Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
J Fish Dis ; 47(6): e13933, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38400598

RESUMO

Nodular gill disease (NGD) is an emerging condition associated with amoeba trophozoites in freshwater salmonid farms. However, unambiguous identification of the pathogens still must be achieved. This study aimed to identify the amoeba species involved in periodic NGD outbreaks in two rainbow trout (Oncorhynchus mykiss) farms in Northeastern Italy. During four episodes (February-April 2023), 88 fish were euthanized, and their gills were evaluated by macroscopic, microscopic and histopathological examination. The macroscopic and microscopic severity of the lesions and the degree of amoebae infestation were scored and statistically evaluated. One gill arch from each animal was put on non-nutrient agar (NNA) Petri dishes for amoeba isolation, cultivation and subsequent identification with SSU rDNA sequencing. Histopathology confirmed moderate to severe lesions consistent with NGD and mild to moderate amoeba infestation. The presence of amoebae was significantly correlated with lesion severity. Light microscopy of cultured amoebae strains and SSU rDNA analysis revealed the presence of a previously characterized amoeba Naegleria sp. strain GERK and several new strains: two strains from Hartmannelidae, three vannelid amoebae from the genus Ripella and cercozoan amoeba Rosculus. Despite the uncertainty in NGD etiopathogenesis and amoebae pathogenic role, identifying known and new amoebae leans towards a possible multi-aetiological origin.


Assuntos
Amebíase , Doenças dos Peixes , Brânquias , Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/parasitologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/epidemiologia , Itália , Amebíase/veterinária , Amebíase/parasitologia , Brânquias/parasitologia , Brânquias/patologia , Amoeba/genética , Amoeba/isolamento & purificação , Amoeba/classificação , Aquicultura , Amebozoários/genética , Amebozoários/isolamento & purificação , Amebozoários/classificação , Amebozoários/fisiologia , Filogenia
2.
Acta Parasitol ; 69(1): 609-615, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38285086

RESUMO

PURPOSE: Acanthamoeba spp. can be found in natural and artificial environments, which reflects their high adaptability to different conditions. Based on the available data, there is scarce information about the isolation of amoeba from milk. This study aimed to investigate the probable presence of Acanthamoeba in milk used for calf feeding. METHODS: 200 milk samples from 50 industrial and traditional farms were collected. The samples were filtered and cultured on the 1.5% Non-nutrient agar medium. The amoebic growth was examined with an inverted microscope daily. DNA was extracted from the positive plates, and a PCR reaction was undertaken using the primers amplifying the Acanthamoeba 18 S rRNA gene. Five samples were purified and sequenced using specific primers. Maximum likelihood reconstructions were performed using the phylogenetic program MEGA software. The osmo and thermotolerance of isolated trophozoites were examined as well. RESULTS: Out of 200 milk samples, Acanthamoeba was isolated from 27 (13.5%). The phylogenetic tree represents that all the isolates belonged to the genotype T4. Results of thermo and osmotolerance tests showed that isolates could develop at 37 and 43 ◦C. Besides, trophozoites survived at 0.5 M mannitol and 1 M. CONCLUSION: For the first time, Acanthamoeba spp. were isolated from milk used to feed dairy calves. Due to Acanthamoeba's neglected role in pathogen persistence and survival, hygiene instructions should be reconsidered.


Assuntos
Acanthamoeba , Leite , Leite/parasitologia , Acanthamoeba/classificação , Acanthamoeba/genética , Acanthamoeba/isolamento & purificação , RNA Ribossômico 18S/genética , Filogenia , Genótipo , Ração Animal/parasitologia , Amebíase/parasitologia , Amebíase/veterinária
4.
J Zoo Wildl Med ; 54(2): 272-281, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37428689

RESUMO

Amebiasis caused by Entamoeba invadens is an important disease in reptile collections, causing severe morbidity and mortality. Surveillance of the parasite at the Singapore Zoo was carried out over a 4-yr period by PCR testing on reptiles that presented with lethargy and enteritis for disease investigation. Asymptomatic reptiles sharing the same enclosures as positive individuals were also tested as part of outbreak investigation. Animals in the collection that tested positive for the parasite were treated with metronidazole at various doses, with the addition of paromomycin for two cases, until a negative PCR test result was obtained at the end of the treatment course. A total of 97 samples from 49 individuals across 19 species of reptiles were obtained, of which 24 samples (24.7%) from 19 animals were positive for E. invadens. Of these positive samples, 11 samples were for disease investigation, eight samples for outbreak surveillance, and five samples for treatment monitoring. Treatment was initiated for 10 animals, four of which were showing clinical signs of disease. The parasite was cleared in nine of these 10 animals (90%), with eight animals receiving metronidazole as a sole therapeutic agent. A total of nine animals died of the disease, four of which (44.4%) presented dead or died within 24 h of presentation. Necrotizing enteritis was a consistent postmortem finding resulting in gastrointestinal perforation in two cases, and coelomic adhesions and hepatic trophozoites were each seen in five animals. The results suggest that the management of Entamoeba epizootics in the collection requires prompt outbreak investigation. Diagnosis of the disease with advanced diagnostic tools like PCR, endoscopy, and ultrasonography and treatment with metronidazole in both symptomatic and asymptomatic animals may reduce mortalities during an outbreak.


Assuntos
Amebíase , Entamoeba , Enterite , Animais , Metronidazol , Singapura/epidemiologia , Amebíase/veterinária , Répteis/parasitologia , Enterite/veterinária
5.
J Vet Diagn Invest ; 35(3): 311-316, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36908206

RESUMO

Free-living amoebae are rare causes of morbidity and mortality in humans and animals around the globe. Because the route of exposure and clinical progression of disease caused by different species of amoebae may vary in people and animals, determining the species of amoeba present is important. We describe here a fatal infection by the free-living amoeba Balamuthia mandrillaris in a Siberian tiger (Panthera tigris altaica). The 17-y-old patient had a rapid clinical decline after a peracute onset of severe lethargy, dull mentation, and anorexia. Autopsy did not identify a cause of death. Histology revealed inflammation associated with amoebic trophozoites in the brain, lungs, and iris of one eye. These amoebae were confirmed to be B. mandrillaris based on a PCR assay and sequencing. Although there are subtle morphologic differences between cyst stages of Acanthamoeba spp., B. mandrillaris, and Naegleria fowleri when present and identified on routine staining, other modalities, including PCR, immunofluorescence, electron microscopy, and immunohistochemistry, are typically utilized to confirm the pathogen involved in these cases. We review the reports of balamuthosis in animals.


Assuntos
Acanthamoeba , Amebíase , Amoeba , Balamuthia mandrillaris , Naegleria fowleri , Tigres , Humanos , Animais , Amebíase/diagnóstico , Amebíase/veterinária
6.
Parasit Vectors ; 16(1): 112, 2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959596

RESUMO

BACKGROUND: Paramoeba perurans is the causative agent of amoebic gill disease (AGD) in Atlantic salmon Salmo salar L. and many other farmed marine fish species worldwide. The first cases of AGD in Norway were reported in 2006, and it has subsequently become established as a significant gill disease that affects the country's salmonid aquaculture industry. Despite several decades of research on AGD, there is still a lack of knowledge of the biology of P. perurans and its interactions with its hosts and the environment. METHODS: The growth and morphology of 10 clonal isolates of P. perurans were studied. The isolates were from farmed Atlantic salmon and ballan wrasse that had been obtained from different sites along the Norwegian coast between 2013 and 2015. The morphology and population growth patterns of these clonal amoeba isolates were examined in vitro using light microscopy and real-time reverse transcription polymerase chain reaction under a range of temperatures (4, 12, 15 and 21 °C) and salinities (20, 25, 30 and 34 ‰). RESULTS: We found distinct morphological differences between both locomotive and floating forms of the amoeba isolates. The locomotive amoebae of the clonal isolates varied in size (area) from 453 µm2 to 802 µm2. There were differences in the growth patterns of the clonal amoeba isolates under similar conditions, and in their responses to variations in temperature and salinity. While most of the isolates grew well at salinities of 25-34 ‰, a significant reduction in growth was seen at 20 ‰. Most of the amoeba isolates grew well at 12 °C and 15 °C. At 4 °C, amoebae grew slower and, in contrast to the other temperatures, no extended pseudopodia could be seen in their floating form. The isolates seemed to reach a plateau phase faster at 21 °C, with a higher number of smaller, rounded amoebae. CONCLUSIONS: The differences observed here between clonal isolates of P. perurans should be further examined in experimental in vivo challenge studies, as they may be of relevance to the virulence and proliferation potential of this amoeba on gills. Potential differences in virulence within P. perurans could have implications for management strategies for AGD.


Assuntos
Amebíase , Doenças dos Peixes , Perciformes , Salmo salar , Animais , Amebíase/veterinária , Amebíase/epidemiologia , Reação em Cadeia da Polimerase em Tempo Real , Doenças dos Peixes/epidemiologia , Brânquias
7.
Fish Shellfish Immunol ; 130: 612-623, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150413

RESUMO

The present study investigated the involvement of key molecular regulators of oxidative stress in amoebic gill disease (AGD), a parasitic infestation in Atlantic salmon. In addition, the study evaluated how these molecular biomarkers responded when AGD-affected fish were exposed to a candidate chemotherapeutic peracetic acid (PAA). Atlantic salmon were experimentally infected with the parasite Neoparameoba perurans, the causative agent of AGD, by bath exposure and after 2 weeks, the fish were treated with three commercial PAA products (i.e., Perfectoxid, AquaDes and ADDIAqua) at a dose of 5 ppm. Two exposure durations were evaluated - 30 min and 60 min. Sampling was performed 24 h and 2 weeks after PAA treatment (equivalent to 2- and 4-weeks post infection). At each sampling point, the following parameters were evaluated: gross gill pathology, gill parasitic load, plasma reactive oxygen species (ROS) and total antioxidant capacity (TAC), histopathology and gene expression profiling of genes with key involvement in oxidative stress in the gills and olfactory organ. AGD did not result in systemic oxidative stress as ROS and TAC levels remained unchanged. There were no clear patterns of AGD-mediated regulation of the oxidative stress biomarkers in both the gills and olfactory organ; significant changes in the expression were mostly related to time rather than infection status. However, the expression profiles of the oxidative stress biomarkers in AGD-affected salmon, following treatment with PAA, revealed that gills and olfactory organ responded differently - upregulation was prominent in the gills while downregulation was more frequent in the olfactory organ. The expression of catalase, glutathione S-transferase and thioredoxin reductase 2 was significantly affected by the treatments, both in the gills and olfactory organ, and these alterations were influenced by the duration of exposure and PAA product type. Parasitic load in the gills did significantly increase after treatment regardless of the product and exposure duration; the parasite was undetectable in some fish treated with AquaDes for 30 mins. However, PAA treated groups for 30 min showed lower macroscopic gill scores than the infected-untreated fish. Histology disclosed the classic pathological findings such as multifocal hyperplasia and increased number of mucous cells in AGD-affected fish. Microscopic scoring of gill injuries showed that AGD-infected-PAA-treated fish had lower scores, however, an overall trend could not be established. The morphology and structural integrity of the olfactory organ were not significantly altered by parasitism or PAA treatment. Collectively, the results indicate that AGD did not affect the systemic and mucosal oxidative status of Atlantic salmon. However, such a striking profile was changed when AGD-affected fish were exposed to oxidative chemotherapeutics. Moreover, the gills and olfactory organ demonstrated distinct patterns of gene expression of oxidative stress biomarkers in AGD-infected-PAA-treated fish. Lastly, PAA treatment did not fully resolve the infection, but appeared not to worsen the mucosal health either.


Assuntos
Amebíase , Doenças dos Peixes , Parasitos , Salmo salar , Amebíase/tratamento farmacológico , Amebíase/parasitologia , Amebíase/veterinária , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Catalase/metabolismo , Doenças dos Peixes/genética , Brânquias/metabolismo , Glutationa Transferase/metabolismo , Estresse Oxidativo , Ácido Peracético , Espécies Reativas de Oxigênio/metabolismo , Salmo salar/genética , Salmo salar/metabolismo , Tiorredoxina Redutase 2/metabolismo
8.
Eur J Protistol ; 85: 125912, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36027870

RESUMO

A strain with the characters of the genus Vannella was isolated from the water layer immediately above the deep-sea sediment collected in the south-western Atlantic Ocean, ca. 4.6 km deep. Small-subunit ribosomal RNA (SSU rRNA) and cytochrome c oxidase (Cox1) gene phylogenetic analyses showed that the new strain branches within the clade of previously isolated unnamed Vannella strains from different marine fish and invertebrate hosts. Although the SSU rRNA gene sequences of these strains show variability within 2% of all nucleotide positions without any regular pattern, the available Cox1 gene sequences from within this clade are identical. Given the morphological homogeneity of the revealed clade, all of its strains can be assigned under the same species name, and the variation of their SSU rRNA is comparable to its intragenomic variation, as shown by molecular cloning of the PCR amplicons. High variability of the SSU rRNA gene sequences within and between independently isolated morphologically identical strains in combination with highly conserved Cox1 gene sequences may be a feature in some clades of Vannella, but is not a general rule for this genus, as SSU rRNA genes conserved between different morphospecies occur in several other clades within Vannella.


Assuntos
Amebíase/veterinária , Amebozoários/isolamento & purificação , Doenças dos Peixes/virologia , Linguados/parasitologia , Amebíase/virologia , Amebozoários/classificação , Animais , Argentina , Oceano Atlântico , Complexo IV da Cadeia de Transporte de Elétrons/genética , Linguados/genética , Filogenia , RNA Ribossômico/genética , Água do Mar/parasitologia , Análise de Sequência de DNA , Espanha , Especificidade da Espécie
9.
Dis Aquat Organ ; 150: 1-16, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35796507

RESUMO

The genera Paramoeba and Neoparamoeba (Amoebozoa, Dactylopodida, Paramoebidae) include well-known opportunistic pathogens associated with fish (N. peruans; amoebic gill disease), lobsters, molluscs and sea urchins, but only rarely with crabs (grey crab disease of blue crabs). Following reports of elevated post-capture mortality in edible crabs Cancer pagurus captured from a site within the English Channel fishery in the UK, a novel disease (amoebic crab disease, ACD) was detected in significant proportions of the catch. We present histopathological, transmission electron microscopy and molecular phylogenetic data, showing that this disease is defined by colonization of haemolymph, connective tissues and fixed phagocytes by amoeboid cells, leading to tissue destruction and presumably death in severely diseased hosts. The pathology was strongly associated with a novel amoeba with a phylogenetic position on 18S rRNA gene trees robustly sister to Janickina pigmentifera (which groups within the current circumscription of Paramoeba/Neoparamoeba), herein described as Janickina feisti n. sp. We provide evidence that J. feisti is associated with ACD in 50% of C. pagurus sampled from the mortality event. A diversity of other paramoebid sequence types, clustering with known radiations of N. pemaquidensis and N. aestuarina and a novel N. aestuarina sequence type, was detected by PCR in most of the crabs investigated, but their detection was much less strongly associated with clinical signs of disease. The discovery of ACD in edible crabs from the UK is discussed relative to published historical health surveys for this species.


Assuntos
Amebíase , Amoeba , Braquiúros , Neoplasias , Amebíase/veterinária , Animais , Neoplasias/veterinária , Filogenia , Reino Unido/epidemiologia
10.
J Fish Dis ; 45(9): 1301-1321, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35707921

RESUMO

Gill disease is an important cause of economic losses, fish mortality and reduced animal welfare in salmonid farming. We performed a prospective cohort study, following groups of Atlantic salmon in Western Norway with repeated sampling and data collection from the hatchery phase and throughout the 1st year at sea. The objective was to determine if variation in pathogen prevalence and load, and zoo- and phytoplankton levels had an impact on gill health. Further to describe the temporal development of pathogen prevalence and load, and gill pathology, and how these relate to each other. Neoparamoeba perurans appeared to be the most important cause of gill pathology. No consistent covariation and no or weak associations between the extent of gill pathology and prevalence and load of SGPV, Ca. B. cysticola and D. lepeophtherii were observed. At sea, D. lepeophtherii and Ca. B. cysticola persistently infected all fish groups. Fish groups negative for SGPV at sea transfer were infected at sea and fish groups tested negative before again testing positive. This is suggestive of horizontal transmission of infection at sea and may indicate that previous SGPV infection does not protect against reinfection. Coinfections with three or more putative gill pathogens were found in all fish groups and appear to be the norm in sea-farmed Atlantic salmon in Western Norway.


Assuntos
Amebíase , Doenças dos Peixes , Salmo salar , Amebíase/epidemiologia , Amebíase/patologia , Amebíase/veterinária , Animais , Estudos de Coortes , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/patologia , Brânquias/patologia , Humanos , Estudos Prospectivos
11.
Sci Rep ; 12(1): 5860, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393457

RESUMO

Neoparamoeba perurans, the aetiological agent of amoebic gill disease, remains a persistent threat to Atlantic salmon mariculture operations worldwide. Innovation in methods of AGD control is required yet constrained by a limited understanding of the mechanisms of amoebic gill disease pathogenesis. In the current study, a comparative transcriptome analysis of two N. perurans isolates of contrasting virulence phenotypes is presented using gill-associated, virulent (wild type) isolates, and in vitro cultured, avirulent (clonal) isolates. Differential gene expression analysis identified a total of 21,198 differentially expressed genes between the wild type and clonal isolates, with 5674 of these genes upregulated in wild type N. perurans. Gene set enrichment analysis predicted gene sets enriched in the wild type isolates including, although not limited to, cortical actin cytoskeleton, pseudopodia, phagocytosis, macropinocytic cup, and fatty acid beta-oxidation. Combined, the results from these analyses suggest that upregulated gene expression associated with lipid metabolism, oxidative stress response, protease activity, and cytoskeleton reorganisation is linked to pathogenicity in wild type N. perurans. These findings provide a foundation for future AGD research and the development of novel therapeutic and prophylactic AGD control measures for commercial aquaculture.


Assuntos
Amebíase , Doenças dos Peixes , Salmo salar , Amebíase/genética , Amebíase/veterinária , Animais , Doenças dos Peixes/genética , Doenças dos Peixes/patologia , Perfilação da Expressão Gênica , Brânquias/patologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-34952237

RESUMO

Globally, Atlantic salmon (Salmo salar Linnaeus) aquaculture is now routinely affected by amoebic gill disease (AGD; Neoparamoeba perurans). The disease proliferates throughout the summer and is implicated in decreasing tolerance of salmon to environmental perturbations, yet little empirical evidence exists to support these observations. Using salmon acclimated to 15 or 19 °C, our aim was to determine the effects of clinically light-moderate (industry-relevant) AGD on metabolism (MO2rest and MO2max), aerobic scope (MO2max - MO2rest), excess post-exercise oxygen consumption (EPOC), and hypoxia tolerance. An increase in MO2rest (~8% and ~ 13% increase within the 15 and 19 °C acclimation groups, respectively) with increasing disease signs demonstrated an increase in baseline energy requirements as the disease progressed. Conversely, MO2max remained stable at both temperatures (~364 mg O2 kg-1 h-1), resulting in a decline in aerobic scope by 13 and 19% in the 15 and 19 °C groups, respectively. There was evidence of a decrease in hypoxia tolerance as the dissolved oxygen concentrations at loss of equilibrium increased by ~8% with more severe lesion coverage of the gills. These results suggest an increase in basal energy requirements and reduction in hypoxia tolerance as AGD proliferates, lending support to the idea that AGD reduces environmental tolerance. However, the lack of an effect of acclimation temperature indicates that the temperature-disease interaction may be more complicated than currently thought.


Assuntos
Amebíase , Doenças dos Peixes , Salmo salar , Amebíase/etiologia , Amebíase/metabolismo , Amebíase/veterinária , Animais , Doenças dos Peixes/etiologia , Doenças dos Peixes/metabolismo , Doenças dos Peixes/patologia , Brânquias/metabolismo , Hipóxia/metabolismo
13.
Dis Aquat Organ ; 145: 1-13, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34080578

RESUMO

Salmon gill disease in Norway is in most cases associated with a range of different pathogens, stress and environmental factors. Paramoeba perurans and other amoebae have been isolated during such disease outbreaks. Other amoebae isolated from salmon with gill disease in Norway include P. pemaquidensis, Tetramitus sp. and Vannella sp. Here we tested the pathogenicity of the first 2 species in challenge experiments. We found that even when clonal cultures of P. pemaquidensis established an infection on the gills of salmon, it failed to cause gill disease, while Tetramitus sp. appeared to be unable to establish a lasting infection on the gills of healthy salmon. The result of the challenge with P. pemaquidensis confirms the results of similar studies performed in the USA and in Australia. Tetramitus sp. is probably a common amoeba in the marine environment, and its presence on the gills of farmed salmon may just be accidental. Based on this study, we conclude that P. perurans is the only known amoeba in marine salmon farming associated with amoebic gill disease in Norway.


Assuntos
Amebíase , Doenças dos Peixes , Salmo salar , Amebíase/veterinária , Animais , Austrália , Células Clonais , Doenças dos Peixes/epidemiologia , Brânquias , Noruega/epidemiologia
14.
Parasitol Res ; 120(8): 2873-2879, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34191130

RESUMO

Naegleria fowleri, a free-living and thermophilic ameba, is the etiological agent of primary amebic meningoencephalitis (PAM). PAM is a rare and highly fatal neurologic disease in humans, and has been rarely documented in animal species. This report describes the pathological and etiological findings of a fatal case of N. fowleri-associated meningoencephalitis in a cow in Southern Brazil. Microscopic findings were consistent with severe, multifocal, hemorrhagic, and necrosuppurative meningoencephalitis associated with a large number of amebic trophozoites compatible with N. fowleri. Brain samples subjected to molecular assays generated a 315 bp fragment, which presented 99% identity with a N. fowleri sequence previously deposited in GenBank. This is the first study reporting the molecular detection of N. fowleri in a case of cattle meningoencephalitis in Latin America, and the obtained sequence represents the first GenBank deposit of N. fowleri identified in Brazil to this day. Additionally, the case reported is the second occurrence of N. fowleri-associated disease in the same city, drawing attention to the local importance of infection by this ameba and potential risk for human infections.


Assuntos
Amebíase , Infecções Protozoárias do Sistema Nervoso Central , Meningoencefalite , Naegleria fowleri , Amebíase/diagnóstico , Amebíase/epidemiologia , Amebíase/veterinária , Animais , Brasil , Bovinos , Infecções Protozoárias do Sistema Nervoso Central/diagnóstico , Infecções Protozoárias do Sistema Nervoso Central/epidemiologia , Infecções Protozoárias do Sistema Nervoso Central/veterinária , Feminino , Meningoencefalite/diagnóstico , Meningoencefalite/veterinária , Naegleria fowleri/isolamento & purificação
15.
J Zoo Wildl Med ; 52(1): 232-240, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33827181

RESUMO

Amoebiasis is a significant protozoal disease of reptiles causing nonspecific clinical signs including diarrhea, anorexia, and lethargy. It frequently results in acute death. Investigation of the pathophysiology of amoebiasis in reptiles has been hampered by the inability to accurately identify amoeba to the species level using conventional techniques. This study reviewed reptile medical records from the Wildlife Conservation Society's archives from 1998 to 2017. Amoebae were identified histologically in 54 cases in 31 different species. Of these, amoebiasis was the cause of death in 32 (18 chelonians, 7 lizards, and 7 snakes), a significant co-morbidity in 14 (six chelonians, two lizards, and six snakes), and seen incidentally in eight cases (one chelonian, six lizards, and one snake). Relocation from one enclosure to another was also evaluated and 65% of cases had been moved within 180 days of death (median 46 days). Frozen tissue samples from 19 of these cases were tested via an Entamoeba (genus-specific) polymerase chain reaction (PCR) assay. PCR products were sequenced and Entamoeba species were identified. Six individuals were positive for Entamoeba invadens (three chelonians, two snakes, one lizard), two for Entamoeba ranarum (both snakes), and one for Entamoeba terrapinae (chelonian); the other 10 cases were negative via PCR. Entamoeba ranarum has typically been considered a disease of amphibians with only one report of disease in a snake. Entamoeba terrapinae has only been reported without associated disease in chelonians. These results suggest that amoebiasis is a complicated and nuanced disease of reptiles, and warrants additional study.


Assuntos
Amebíase/veterinária , Animais de Zoológico , Répteis/parasitologia , Amebíase/epidemiologia , Amebíase/parasitologia , Animais , Estudos Retrospectivos
16.
J Zoo Wildl Med ; 52(1): 310-314, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33827191

RESUMO

Granulomatous amoebic encephalitis caused by the free-living amoeba Balamuthia mandrillaris is a highly fatal disease that was first isolated from a mandrill (Mandrillus sphinx), and has since been diagnosed in several nonhuman primates including orangutans. Indirect immunofluorescence antibody (IFA) techniques for Balamuthia have been used in the fields of human medicine and epidemiology both for exposure assessment and screening of clinical patients for antemortem diagnosis. Stored serum samples from five captive Northwest Bornean orangutans (Pongo pygmaeus pygmaeus), including one who had died from B. mandrillaris infection, housed at a single facility were screened with a human IFA assay for B. mandrillaris. Only the single, clinically affected individual was seropositive, and the results suggest that the use of the available human B. mandrillaris IFA assay is a novel diagnostic option for detection of Balamuthia antibodies in this species. A validated screening serological test could be used in individuals exhibiting signs consistent with granulomatous amoebic encephalitis to facilitate earlier antemortem diagnosis of Balamuthia infection, which is critical if treatment is to be pursued. This pilot study presents the use of serological detection methods for B. mandrillaris screening in a nonhuman primate. Subsequent use of the B. mandrillaris IFA assay in the larger captive population should be pursued for validation of the test and to provide further information on seroprevalence and evaluation of risk factors for exposure to Balamuthia and subsequent development of disease.


Assuntos
Amebíase/veterinária , Doenças dos Símios Antropoides/diagnóstico , Balamuthia mandrillaris , Técnica Indireta de Fluorescência para Anticorpo/métodos , Pongo pygmaeus/parasitologia , Amebíase/diagnóstico , Animais , Animais de Zoológico , Doenças dos Símios Antropoides/parasitologia , Feminino , Humanos
17.
Int J Parasitol ; 51(7): 545-557, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675796

RESUMO

One of the first critical steps in the pathogenesis of amoebic gill disease (AGD) of farmed salmon is the adhesion of the causative amoeba to the host. The current study aimed to investigate the potential involvement of glycan-binding proteins expressed on the extracellular surface of Neoparamoeba perurans in gill tissue recognition and binding. The glycan-binding properties of the surface membrane of N. perurans and the carbohydrate binding profile of Atlantic salmon gill-derived epithelial cells were identified through the use of glycan and lectin microarrays, respectively. The occurrence of specific carbohydrate-mediated binding was then further assessed by in vitro attachment assays using microtitre plates pre-coated with the main glycan candidates. Adhesion assays were also performed in the presence of exogenous saccharides with the aim of blocking glycan-specific binding activity. Comparative analysis of the results from both lectin and glycan arrays showed significant overlap, as some glycans to which binding by the amoeba was seen were reflected as being present on the gill epithelial cells. The two main candidates proposed to be involved in amoeba attachment to the gills are mannobiose and N-acetylgalactosamine (GalNAc). Adhesion of amoebae significantly increased by 33.5 and 23% when cells were added to α1,3-Mannobiose-BSA and GalNAc-BSA coated plates. The observed increased in attachment was significantly reduced when the amoebae were incubated with exogenous glycans, further demonstrating the presence of mannobiose- and GalNAc-binding sites on the surfaces of the cells. We believe this study provides the first evidence for the presence of a highly specific carbohydrate recognition and binding system in N. perurans. These preliminary findings could be of extreme importance given that AGD is an external parasitic infestation and much of the current research on the development of alternative treatment strategies relies on either instant amoeba detachment or blocking parasite attachment.


Assuntos
Amebíase , Doenças dos Peixes , Salmo salar , Amebíase/veterinária , Animais , Brânquias , Lectinas , Polissacarídeos
18.
J Fish Dis ; 44(7): 1025-1031, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33683734

RESUMO

Amoebic gill disease (AGD) is a significant issue in Atlantic salmon mariculture. Research on the development of treatments or vaccines uses experimental challenges where salmon is exposed to amoebae concentrations ranging from 500 to 5,000/L. However, the water concentrations of N. perurans on affected salmon farms are much lower. The lowest concentration of N. perurans previously reported to cause AGD was 10/L. Here, we report that concentrations as low as 0.1/L of N. perurans can cause AGD. We propose that concentrations of N. perurans that reflect those measured on salmon farms should be used for future experimental challenges.


Assuntos
Amebíase/veterinária , Amebozoários , Brânquias/parasitologia , Salmo salar , Amebíase/parasitologia , Animais , Doenças dos Peixes/parasitologia
19.
J Appl Microbiol ; 131(1): 80-92, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33326661

RESUMO

AIMS: Assess bacterial diversity and richness in mucus samples from the gills of Atlantic salmon in comparison to preserved or fixed gill filament tissues. Ascertain whether bacterial diversity and richness are homogeneous upon different arches of the gill basket. METHODS AND RESULTS: Bacterial communities contained within gill mucus were profiled using 16S rRNA gene sequencing. No significant difference in taxa richness, alpha (P > 0·05) or beta diversity indices (P > 0·05) were found between the bacterial communities of RNAlater preserved gill tissues and swab-bound mucus. A trend of lower richness and diversity indices were observed in bacterial communities from posterior hemibranchs. CONCLUSIONS: Non-lethal swab sampling of gill mucus provides a robust representation of bacterial communities externally upon the gills. Bacterial communities from the fourth arch appeared to be the least representative overall. SIGNIFICANCE AND IMPACT OF THE STUDY: The external mucosal barriers of teleost fish (e.g. gill surface) play a vital role as a primary defence line against infection. While research effort on the role of microbial communities on health and immunity of aquaculture species continues, the collection and sampling processes to obtain these data require evaluation so methodologies are consistently applied across future studies that aim to evaluate the composition of branchial microbiomes.


Assuntos
Bactérias/isolamento & purificação , Brânquias/microbiologia , Microbiota , Salmo salar/microbiologia , Amebíase/diagnóstico , Amebíase/microbiologia , Amebíase/veterinária , Animais , Aquicultura , Bactérias/classificação , Bactérias/genética , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/microbiologia , Brânquias/anatomia & histologia , Muco/microbiologia , RNA Ribossômico 16S/genética
20.
J Fish Dis ; 44(6): 739-745, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33159703

RESUMO

Paramoeba perurans causes amoebic gill disease (AGD), which is a major problem in aquaculture worldwide. The parasite can be cultured in vitro, but to this date, no method for long-term storage of the clones exists. In this study, we describe a method for cryopreservation of Paramoeba perurans. The method was successfully employed on four out the five clones we tested. The thawing success rate, that is the percentage of successfully thawed vials relative to the total number of vials that were thawed, differed for the clones and ranged from 25% to 100%. The age of the clones seemed to have a negative impact on the ability to survive cryopreservation.


Assuntos
Amebozoários , Criopreservação/veterinária , Amebíase/diagnóstico , Amebíase/parasitologia , Amebíase/veterinária , Amebozoários/fisiologia , Criopreservação/métodos , Doenças dos Peixes/diagnóstico , Doenças dos Peixes/parasitologia , Noruega
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA