Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Carbohydr Polym ; 337: 122190, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710564

RESUMO

Starch structure is often characterized by the chain-length distribution (CLD) of the linear molecules formed by breaking each branch-point. More information can be obtained by expanding into a second dimension: in the present case, the total undebranched-molecule size. This enables answers to questions unobtainable by considering only one variable. The questions considered here are: (i) are the events independent which control total size and CLD, and (ii) do ultra-long amylopectin (AP) chains exist (these chains cannot be distinguished from amylose chains using simple size separation). This was applied here to characterize the structures of one normal (RS01) wheat and two high-amylose (AM) mutant wheats (an SBEIIa knockout and an SBEIIa and SBEIIb knockout). Absolute ethanol was used to precipitate collected fractions, then size-exclusion chromatography for total molecular size and for the size of branches. The SBEIIa and SBEIIb mutations significantly increased AM and IC contents and chain length. The 2D plots indicated the presence of small but significant amounts of long-chain amylopectin, and the asymmetry of these plots shows that the corresponding mechanisms share some causal effects. These results could be used to develop plants producing improved starches, because different ranges of the chain-length distribution contribute independently to functional properties.


Assuntos
Amilopectina , Amilose , Sintase do Amido , Triticum , Triticum/metabolismo , Triticum/química , Triticum/genética , Amilopectina/química , Amilopectina/biossíntese , Amilose/química , Amilose/biossíntese , Sintase do Amido/genética , Sintase do Amido/metabolismo , Sintase do Amido/química , Amido/química , Amido/biossíntese , Amido/metabolismo , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
Int J Biol Macromol ; 192: 342-349, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34599992

RESUMO

Nitrogen (N) affects common buckwheat quality by affecting starch and amino acids (AAs) content, but its molecular mechanism is still unclear. We selected two common buckwheat varieties with high and low starch content, and designed two treatments with 180 and 0 kg N/ha. Application of high-N led to significant increases in starch, amylose and amylopectin content. Of 1337 differentially expressed proteins (DEPs) induced by high-N conditions. 472DEPs were significantly upregulated and 176DEPs downregulated for Xinong9976. 239DEPs were significantly upregulated and 126DEPs downregulated for Beizaosheng. The six alpha-glucan phosphorylases, three alpha-amylases, one granule-bound starch synthase 1 and one sucrose synthase exhibited higher expression at the 180 kg N/ha than at the 0 kg N/ha. In addition, high-N application promoted arginine, leucine, isoleucine and valine biosynthesis. This study revealed the effect of N on the starch and AA content of common buckwheat and its mechanism. The crucial proteins identified may develop the quality of common buckwheat.


Assuntos
Aminoácidos/biossíntese , Metabolismo Energético , Fagopyrum/efeitos dos fármacos , Fagopyrum/fisiologia , Fertilizantes , Nitrogênio/metabolismo , Proteômica , Amido/metabolismo , Amilopectina/análise , Amilopectina/biossíntese , Amilose/análise , Amilose/biossíntese , Metabolismo dos Carboidratos , Cromatografia Líquida , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Proteômica/métodos , Amido/química , Espectrometria de Massas em Tandem
3.
Int J Biol Macromol ; 187: 113-118, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34298045

RESUMO

Our study was based on the fact that physiological changes in the plant resulting from the growth conditions alter the properties of the starch. An experimental trial was installed with cassava plants in poor phosphorus soil. A part of plants received phosphate fertilization at a level three times higher than the recommended dose, in order to provide high availability of phosphorus in the soil. The plants grew for two years and the starches were isolated at three times in the second vegetative cycle. The starches had A-type X-ray pattern. Starches isolated from cassava plants grown in soils with high phosphorus had increases of more than 100% in the content of bound phosphorus, which caused changes in the size of the granules, amylose, swelling power, solubility, pasting and thermal properties. These results indicate possibilities of increasing the commercial value of native cassava starch due to the expansion of use, considering the range of uses of phosphate starches for food and non-food purposes.


Assuntos
Amilose/análise , Manihot/química , Fósforo/análise , Amilose/biossíntese , Manihot/crescimento & desenvolvimento
4.
Sci Rep ; 11(1): 11461, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075092

RESUMO

In ubiquitin-mediated post-translational modifications, RING finger families are emerged as important E3 ligases in regulating biological processes. Amylose and amylopectin are two major constituents of starch in wheat seed endosperm. Studies have been found the beneficial effects of high amylose or resistant starch on health. The ubiquitin-mediated post-translational regulation of key enzymes for amylose/amylopectin biosynthesis (GBSSI and SBEII) is still unknown. In this study, the genome-wide analysis identified 1272 RING domains in 1255 proteins in wheat, which is not reported earlier. The identified RING domains classified into four groups-RING-H2, RING-HC, RING-v, RING-G, based on the amino acid residues (Cys, His) at metal ligand positions and the number of residues between them with the predominance of RING-H2 type. A total of 1238 RING protein genes were found to be distributed across all 21 wheat chromosomes. Among them, 1080 RING protein genes were identified to show whole genome/segmental duplication within the hexaploid wheat genome. In silico expression analysis using transcriptome data revealed 698 RING protein genes, having a possible role in seed development. Based on differential gene expression and correlation analysis of 36 RING protein genes in diverse (high and low) amylose mutants and parent, 10 potential RING protein genes found to be involved in high amylose biosynthesis and significantly associated with two starch biosynthesis genes; GBSSI and SBEIIa. Characterization of mutant lines using next-generation sequencing method identified unique mutations in 698 RING protein genes. This study signifies the putative role of RING-type E3 ligases in amylose biosynthesis and this information will be helpful for further functional validation and its role in other biological processes in wheat.


Assuntos
Amilose , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Triticum , Ubiquitina-Proteína Ligases , Amilose/biossíntese , Amilose/genética , Estudo de Associação Genômica Ampla , Triticum/genética , Triticum/metabolismo , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/genética
5.
Mol Biol Rep ; 48(3): 2473-2483, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33834358

RESUMO

Starch is biosynthesized during seed development and this process is regulated by many bZIP proteins in bread wheat. Abscisic acid (ABA), an important phyto-hormone involved in various physiological processes mediated by bZIPs in plants including seed development. The 'Group A' TabZIP transcription factors play important roles in the ABA signaling pathway in Arabidopsis, rice and other cereal crops but their role in regulation of amylose biosynthesis in wheat is limited. In this study 83 'Group A' TabZIPs were characterized by gene expression analysis in wheat amylose mutants. A set of 17 TabZIPs was selected on the basis of differential expression (> 2 fold) in low and high amylose mutants from RNA-seq data and validated by qRT PCR. Based on qRT PCR and correlation analysis out of the 17 TabZIPs six differentially expressed candidate TabZIPs were identified, involving in high amylose biosynthesis. The TabZIP175.2, identified as upregulated in all high amylose lines and TabZIP90.2, TabZIP129.1, TabZIP132.2, TabZIP143 and TabZIP159.2 were found downregulated in all low amylose lines, after exogenous supply of ABA. Proximal promoter analysis of starch pathway genes revealed the presence of ABA-responsive elements (ABREs) that are putative binding sites for bZIPs. Collectively, these findings indicated the involvement of putative six candidate TabZIPs as transcriptional regulators of amylose related genes via an ABA-dependent pathway in wheat. This study could help the investigators to make an informed decision to edit wheat genome for high/low amylose content using gene-editing technologies.


Assuntos
Ácido Abscísico/metabolismo , Amilose/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Triticum/metabolismo , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina Básica/genética , Sítios de Ligação , Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Mutação/genética , Elementos de Resposta/genética , Transdução de Sinais/genética , Amido/metabolismo , Transcriptoma/genética , Triticum/genética
6.
Plant Sci ; 305: 110843, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33691970

RESUMO

Wheat starch is composed of two glucose polymers, amylose and amylopectin. Although several starch synthases are responsible for its synthesis, only the waxy protein is associated with the amylose synthesis. The waxy protein composition of 45 Spanish common wheat landraces from Andalusia (southern Spain) was evaluated. Within these materials, five novel alleles for the Wx-A1 gene were detected. Four of them showed functional proteins (Wx-A1p, Wx-A1q, Wx-A1r and Wx-A1s), although some amino acid changes were found in the mature protein sequence. However, one of them (Wx-A1t) exhibited loss of the Wx-A1 protein, and its base sequence contained one large insert (1,073 bp) in the tenth exon, that interrupted the ORF of the Wx-A1 gene. This insert exhibited the characteristics of a Class II transposon of the Mutator superfamily, which had not been described previously, and has been named Baetica. The conservation of such inserts could be related to their low effect on vital properties of the plants, as occurs with most of the genes associated with technological quality. In conclusion, the evaluation of old wheat landraces showed that, in addition to their use as alternative crops, these materials could be a useful source of interesting genes in wheat quality improvement.


Assuntos
Amilose/biossíntese , Amilose/genética , Proteínas de Plantas/metabolismo , Sintase do Amido/genética , Sintase do Amido/metabolismo , Triticum/genética , Triticum/metabolismo , Alelos , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Elementos de DNA Transponíveis/genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Genes de Plantas , Variação Genética , Genótipo , Mutagênese Insercional , Proteínas de Plantas/genética
7.
J Plant Physiol ; 258-259: 153389, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33652172

RESUMO

Starch is a natural storage carbohydrate in plants and algae. It consists of two relatively simple homo-biopolymers, amylopectin and amylose, with only α-1,4 and α-1,6 linked glucosyl units. Starch is an essential source of nutrition and animal food, as well as an important raw material for industry. However, despite increasing knowledge, detailed information about its structure and turnover are largely lacking. In the last decades, most data were generated using bulk experiments, a method which obviously presents limitations regarding a deeper understanding of the starch metabolism. Here, we discuss some unavoidable questions arising from the existing data. We focus on a few examples related to starch biosynthesis, degradation, and structure - where these limitations strongly emerge. Closing these knowledge gaps will also be extremely important for taking the necessary steps in order to set up starch-providing crops for the challenges of the ongoing climate changes, as well as for increasing the usability of starches for industrial applications by biotechnology.


Assuntos
Amilopectina/metabolismo , Amilose/metabolismo , Produtos Agrícolas/metabolismo , Amilopectina/biossíntese , Amilose/biossíntese , Biopolímeros/metabolismo , Biotecnologia
8.
Proc Natl Acad Sci U S A ; 117(42): 26503-26512, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33020297

RESUMO

Starch properties can be modified by mutating genes responsible for the synthesis of amylose and amylopectin in the endosperm. However, little is known about the effects of such targeted modifications on the overall starch biosynthesis pathway and broader metabolism. Here we investigated the effects of mutating the OsSBEIIb gene encoding starch branching enzyme IIb, which is required for amylopectin synthesis in the endosperm. As anticipated, homozygous mutant plants, in which OsSBEIIb was completely inactivated by abolishing the catalytic center and C-terminal regulatory domain, produced opaque seeds with depleted starch reserves. Amylose content in the mutant increased from 19.6 to 27.4% and resistant starch (RS) content increased from 0.2 to 17.2%. Many genes encoding isoforms of AGPase, soluble starch synthase, and other starch branching enzymes were up-regulated, either in their native tissues or in an ectopic manner, whereas genes encoding granule-bound starch synthase, debranching enzymes, pullulanase, and starch phosphorylases were largely down-regulated. There was a general increase in the accumulation of sugars, fatty acids, amino acids, and phytosterols in the mutant endosperm, suggesting that intermediates in the starch biosynthesis pathway increased flux through spillover pathways causing a profound impact on the accumulation of multiple primary and secondary metabolites. Our results provide insights into the broader implications of perturbing starch metabolism in rice endosperm and its impact on the whole plant, which will make it easier to predict the effect of metabolic engineering in cereals for nutritional improvement or the production of valuable metabolites.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Oryza/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/química , Amilopectina/biossíntese , Amilopectina/química , Amilose/biossíntese , Amilose/química , Metabolismo dos Carboidratos , Grão Comestível/genética , Endosperma/metabolismo , Mutação , Oryza/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Sementes/metabolismo , Amido/biossíntese , Sintase do Amido/química , Sintase do Amido/genética , Sintase do Amido/metabolismo
9.
Int J Mol Sci ; 21(19)2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32977627

RESUMO

Starch is a water-insoluble polymer of glucose synthesized as discrete granules inside the stroma of plastids in plant cells. Starch reserves provide a source of carbohydrate for immediate growth and development, and act as long term carbon stores in endosperms and seed tissues for growth of the next generation, making starch of huge agricultural importance. The starch granule has a highly complex hierarchical structure arising from the combined actions of a large array of enzymes as well as physicochemical self-assembly mechanisms. Understanding the precise nature of granule architecture, and how both biological and abiotic factors determine this structure is of both fundamental and practical importance. This review outlines current knowledge of granule architecture and the starch biosynthesis pathway in relation to the building block-backbone model of starch structure. We highlight the gaps in our knowledge in relation to our understanding of the structure and synthesis of starch, and argue that the building block-backbone model takes accurate account of both structural and biochemical data.


Assuntos
Amilose/biossíntese , Metabolismo dos Carboidratos/fisiologia , Endosperma/metabolismo , Configuração de Carboidratos
10.
Carbohydr Polym ; 230: 115656, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887861

RESUMO

How various isoforms of rice-starch biosynthesis enzymes interact during amylose and amylopectin synthesis is explored. The chain-length distributions of amylopectin and amylose from 95 varieties with different environmental and genetic backgrounds were obtained using size- exclusion chromatography, and fitted with biosynthesis-derived models based on isoforms of starch synthase (SSI-SSIV), starch branching enzyme (SBE, including SBEI and SBEII) and granule-bound starch synthase (GBSS) that are involved in amylose and amylopectin synthesis. It is usually thought that these are synthesized by separate enzymes. However, the amount of longer amylopectin chains correlated with that of shorter amylose chains, indicating that GBSS, SBE and SS affect both amylose and amylopectin synthesis. Further, the activity of GBSS in amylose correlated with that of SS in amylopectin. This new understanding of which enzymes are suggested by the statistics to be involved in both amylose and amylopectin synthesis could help rice breeders develop cereals with targeted properties.


Assuntos
Amilopectina/biossíntese , Amilose/biossíntese , Endosperma/metabolismo , Oryza/metabolismo , Enzima Ramificadora de 1,4-alfa-Glucana/química , Grão Comestível/metabolismo , Proteínas de Plantas/química , Sintase do Amido/química
11.
J Integr Plant Biol ; 62(6): 832-846, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31180179

RESUMO

High amylose starch can be produced by plants deficient in the function of branching enzymes (BEs). Here we report the production of transgenic cassava (Manihot esculenta Crantz) with starches containing up to 50% amylose due to the constitutive expression of hair-pin dsRNAs targeting the BE1 or BE2 genes. All BE1-RNAi plant lines (BE1i) and BE2-RNAi plant lines (BE2i) were grown up in the field, but with reduced total biomass production. Considerably high amylose content in the storage roots of BE2i plant lines was achieved. Storage starch granules of BE1i and BE2i plants had similar morphology as wild type (WT), however, the size of BE1i starch granules were bigger than that of WT. Comparisons of amylograms and thermograms of all three sources of storage starches revealed dramatic changes to the pasting properties and a higher melting temperature for BE2i starches. Glucan chain length distribution analysis showed a slight increase in chains of DP>36 in BE1i lines and a dramatic increase in glucan chains between DP 10-20 and DP>40 in BE2i lines. Furthermore, BE2i starches displayed a B-type X-ray diffraction pattern instead of the A-type pattern found in BE1i and WT starches. Therefore, cassava BE1 and BE2 function differently in storage root starch biosynthesis.


Assuntos
Enzima Ramificadora de 1,4-alfa-Glucana/genética , Amilose/biossíntese , Inativação Gênica , Genes de Plantas , Manihot/enzimologia , Manihot/genética , Transcrição Gênica , Enzima Ramificadora de 1,4-alfa-Glucana/metabolismo , Amilopectina/química , Cristalização , Regulação para Baixo/genética , Regulação da Expressão Gênica de Plantas , Manihot/crescimento & desenvolvimento , Fenótipo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Amido/metabolismo , Amido/ultraestrutura , Temperatura , Viscosidade , Difração de Raios X
12.
Plant Physiol ; 182(2): 870-881, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31694903

RESUMO

Starch granules contain two Glc polymers, amylopectin and amylose. Amylose makes up approximately 10% to 30% (w/w) of all natural starches thus far examined, but mutants of crop and model plants that produce amylose-free starch are generally indistinguishable from their wild-type counterparts with respect to growth, starch content, and granule morphology. Since the function and adaptive significance of amylose are unknown, we asked whether there is natural genetic variation in amylose synthesis within a wild, uncultivated species. We examined polymorphisms among the 1,135 sequenced accessions of Arabidopsis (Arabidopsis thaliana) in GRANULE-BOUND STARCH SYNTHASE (GBSS), encoding the enzyme responsible for amylose synthesis. We identified 18 accessions that are predicted to have polymorphisms in GBSS that affect protein function, and five of these accessions produced starch with no or extremely low amylose (< 0.5% [w/w]). Eight further accessions had amylose contents that were significantly lower or higher than that of Col-0 (9% [w/w]), ranging from 5% to 12% (w/w). We examined the effect of the polymorphisms on GBSS function and uncovered three mechanisms by which GBSS sequence variation led to different amylose contents: (1) altered GBSS abundance, (2) altered GBSS activity, and (3) altered affinity of GBSS for binding PROTEIN TARGETING TO STARCH1-a protein that targets GBSS to starch granules. These findings demonstrate that amylose in leaves is not essential for the viability of some naturally occurring Arabidopsis genotypes, at least over short timescales and under some environmental conditions and open an opportunity to explore the adaptive significance of amylose.


Assuntos
Amilose/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Sintase do Amido/genética , Sintase do Amido/metabolismo , Amido/análise , Amilopectina/análise , Amilopectina/genética , Amilopectina/metabolismo , Amilose/análise , Amilose/genética , Amilose/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Grânulos Citoplasmáticos/enzimologia , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Variação Genética , Genótipo , Fenótipo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Amido/metabolismo
13.
Methods Enzymol ; 627: 189-213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31630740

RESUMO

Because polysaccharides have very complicated chemical structures constructed by a great diversity of monosaccharide residues and glycosidic linkages, enzymatic approaches have been identified as powerful tools to precisely synthesize polysaccharides as the reactions progress in highly controlled regio- and stereoarrangements. α-Glucan phosphorylase (GP) is one of the enzymes that have acted as catalysts for the practical production of well-defined polysaccharides. GP can catalyze enzymatic polymerization of α-d-glucose 1-phosphate (Glc-1-P) as a monomer from a maltooligosaccharide primer to produce a pure amylose with well-defined structure via the formation of α(1→4)-glycosidic linkages. Here, the author presents methods which achieve the enzymatic synthesis of functional amylosic materials and amylose analog polysaccharides by GP-catalyzed enzymatic polymerization approaches. As the polymerization progresses at the non-reducing end of the primer, it can be conducted using polymeric primers that are modified at the reducing end and covalently attached on suitable polymeric chains. By using such polymeric primers, various amylose-grafted functional materials can be enzymatically synthesized. For example, the detailed protocol for the synthesis of amylose-grafted poly(γ-glutamic acid) is described. GP shows loose specificity for the recognition of substrates, which allows to recognize some monosaccharide 1-phosphates as analog substrates of Glc-1-P. Representatively, the experimental procedure of the GP-catalyzed enzymatic polymerization of α-d-glucosamine 1-phosphate as the analog substrate is presented to synthesize an α(1→4)-linked glucosamine polymer, that is called amylosamine. By means of a similar approach catalyzed by GP, several amylose analog polysaccharides have been obtained.


Assuntos
Amilose/biossíntese , Biocatálise , Glucosamina/análogos & derivados , Glucofosfatos/metabolismo , Amilose/análogos & derivados , Glucosamina/metabolismo , Polimerização , Polissacarídeos/biossíntese
14.
Carbohydr Polym ; 224: 115185, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472846

RESUMO

Starch branching enzymes (SBEs) play a major role in determining starch molecular structure in cereal endosperm. This study investigates how SBEIIs contribute to the chain-length distributions (CLDs) of both amylopectin and amylose, obtained by enzymatic debranching of native starch. Wheat starches with low (37%) to high (93%) amylose content were obtained through altering SBEII in planta. Multiple components were detected in both amylose and amylopectin CLDs. Model fitting of these CLDs reveals a quantitative association between the enzyme activities in amylopectin and amylose. SBEIIa modifies shorter branches (degree of polymerization DP ≲ 12) in amylopectin and longer amylose chains with a CLD peak at ˜3000 DP. SBEIIb acts on longer branches (DP≲ 32) in amylopectin, while its effect on amylose fine structure is not significant. Using both the amylose and amylopectin models to analyze the CLD reveals connections between amylose and amylopectin in wheat starch biosynthesis.


Assuntos
Amilopectina/química , Amilose/química , Sistema da Enzima Desramificadora do Glicogênio/metabolismo , Amido/química , Amido/metabolismo , Triticum/metabolismo , Amilopectina/biossíntese , Amilose/biossíntese , Polimerização , Triticum/enzimologia
15.
Food Chem ; 301: 125258, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31374534

RESUMO

Starch is the abundant component in rice endosperm, and its microstructure determines the quality and functional properties of rice grain. It is well known that the starch fine structure is markedly influenced by high temperature during grain filling. However, it is poorly understood on the competition among starch synthesis related enzymes as well as the interaction between amylose and amylopectin biosynthesis under increased growing temperature. In this study, the non-waxy and waxy rice were planted under normal and high temperatures. Parameterizing analysis of the starch microstructure using mathematical models proved that amylose synthesis competed with the elongation of long amylopectin chains (DP>60); Short chains of amylopectin can be used as the substrate for elongation of longer amylopectin chains; High temperature eliminated the consistency and regularity of the synthesis of amylose and amylopectin. In addition, enzyme assay proved the validity of fitting results from mathematical modeling analysis of starch.


Assuntos
Amilopectina/biossíntese , Amilose/biossíntese , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Temperatura Alta , Oryza/crescimento & desenvolvimento , Oryza/metabolismo
16.
Sci Rep ; 8(1): 17240, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30467374

RESUMO

Starch makes up 70% of the wheat grain, and is an important source of calories for humans, however, the overconsumption of wheat starch may contribute to nutrition-associated health problems. The challenge is to develop resistant starch including high amylose wheat varieties with health benefits. Adapting advance genomic approaches in EMS-induced mutant lines differing in amylose content, basic leucine zipper (bZIP) regulatory factors that may play role in controlling amylose biosynthesis were identified in wheat. bZIP transcription factors are key regulators of starch biosynthesis genes in rice and maize, but their role in regulating these genes in wheat is poorly understood. A genome-wide survey identified 370 wheat bZIPs, clustered in 11 groups, showing variations in amino acids composition and predicted physicochemical properties. Three approaches namely, whole transcriptome sequencing, qRT-PCR, and correlation analysis in contrasting high and low amylose mutants and their parent line identified 24 candidate bZIP (positive and negative regulators), suggesting bZIPs role in high amylose biosynthesis. bZIPs positive role in high amylose biosynthesis is not known. In silico interactome studies of candidate wheat bZIP homologs in Arabidopsis and rice identified their putative functional role. The identified bZIPs are involved in stress-related pathways, flower and seed development, and starch biosynthesis. An in-depth analysis of molecular mechanism of novel candidate bZIPs may help in raising and improving high amylose wheat varieties.


Assuntos
Amilose/biossíntese , Fatores de Transcrição de Zíper de Leucina Básica/genética , Genoma de Planta/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Triticum/genética , Arabidopsis/genética , Grão Comestível/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas/genética , Genômica/métodos , Amido/genética
17.
Plant Biotechnol J ; 16(10): 1723-1734, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29499105

RESUMO

Modifications to the composition of starch, the major component of wheat flour, can have a profound effect on the nutritional and technological characteristics of the flour's end products. The starch synthesized in the grain of conventional wheats (Triticum aestivum) is a 3:1 mixture of the two polysaccharides amylopectin and amylose. Altering the activity of certain key starch synthesis enzymes (GBSSI, SSIIa and SBEIIa) has succeeded in generating starches containing a different polysaccharide ratio. Here, mutagenesis, followed by a conventional marker-assisted breeding exercise, has been used to generate three mutant lines that produce starch with an amylose contents of 0%, 46% and 79%. The direct and pleiotropic effects of the multiple mutation lines were identified at both the biochemical and molecular levels. Both the structure and composition of the starch were materially altered, changes which affected the functionality of the starch. An analysis of sugar and nonstarch polysaccharide content in the endosperm suggested an impact of the mutations on the carbon allocation process, suggesting the existence of cross-talk between the starch and carbohydrate synthesis pathways.


Assuntos
Amilose/biossíntese , Grão Comestível/metabolismo , Sintase do Amido/genética , Triticum/genética , Endosperma/metabolismo , Mutação , Sintase do Amido/metabolismo , Triticum/enzimologia
18.
Biochem Soc Trans ; 45(4): 885-893, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28673938

RESUMO

Starch is the most widespread and abundant storage carbohydrate in plants and the main source of carbohydrate in the human diet. Owing to its remarkable properties and commercial applications, starch is still of growing interest. Its unique granular structure made of intercalated layers of amylopectin and amylose has been unraveled thanks to recent progress in microscopic imaging, but the origin of such periodicity is still under debate. Both amylose and amylopectin are made of linear chains of α-1,4-bound glucose residues, with branch points formed by α-1,6 linkages. The net difference in the distribution of chain lengths and the branching pattern of amylose (mainly linear), compared with amylopectin (racemose structure), leads to different physico-chemical properties. Amylose is an amorphous and soluble polysaccharide, whereas amylopectin is insoluble and exhibits a highly organized structure of densely packed double helices formed between neighboring linear chains. Contrarily to starch degradation that has been investigated since the early 20th century, starch production is still poorly understood. Most enzymes involved in starch growth (elongation, branching, debranching, and partial hydrolysis) are now identified. However, their specific action, their interplay (cooperative or competitive), and their kinetic properties are still largely unknown. After reviewing recent results on starch structure and starch growth and degradation enzymatic activity, we discuss recent results and current challenges for growing polysaccharides on granular surface. Finally, we highlight the importance of novel stochastic models to support the analysis of recent and complex experimental results, and to address how macroscopic properties emerge from enzymatic activity and structural rearrangements.


Assuntos
Modelos Moleculares , Plantas/metabolismo , Amido/metabolismo , Amilopectina/biossíntese , Amilopectina/química , Amilopectina/metabolismo , Amilose/biossíntese , Amilose/química , Amilose/metabolismo , Configuração de Carboidratos , Grânulos Citoplasmáticos , Glucanos/biossíntese , Glucanos/química , Glucanos/metabolismo , Hidrólise , Proteínas de Plantas/metabolismo , Plantas/enzimologia , Técnicas de Síntese em Fase Sólida/tendências , Solubilidade , Amido/biossíntese , Amido/química , Processos Estocásticos
19.
J Sci Food Agric ; 97(4): 1229-1234, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27312246

RESUMO

BACKGROUND: Wx and SSIIa are central genes for determining starch physicochemical properties and rice endosperm starch is composed of linear amylose, which is entirely synthesized by granule bound starch synthase I (GBSSI, encoded by Wx) and branched amylopectin. In the present study, different haplotypes of rice were examined to investigate the combined effects of pivotal genes in the metabolic chain of starch, Wx and SSIIa. RESULTS: Wx haplotypes differed in terms of apparent amylose content (AAC) and gel consistency (GC). The I-3 [haplotype I (Int1T/Ex10C) of Wx and haplotype 3 (A-G-TT) of SSIIa] and the I-4 combinations of rice had better eating and cooking qualities (ECQs) with lower AAC, lower gelatinization temperature (GT) and softer GC. CONCLUSION: The characteristic parameters of Rapid Visco-analyser (RVA) could distinguish differences in AAC and GC but not GT. The I-3 and I-4 haplotype combinations of Wx and SSIIa represent key targets for the production of rice with better ECQs. © 2016 Society of Chemical Industry.


Assuntos
Amilose/biossíntese , Endosperma/metabolismo , Genes de Plantas , Haplótipos , Oryza/genética , Proteínas de Plantas/genética , Sintase do Amido/genética , Amilopectina/metabolismo , Culinária , Grão Comestível/metabolismo , Grão Comestível/normas , Géis , Humanos , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Amido/metabolismo , Amido/normas , Sintase do Amido/metabolismo , Temperatura
20.
Plant Physiol ; 173(1): 887-906, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881726

RESUMO

A deeper understanding of the regulation of starch biosynthesis in rice (Oryza sativa) endosperm is crucial in tailoring digestibility without sacrificing grain quality. In this study, significant association peaks on chromosomes 6 and 7 were identified through a genomewide association study (GWAS) of debranched starch structure from grains of a 320 indica rice diversity panel using genotyping data from the high-density rice array. A systems genetics approach that interrelates starch structure data from GWAS to functional pathways from a gene regulatory network identified known genes with high correlation to the proportion of amylose and amylopectin. An SNP in the promoter region of Granule Bound Starch Synthase I was identified along with seven other SNPs to form haplotypes that discriminate samples into different phenotypic ranges of amylose. A GWAS peak on chromosome 7 between LOC_Os07g11020 and LOC_Os07g11520 indexed by a nonsynonymous SNP mutation on exon 5 of a bHLH transcription factor was found to elevate the proportion of amylose at the expense of reduced short-chain amylopectin. Linking starch structure with starch digestibility by determining the kinetics of cooked grain amylolysis of selected haplotypes revealed strong association of starch structure with estimated digestibility kinetics. Combining all results from grain quality genomics, systems genetics, and digestibility phenotyping, we propose target haplotypes for fine-tuning starch structure in rice through marker-assisted breeding that can be used to alter the digestibility of rice grain, thus offering rice consumers a new diet-based intervention to mitigate the impact of nutrition-related noncommunicable diseases.


Assuntos
Amilose/biossíntese , Oryza/genética , Oryza/metabolismo , Amilopectina/genética , Amilopectina/metabolismo , Amilose/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Haplótipos , Isoflavonas/genética , Isoflavonas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Amido/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA