do Olfato/patologia , Transtornos do Olfato/fisiopatologia , Transtornos do Olfato/etiologia , Pessoa de Meia-Idade , Córtex Olfatório/diagnóstico por imagem , Córtex Olfatório/patologia , China , Doença Crônica , Adulto Jovem , População do Leste AsiáticoRESUMO
INTRODUCTION: Wide range of evidence associates auditory verbal hallucinations (AVH) with frontotemporal corollary discharge deficit. AVH likely reflect altered experiences of the inner voice and are phenomenologically diverse. The aspects of hallucinations (and related inner voice experiences) that could be explained by this deficit remain unclear. To address this important subject, we examined the temporal cortex activity during two tasks with and without corollary discharge. METHODS: We carried out an event-related BOLD fMRI study to examine temporal cortex activity in seven patients and eight healthy controls during two tasks with and without corollary discharge: reading aloud and hearing, respectively. Data were denoised by removing independent components related to head movement and subsequently processed using finite impulse response basis function to address hemodynamic response variations. To mitigate the small sample size, final analyses were carried out using permutation-based analysis of variance. RESULTS: There was a significant group interaction in the Read relative to Hear condition during the early post-stimulus stage in the left Heschl's Gyrus (p<0.01, corrected for multiple comparisons, at peak voxel [-72,53,41]). This effect was driven by a higher activity in the Read relative to the Hear condition in the same area in the patients (p<0.02, corrected). CONCLUSIONS: Our results are consistent with prior literature indicating abnormal frontotemporal disconnection in participants with hallucinations. The functional repercussions of this deficit were limited to the primary auditory cortex in early post-stimulus stage, which suggests louder experience of the inner voice in patients and could account for the loudness of their hallucinations.
Assuntos
Córtex Auditivo , Esquizofrenia , Humanos , Córtex Auditivo/diagnóstico por imagem , Alucinações/diagnóstico por imagem , Alucinações/etiologia , Imageamento por Ressonância Magnética/métodosRESUMO
Different lines of evidence indicate that the structure and physiology of the basal ganglia and the thalamus is disturbed in schizophrenia. However, it is unknown whether the volume and shape of these subcortical structures are affected in schizophrenia with auditory hallucinations (AH), a core positive symptom of the disorder. We took structural MRI from 63 patients with schizophrenia, including 36 patients with AH and 27 patients who had never experienced AH (NAH), and 51 matched healthy controls. We extracted volumes for the left and right thalamus, globus pallidus, putamen, caudate and nucleus accumbens. Shape analysis was also carried out. When comparing to controls, the volume of the right globus pallidus, thalamus, and putamen, was only affected in AH patients. The volume of the left putamen was also increased in individuals with AH, whereas the left globus pallidus was affected in both groups of patients. The shapes of right and left putamen and thalamus were also affected in both groups. The shape of the left globus pallidus was only altered in patients lacking AH, both in comparison to controls and to cases with AH. Lastly, the general PANSS subscale was correlated with the volume of the right thalamus, and the right and left putamen, in patients with AH. We have found volume and shape alterations of many basal ganglia and thalamus in patients with and without AH, suggesting in some cases a possible relationship between this positive symptom and these morphometric alterations.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Gânglios da Base/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Putamen/diagnóstico por imagem , Alucinações/diagnóstico por imagem , Imageamento por Ressonância MagnéticaRESUMO
OBJECTIVE: Auditory verbal hallucinations (AVHs) in schizophrenia is proved to be associated with dysfunction of mesolimbic-cortical circuits, especially during abnormal salient and internal verbal resource monitoring processing procedures. However, the information flow among areas involved in coordinated interaction implicated the pathophysiology of AVHs remains unclear. METHODS: We used spectral dynamic causal modeling (DCM) to quantify connections among eight critical hubs of reward network in 86 first-episode drug-naïve schizophrenia patients with AVHs (AVH), 93 patients without AVHs (NAVH), and 88 matched normal controls (NC) using resting-state functional magnetic resonance imaging. Group-level connection coefficients, between-group differences and correlation analysis between image measures and symptoms were performed. RESULT: DCM revealed weaker effective connectivity (EC) from right ventral striatum (RVS) to ventral tegmental area (VTA) in AVH compared to NAVH. AVH showed stronger EC from left anterior insula (AI) to RVS, stronger EC from RVS to anterior cingulate cortex (ACC), and stronger EC from VTA to posterior cingulate cortex (PCC) compared to NC. The correlation analysis results were mostly visible in the negative correlation between EC from right AI to ACC and positive sub-score, P1 sub-score, and P3 sub-score of PNASS in group-level. CONCLUSION: These findings suggest that neural causal interactions between the reward network associated with AVHs are disrupted, expanding the evidence for potential neurobiological mechanisms of AVHs. Particularly, dopamine-dependent salience attribution and top-down monitoring impairments and compensatory effects of enhanced excitatory afferents to ACC, which may provide evidence for a therapeutic target based on direct in vivo of AVHs in schizophrenia.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Dopamina , Giro do Cíngulo , Recompensa , Alucinações/diagnóstico por imagem , Alucinações/etiologia , Imageamento por Ressonância MagnéticaRESUMO
Auditory verbal hallucinations (AVH) are distinctive clinical manifestations of schizophrenia. While low-frequency repetitive transcranial magnetic stimulation (rTMS) has demonstrated potential in mitigating AVH, the precise mechanisms by which it operates remain obscure. This study aimed to investigate alternations in structural connectivity and functional connectivity (SC-FC) coupling among schizophrenia patients with AVH prior to and following treatment with 1 Hz rTMS that specifically targets the left temporoparietal junction. Initially, patients exhibited significantly reduced macroscopic whole brain level SC-FC coupling compared to healthy controls. Notably, SC-FC coupling increased significantly across multiple networks, including the somatomotor, dorsal attention, ventral attention, frontoparietal control, and default mode networks, following rTMS treatment. Significant alternations in SC-FC coupling were noted in critical nodes comprising the somatomotor network and the default mode network, such as the precentral gyrus and the ventromedial prefrontal cortex, respectively. The alternations in SC-FC coupling exhibited a correlation with the amelioration of clinical symptom. The results of our study illuminate the intricate relationship between white matter structures and neuronal activity in patients who are receiving low-frequency rTMS. This advances our understanding of the foundational mechanisms underlying rTMS treatment for AVH.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/terapia , Estimulação Magnética Transcraniana/métodos , Imageamento por Ressonância Magnética , Alucinações/diagnóstico por imagem , Alucinações/etiologia , Alucinações/terapia , EncéfaloRESUMO
OBJECTIVE: The brain network serves as the physiological foundation for information processing of the brain. Many studies have reported abnormalities of gamma oscillations in Schizophrenia. The aim of this study was to investigate the gamma-band connectivity in Schizophrenia patients. METHODS: We recorded the resting state electroencephalogram (EEG) for 15 schizophrenia patients with refractory auditory hallucinations and 14 healthy controls, with eyes open and closed. The brain network was constructed based on weighted phase lag index for gamma band. Whole scalp metrics (clustering coefficient, global efficiency and local efficiency) and local region metrics (degree and betweenness centrality) in the frontal and temporal lobes were computed. Correlation analyses between network metrics and symptom scales were examined to find associations with symptom severity. RESULTS: Schizophrenia patients had larger global efficiency and local efficiency (p < 0.05) with eyes closed, probably representing greater brain activity and information exchange. For degree and betweenness centrality, schizophrenia patients showed an increase (p < 0.05) in the temporal lobe but a decrease (p < 0.05) in the frontal lobe with eyes closed and open, potentially account for the patients' symptoms such as hallucinations and thought disorders. Local efficiency and frontal lobe degree were positively and negatively correlated with the scales, respectively (both p < 0.05). CONCLUSIONS: Altered connectivity of the resting state brain network has been revealed and may be associated with the core symptoms of schizophrenia. Our study provides promising evidence for the investigation of the pathological basis of Schizophrenia and could aid in objective diagnosis.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Eletroencefalografia , Encéfalo/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Mapeamento Encefálico , Alucinações/diagnóstico por imagem , Alucinações/etiologiaRESUMO
Auditory hallucinations (AH) are a debilitating symptom in psychosis, impacting cognition and real world functioning. Recent thought conceptualizes AH as a consequence of long-range brain communication dysfunction, or circuitopathy, within the auditory sensory/perceptual, language, and cognitive control systems. Recently we showed in first-episode psychosis (FEP) that, despite overall intact white matter integrity in the cortical-cortical and cortical-subcortical language tracts and the callosal tracts connecting auditory cortices, the severity of AH correlated inversely with white matter integrity. However, that hypothesis-driven isolation of specific tracts likely missed important white matter concomitants of AH. In this report, we used a whole-brain data-driven dimensional approach using correlational tractography to associate AH severity with white matter integrity in a sample of 175 individuals. Diffusion Spectrum Imaging (DSI) was used to image diffusion distribution. Quantitative Anisotropy (QA) in three tracts was greater with increased AH severity (FDR < 0.001) and QA in three tracts was lower with increased AH severity (FDR < 0.01). White matter tracts showing associations between QA and AH were generally associated with frontal-parietal-temporal connectivity (tracts with known relevance for cognitive control and the language system), in the cingulum bundle, and in prefrontal inter-hemispheric connectivity. The results of this whole brain data-driven analysis suggest that subtle white matter alterations connecting frontal, parietal, and temporal lobes in the service of sensory-perceptual, language/semantic, and cognitive control processes impact the expression of auditory hallucination in FEP. Disentangling the distributed neural circuits involved in AH should help to develop novel interventions, such as non-invasive brain stimulation.
Assuntos
Transtornos Psicóticos , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Transtornos Psicóticos/complicações , Transtornos Psicóticos/diagnóstico por imagem , Alucinações/diagnóstico por imagem , Alucinações/etiologia , Imagem de Difusão por Ressonância Magnética , EncéfaloRESUMO
BACKGROUND: Minor hallucinations (mHs) and well-structured major hallucinations (MHs) are common symptoms of Parkinson's disease (PD) psychosis. OBJECTIVES: To investigate the resting-state networks (RSNs) in patients with PD without hallucinations (PD-nH), with mH (PD-mH), and with MH (PD-MH). METHODS: A total of 73 patients with PD were enrolled (27 PD-nH, 23 PD-mH, and 23 PD-MH). Using seed-based functional connectivity analyses, we investigated the RSNs supposedly related to hallucinations in PD: the default mode network (DMN), executive control network (ECN), dorsal attention network (DAN), ventral attention network (VAN), and visual network (VN). We compared the cognitive function and RSN connectivity among the three groups. In addition, we performed a seed-to-seed analysis to examine the inter-network connectivity within each group using the corresponding RSN seeds. RESULTS: PD-MH group had lower test scores for attention and visuospatial functions compared with those in the other groups. The connectivity of the right intracalcarine cortex within the DAN was lower in the PD-MH group than in the others. The PD-mH and PD-MH groups showed higher connectivity in the left orbitofrontal cortex within DMN compared with the PD-nH group, whereas the connectivity was lower in the right middle frontal gyrus (MFG) within ECN, precuneus cortex within VAN, right middle temporal gyrus and precuneus cortex within DAN, and left MFG within VN. The PD-mH and PD-MH groups showed different inter-network connectivity between the five RSNs, especially regarding DAN connectivity. CONCLUSIONS: DAN dysfunction may be a key factor in the progression from mH to MH in patients with PD. © 2023 International Parkinson and Movement Disorder Society.
Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Mapeamento Encefálico , Imageamento por Ressonância Magnética , Rede Nervosa/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Alucinações/diagnóstico por imagem , Alucinações/etiologiaRESUMO
The human brain comprises a large-scale structural network of regions and interregional pathways, including a selectively defined set of highly central and interconnected hub regions, often referred to as the "rich club", which may play a pivotal role in the integrative processes of the brain. A quintessential symptom of schizophrenia, auditory verbal hallucinations (AVH) have shown a decrease in severity following low-frequency repetitive transcranial magnetic stimulation (rTMS). However, the underlying mechanism of rTMS in treating AVH remains elusive. This study investigated the effect of low-frequency rTMS on the rich-club organization within the brain in patients diagnosed with schizophrenia who experience AVH using diffusion tensor imaging data. Through by constructing structural connectivity networks, we identified several critical rich hub nodes, which constituted a rich-club subnetwork, predominantly located in the prefrontal cortices. Notably, our findings revealed enhanced connection strength and density within the rich-club subnetwork following rTMS treatment. Furthermore, we found that the decreased connectivity within the subnetwork components, including the rich-club subnetwork, was notably enhanced in patients following rTMS treatment. In particular, the increased connectivity strength of the right median superior frontal gyrus, which functions as a critical local bridge, with the right postcentral gyrus exhibited a significant correlation with improvements in both positive symptoms and AVH. These findings provide valuable insights into the role of rTMS in inducing reorganizational changes within the rich-club structural network in schizophrenia and shed light on potential mechanisms through which rTMS may alleviate AVH.
Assuntos
Esquizofrenia , Substância Branca , Humanos , Estimulação Magnética Transcraniana/métodos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/terapia , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Alucinações/diagnóstico por imagem , Alucinações/etiologia , Alucinações/terapiaRESUMO
Auditory Verbal Hallucinations (AVH) are highly prevalent in patients with schizophrenia. AVH with high emotional content lead to particularly poor functional outcome. Increasing evidence shows that AVH are associated with alterations in structure and function in language and memory related brain regions. However, neural correlates of AVH with emotional content remain unclear. In our study (n = 91), we related resting-state cerebral perfusion to AVH and emotional content, comparing four groups: patients with AVH with emotional content (n = 13), without emotional content (n = 14), without hallucinations (n = 20) and healthy controls (n = 44). Patients with AVH and emotional content presented with increased perfusion within the amygdala and the ventromedial and dorsomedial prefrontal cortex (vmPFC/ dmPFC) compared to patients with AVH without emotional content. In addition, patients with any AVH showed hyperperfusion within the anterior cingulate gyrus, the vmPFC/dmPFC, the right hippocampus, and the left pre- and postcentral gyrus compared to patients without AVH. Our results indicate metabolic alterations in brain areas critical for the processing of emotions as key for the pathophysiology of AVH with emotional content. Particularly, hyperperfusion of the amygdala may reflect and even trigger emotional content of AVH, while hyperperfusion of the vmPFC/dmPFC cluster may indicate insufficient top-down amygdala regulation in patients with schizophrenia.
Assuntos
Esquizofrenia , Humanos , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Alucinações/diagnóstico por imagem , Alucinações/etiologia , Emoções , PerfusãoRESUMO
PURPOSE: We have reported the relationship between low pulvinar nuclei (PN) intensity in susceptibility-weighted imaging and the appearance of visual hallucinations and cognitive function. The aim of the study was to examine the changes in the quantitative susceptibility mapping (QSM) in patients with Parkinson's disease (PD) who underwent deep brain stimulation (DBS) and verify whether the PN susceptibility value (SV) on QSM can predict visual hallucination and cognitive changes after DBS. METHODS: This study examined 24 patients with PD who underwent DBS along with QSM imaging on magnetic resonance imaging (MRI). All MRIs were performed within 3 months before surgery. The PN SV was further assessed based on the QSM. Then, associations were examined among cognitive changes, hallucination, and PN SV. The cognitive function of the patient was compared immediately before surgery and at 1 year postoperatively. RESULTS: Visual hallucinations were observed in seven patients during the follow-up period. The PN SV was ≥0.045 ppm in nine patients with PD, and six of them had visual hallucinations, whereas only one of 15 patients with PD with SV of <0.045 ppm had visual hallucinations (Fisher's exact test, p = .0037). CONCLUSIONS: The SV of >0.045 ppm at the PN in QSM in patients with PD may provide useful information suggesting visual hallucination and cognitive deterioration after DBS treatment.