Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 453
Filtrar
1.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125848

RESUMO

Glutaminyl-peptide cyclotransferases (QCs) convert the N-terminal glutamine or glutamate residues of protein and peptide substrates into pyroglutamate (pE) by releasing ammonia or a water molecule. The N-terminal pE modification protects peptides/proteins against proteolytic degradation by amino- or exopeptidases, increasing their stability. Mammalian QC is abundant in the brain and a large amount of evidence indicates that pE peptides are involved in the onset of neural human pathologies such as Alzheimer's and Huntington's disease and synucleinopathies. Hence, human QC (hQC) has become an intensively studied target for drug development against these diseases. Soon after its characterization, hQC was identified as a Zn-dependent enzyme, but a partial restoration of the enzyme activity in the presence of the Co(II) ion was also reported, suggesting a possible role of this metal ion in catalysis. The present work aims to investigate the structure of demetallated hQC and of the reconstituted enzyme with Zn(II) and Co(II) and their behavior in the presence of known inhibitors. Furthermore, our structural determinations provide a possible explanation for the presence of the mononuclear metal binding site of hQC, despite the presence of the same conserved metal binding motifs present in distantly related dinuclear aminopeptidase enzymes.


Assuntos
Aminoaciltransferases , Zinco , Humanos , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Zinco/metabolismo , Zinco/química , Sítios de Ligação , Cobalto/metabolismo , Cobalto/química , Ligação Proteica , Modelos Moleculares
2.
Chemistry ; 30(54): e202401961, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39046730

RESUMO

Sortase-mediated ligation (SML) is a widely used method for peptide and protein ligation due to ease of substrate preparation and fast enzymatic kinetics. But there are drawbacks that limit broader applications. Sorting motif in substrates may not be exposed to sortase efficiently due to folding or aggregation. In addition, the ligation is reversible under transpeptidation equilibrium that restricts ligation yield. Here we report a simple but robust method to overcome such limitations. By employment of sarkosyl, the detergent alters substrate conformation to raise sorting motif accessibility for sortase catalysis. Moreover, transpeptidation becomes irreversible presumably by formation of micelle to shield ligation products from sortase. In consequence, excellent yields were achieved from sortase variants with different substrate specificity. Notably, this method is compatible with peptides or proteins capable of forming liquid-liquid phase separation (LLPS), presenting a powerful approach for the conjugation of aggregation-prone substrates. Therefore, we believe the sarkosyl-enhanced SML could be widely applied in peptide and protein chemistry and the unique irreversible transpeptidation mechanism offers an insight to detergent-driven equilibrium.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Cisteína Endopeptidases , Peptídeos , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Especificidade por Substrato , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Cinética , Detergentes/química , Biocatálise
3.
Biomolecules ; 14(7)2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39062563

RESUMO

Affinity chromatography is a widely used technique for antibody isolation. This article presents the successful synthesis of a novel affinity resin with a mutant form of protein A (BsrtA) immobilized on it as a ligand. The key aspect of the described process is the biocatalytic immobilization of the ligand onto the matrix using the sortase A enzyme. Moreover, we used a matrix with primary amino groups without modification, which greatly simplifies the synthesis process. The resulting resin shows a high dynamic binding capacity (up to 50 mg IgG per 1 mL of sorbent). It also demonstrates high tolerance to 0.1 M NaOH treatment and maintains its effectiveness even after 100 binding, elution, and sanitization cycles.


Assuntos
Proteínas de Bactérias , Biocatálise , Cromatografia de Afinidade , Cisteína Endopeptidases , Cromatografia de Afinidade/métodos , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo
4.
Nat Commun ; 15(1): 6350, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39068213

RESUMO

The arginyl-transferase ATE1 is a tRNA-dependent enzyme that covalently attaches an arginine molecule to a protein substrate. Conserved from yeast to humans, ATE1 deficiency in mice correlates with defects in cardiovascular development and angiogenesis and results in embryonic lethality, while conditional knockouts exhibit reproductive, developmental, and neurological deficiencies. Despite the recent revelation of the tRNA binding mechanism and the catalytic cycle of yeast ATE1, the structure-function relationship of ATE1 in higher organisms is not well understood. In this study, we present the three-dimensional structure of human ATE1 in an apo-state and in complex with its tRNA cofactor and a peptide substrate. In contrast to its yeast counterpart, human ATE1 forms a symmetric homodimer, which dissociates upon binding of a substrate. Furthermore, human ATE1 includes a unique and extended loop that wraps around tRNAArg, creating extensive contacts with the T-arm of the tRNA cofactor. Substituting key residues identified in the substrate binding site of ATE1 abolishes enzymatic activity and results in the accumulation of ATE1 substrates in cells.


Assuntos
Aminoaciltransferases , Multimerização Proteica , Humanos , Aminoaciltransferases/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/química , RNA de Transferência/metabolismo , Sítios de Ligação , RNA de Transferência de Arginina/metabolismo , RNA de Transferência de Arginina/genética , RNA de Transferência de Arginina/química , Modelos Moleculares , Ligação Proteica , Animais , Camundongos , Células HEK293
5.
Bioorg Med Chem ; 111: 117835, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39053075

RESUMO

Achieving effective intracellular delivery of therapeutic molecules such as antibodies (IgG) is a challenge in biomedical research and pharmaceutical development. Conjugation of IgG with a cell-penetrating peptide is a rational approach. Here, not only the efficacy of the conjugates in internalizing into cells, but also the physicochemical property of the conjugates allowing their solubilized states in solution without forming aggregates are critical. In this study, we have shown that the first requirement can be addressed using a cell-permeable attenuated cationic amphiphilic lytic (CP-ACAL) peptide, L17ER4. The second requirement can be addressed by ligation of IgG to L17ER4 using sortase A, where the use of a linker of appropriate chain length is also important. For evaluation, the intracellular delivery efficacy was studied using conjugate structures with different orientations and conjugation modes of L17ER4 in ligation to a model protein, green fluorescent protein fused to a nuclear localization signal (NLS-EGFP). The effect of tetraarginine positioning in the L17ER4 sequence was also investigated. Following these studies, an optimized peptide sequence containing L17ER4 was ligated to an anti-green fluorescent protein (GFP) IgG bearing a sortase A recognition sequence. Treatment of the cells with the conjugate of anti-GFP IgG and L17ER4 resulted in a high efficiency of cytosolic translocation of the conjugate and the binding to the target protein in the cell without significant aggregate formation. The feasibility of the d-form of L17ER4 as a CP-ACAL was also confirmed.


Assuntos
Peptídeos Penetradores de Células , Cisteína Endopeptidases , Imunoglobulina G , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Humanos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Peptídeos Penetradores de Células/farmacologia , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Cátions/química , Peptídeos/química , Peptídeos/farmacologia , Células HeLa , Sistemas de Liberação de Medicamentos , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/química
6.
Subcell Biochem ; 104: 425-458, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38963495

RESUMO

Glycosylphosphatidylinositol (GPI) anchoring of proteins is a ubiquitous posttranslational modification in eukaryotic cells. GPI-anchored proteins (GPI-APs) play critical roles in enzymatic, signaling, regulatory, and adhesion processes. Over 20 enzymes are involved in GPI synthesis, attachment to client proteins, and remodeling after attachment. The GPI transamidase (GPI-T), a large complex located in the endoplasmic reticulum membrane, catalyzes the attachment step by replacing a C-terminal signal peptide of proproteins with GPI. In the last three decades, extensive research has been conducted on the mechanism of the transamidation reaction, the components of the GPI-T complex, the role of each subunit, and the substrate specificity. Two recent studies have reported the three-dimensional architecture of GPI-T, which represent the first structures of the pathway. The structures provide detailed mechanisms for assembly that rationalizes previous biochemical results and subunit-dependent stability data. While the structural data confirm the catalytic role of PIGK, which likely uses a caspase-like mechanism to cleave the proproteins, they suggest that unlike previously proposed, GPAA1 is not a catalytic subunit. The structures also reveal a shared cavity for GPI binding. Somewhat unexpectedly, PIGT, a single-pass membrane protein, plays a crucial role in GPI recognition. Consistent with the assembly mechanisms and the active site architecture, most of the disease mutations occur near the active site or the subunit interfaces. Finally, the catalytic dyad is located ~22 Å away from the membrane interface of the GPI-binding site, and this architecture may confer substrate specificity through topological matching between the substrates and the elongated active site. The research conducted thus far sheds light on the intricate processes involved in GPI anchoring and paves the way for further mechanistic studies of GPI-T.


Assuntos
Glicosilfosfatidilinositóis , Humanos , Glicosilfosfatidilinositóis/metabolismo , Glicosilfosfatidilinositóis/química , Animais , Especificidade por Substrato , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Aminoaciltransferases/genética , Retículo Endoplasmático/metabolismo , Relação Estrutura-Atividade , Aciltransferases
7.
Methods ; 229: 94-107, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38834165

RESUMO

In this report, non-isomerisable analogs of arginine tRNA (Arg-triazole-tRNA) have been synthesized as tools to study tRNA-dependent aminoacyl-transferases. The synthesis involves the incorporation of 1,4 substituted-1,2,3 triazole ring to mimic the ester bond that connects the amino acid to the terminal adenosine in the natural substrate. The synthetic procedure includes (i) a coupling between 2'- or 3'-azido-adenosine derivatives and a cytidine phosphoramidite to access dinucleotide molecules, (ii) Cu-catalyzed cycloaddition reactions between 2'- or 3'-azido dinucleotide in the presence of an alkyne molecule mimicking the arginine, providing the corresponding Arg-triazole-dinucleotides, (iii) enzymatic phosphorylation of the 5'-end extremity of the Arg-triazole-dinucleotides with a polynucleotide kinase, and (iv) enzymatic ligation of the 5'-phosphorylated dinucleotides with a 23-nt RNA micro helix that mimics the acceptor arm of arg-tRNA or with a full tRNAarg. Characterization of nucleoside and nucleotide compounds involved MS spectrometry, 1H, 13C and 31P NMR analysis. This strategy allows to obtain the pair of the two stable regioisomers of arg-tRNA analogs (2' and 3') which are instrumental to explore the regiospecificity of arginyl transferases enzyme. In our study, a first binding assay of the arg-tRNA micro helix with the Arginyl-tRNA-protein transferase 1 (ATE1) was performed by gel shift assays.


Assuntos
Cobre , Reação de Cicloadição , Catálise , Cobre/química , Reação de Cicloadição/métodos , Arginina/química , Arginina/análogos & derivados , RNA de Transferência de Arginina/química , RNA de Transferência de Arginina/genética , RNA de Transferência de Arginina/metabolismo , Fosforilação , Triazóis/química , Triazóis/síntese química , Estereoisomerismo , Adenosina/análogos & derivados , Adenosina/química , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Aminoaciltransferases/genética
8.
Biomacromolecules ; 25(5): 2762-2769, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38689446

RESUMO

Protein-based encapsulin nanocompartments, known for their well-defined structures and versatile functionalities, present promising opportunities in the fields of biotechnology and nanomedicine. In this investigation, we effectively developed a sortase A-mediated protein ligation system in Escherichia coli to site-specifically attach target proteins to encapsulin, both internally and on its surfaces without any further in vitro steps. We explored the potential applications of fusing sortase enzyme and a protease for post-translational ligation of encapsulin to a green fluorescent protein and anti-CD3 scFv. Our results demonstrated that this system could attach other proteins to the nanoparticles' exterior surfaces without adversely affecting their folding and assembly processes. Additionally, this system enabled the attachment of proteins inside encapsulins which varied shapes and sizes of the nanoparticles due to cargo overload. This research developed an alternative enzymatic ligation method for engineering encapsulin nanoparticles to facilitate the conjugation process.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Cisteína Endopeptidases , Escherichia coli , Processamento de Proteína Pós-Traducional , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/química , Nanopartículas/química
9.
Trends Biochem Sci ; 49(7): 596-610, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38692993

RESUMO

Sortase enzymes are critical cysteine transpeptidases on the surface of bacteria that attach proteins to the cell wall and are involved in the construction of bacterial pili. Due to their ability to recognize specific substrates and covalently ligate a range of reaction partners, sortases are widely used in protein engineering applications via sortase-mediated ligation (SML) strategies. In this review, we discuss recent structural studies elucidating key aspects of sortase specificity and the catalytic mechanism. We also highlight select recent applications of SML, including examples where fundamental studies of sortase structure and function have informed the continued development of these enzymes as tools for protein engineering.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Cisteína Endopeptidases , Engenharia de Proteínas , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Aminoaciltransferases/metabolismo , Aminoaciltransferases/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Especificidade por Substrato , Modelos Moleculares
10.
J Biol Chem ; 300(6): 107329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38679328

RESUMO

The biphasic assembly of Gram-positive pili begins with the covalent polymerization of distinct pilins catalyzed by a pilus-specific sortase, followed by the cell wall anchoring of the resulting polymers mediated by the housekeeping sortase. In Actinomyces oris, the pilus-specific sortase SrtC2 not only polymerizes FimA pilins to assemble type 2 fimbriae with CafA at the tip, but it can also act as the anchoring sortase, linking both FimA polymers and SrtC1-catalyzed FimP polymers (type 1 fimbriae) to peptidoglycan when the housekeeping sortase SrtA is inactive. To date, the structure-function determinants governing the unique substrate specificity and dual enzymatic activity of SrtC2 have not been illuminated. Here, we present the crystal structure of SrtC2 solved to 2.10-Å resolution. SrtC2 harbors a canonical sortase fold and a lid typical for class C sortases and additional features specific to SrtC2. Structural, biochemical, and mutational analyses of SrtC2 reveal that the extended lid of SrtC2 modulates its dual activity. Specifically, we demonstrate that the polymerizing activity of SrtC2 is still maintained by alanine-substitution, partial deletion, and replacement of the SrtC2 lid with the SrtC1 lid. Strikingly, pilus incorporation of CafA is significantly reduced by these mutations, leading to compromised polymicrobial interactions mediated by CafA. In a srtA mutant, the partial deletion of the SrtC2 lid reduces surface anchoring of FimP polymers, and the lid-swapping mutation enhances this process, while both mutations diminish surface anchoring of FimA pili. Evidently, the extended lid of SrtC2 enables the enzyme the cell wall-anchoring activity in a substrate-selective fashion.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Cisteína Endopeptidases , Proteínas de Fímbrias , Fímbrias Bacterianas , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/química , Cisteína Endopeptidases/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Aminoaciltransferases/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/química , Fímbrias Bacterianas/metabolismo , Fímbrias Bacterianas/genética , Proteínas de Fímbrias/metabolismo , Proteínas de Fímbrias/química , Proteínas de Fímbrias/genética , Cristalografia por Raios X , Actinomyces/metabolismo , Actinomyces/enzimologia , Especificidade por Substrato , Modelos Moleculares
11.
Angew Chem Int Ed Engl ; 63(14): e202316777, 2024 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-38366985

RESUMO

Topological transformations and permutations of proteins have attracted significant interest as strategies to generate new protein functionalities or stability. These efforts have mainly been inspired by naturally occurring post-translational modifications, such as head-to-tail cyclization, circular permutation, or lasso-like entanglement. Such approaches can be realized experimentally via genetic encoding, in the case of circular permutation, or via enzymatic processing, in the case of cyclization. Notably, these previously described strategies leave the polypeptide backbone orientation unaltered. Here we describe an unnatural protein permutation, the protein domain inversion, whereby a C-terminal portion of a protein is enzymatically inverted from the canonical N-to-C to a C-to-C configuration with respect to the N-terminal part of the protein. The closest conceptually analogous biological process is perhaps the inversion of DNA segments as catalyzed by recombinases. We achieve these inversions using an engineered sortase A, a widely used transpeptidase. Our reactions proceed efficiently under mild conditions at 4-25 °C and are compatible with entirely heterologously-produced protein substrates.


Assuntos
Aminoaciltransferases , Peptidil Transferases , Domínios Proteicos , Peptídeos/química , Proteínas de Bactérias/metabolismo , Aminoaciltransferases/química , Peptidil Transferases/metabolismo , DNA , Catálise
12.
Angew Chem Int Ed Engl ; 63(12): e202310910, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38081121

RESUMO

Sortase-mediated ligation (SML) has emerged as a powerful and versatile methodology for site-specific protein conjugation, functionalization/labeling, immobilization, and design of biohybrid molecules and systems. However, the broader application of SML faces several challenges, such as limited activity and stability, dependence on calcium ions, and reversible reactions caused by nucleophilic side-products. Over the past decade, protein engineering campaigns and particularly directed evolution, have been extensively employed to overcome sortase limitations, thereby expanding the potential application of SML in multiple directions, including therapeutics, biorthogonal chemistry, biomaterials, and biosensors. This review provides an overview of achieved advancements in sortase engineering and highlights recent progress in utilizing SML in combination with other state-of-the-art chemical and biological methodologies. The aim is to encourage scientists to employ sortases in their conjugation experiments.


Assuntos
Aminoaciltransferases , Proteínas de Bactérias , Proteínas de Bactérias/metabolismo , Aminoaciltransferases/química , Engenharia de Proteínas/métodos , Poder Psicológico
13.
J Biomol Struct Dyn ; 42(3): 1157-1169, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37184111

RESUMO

Staphylococcus aureus is a prevalent Gram-positive bacteria leading cause of a wide range of human pathologies. Moreover, antibiotic résistance of pathogenesis bacteria is one of the worldwide health problems. In Gram-positive bacteria, the enzyme of SrtA, is responsible for the anchoring of surface-exposed proteins to the cell wall peptidoglycan. Because of its critical role in Gram-positive bacterial pathogenesis, SrtA is an attractive target for anti-virulence during drug development. To date, some SrtA inhibitors have been discovered most of them being derived from flavonoid compounds, like Myricetin. In order to provide potential hit molecules against SrtA for clinical use, we obtained a total of 293 compounds by performing in silico shape-based screening of compound libraries against Myristin as a reference structure. Employing molecular docking and scoring functions, the top 3 compounds Apigenin, Efloxate, and Compound 8261032 were screened by comparing their docking scores with Myricetin. Furthermore, MD simulations and MM-PBSA binding energy calculation studies revealed that only Compound 8261032 strongly binds to the catalytic core of the SrtA enzyme than Myricetin, and stable behavior was consistently observed in the docking complex. Compound 8261032 showed a good number of hydrogen bonds with SrtA and higher MM-PBSA binding energy when compared to all three molecules. Also, it makes strength interactions with Arg139 and His62, which are critical for SrtA biological activity. This study showed that the development of this inhibitor could be a fundamental strategy against resistant bacteria, but further studies in vitro are needed to confirm this claim.Communicated by Ramaswamy H. Sarma.


Assuntos
Aminoaciltransferases , Cisteína Endopeptidases , Staphylococcus aureus , Humanos , Simulação de Dinâmica Molecular , Simulação de Acoplamento Molecular , Proteínas de Bactérias/química , Aminoaciltransferases/química
14.
Bioorg Med Chem ; 97: 117542, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104495

RESUMO

Glutaminyl cyclase (QC) plays a crucial role in the early stages of Alzheimer's disease (AD), thus inhibition of QC may be a promising strategy for the treatment of early AD. Therefore, QC inhibitors with novel chemical scaffolds may contribute to the development of additional anti-AD agents. We conducted a virtual screening of 3 million compounds from the Chemdiv and Enamine databases, to discover potential scaffolds for QC inhibitors. Three scaffolds, 120974, 147706, and 141449, were selected from this structure-based virtual screening through a combination of pharmacophore modeling, a receptor-ligand pharmacophore model, and the GALAHAD model, and furtherly filtered by chelation with zinc ion and docking properties. Consequently, three compounds, 1, 2, and 3, were designed and synthesized based on these three scaffolds, respectively. The IC50 of compounds 1 and 3 against QC were 14.19 ± 4.21 and 4.34 ± 0.35 µM, respectively. Our results indicate that the new scaffolds selected using a virtual screening process exhibit potential as novel QC inhibitors.


Assuntos
Doença de Alzheimer , Aminoaciltransferases , Humanos , Aminoaciltransferases/antagonistas & inibidores , Aminoaciltransferases/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular
15.
Int J Biol Macromol ; 243: 125183, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37276901

RESUMO

Dental plaque is a complex microbial biofilm community of many species and a major cause of oral infections and infectious endocarditis. Plaque development begins when primary colonizers attach to oral tissues and undergo coaggregation. Primary colonizers facilitate cellular attachment and inter-bacterial interactions through sortase-dependent pili (or fimbriae) extending out from their cell surface. Consequently, the sortase enzyme is viewed as a potential drug target for controlling biofilm formation and avoiding infection. Streptococcus sanguinis is a primary colonizing bacterium whose pili consist of three different pilin subunits that are assembled together by the pilus-specific (C-type) SsaSrtC sortase. Here, we report on the crystal structure determination of the recombinant wild-type and active-site mutant forms of SsaSrtC. Interestingly, the SsaSrtC structure exhibits an open-lid conformation, although a conserved DPX motif is lacking in the lid. Based on molecular docking and structural analysis, we identified the substrate-binding residues essential for pilin recognition and pilus assembly. We also demonstrated that while recombinant SsaSrtC is enzymatically active toward the five-residue LPNTG sorting motif peptide of the pilins, this activity is significantly reduced by the presence of zinc. We further showed that rutin and α-crocin are potential candidate inhibitors of the SsaSrtC sortase via structure-based virtual screening and inhibition assays. The structural knowledge gained from our study will provide the means to develop new approaches that target pilus-mediated attachment, thereby preventing oral biofilm growth and infection.


Assuntos
Aminoaciltransferases , Proteínas de Fímbrias , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/química , Proteínas de Fímbrias/metabolismo , Proteínas de Bactérias/química , Streptococcus sanguis/metabolismo , Simulação de Acoplamento Molecular , Aminoaciltransferases/química
16.
Methods Mol Biol ; 2620: 21-25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37010744

RESUMO

In the late 1960s and early 1970s, characterization of arginylation has been spearheaded via biochemical studies that enabled the first characterization of ATE1 and its substrate specificity. This chapter summarized the recollections and insights from the era of research that followed from the original discovery of arginylation and led up to the identification of the arginylation enzyme.


Assuntos
Aminoaciltransferases , Processamento de Proteína Pós-Traducional , Aminoaciltransferases/química , Arginina/metabolismo
17.
Methods Mol Biol ; 2620: 63-70, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37010749

RESUMO

In the 1980s, it was found that addition of N-terminal Arg to proteins induces their ubiquitination and degradation by the N-end rule pathway. While this mechanism applies only to the proteins which also have other features of the N-degron (including a closely adjacent Lys that is accessible for ubiquitination), several test substrates have been found to follow this mechanism very efficiently after ATE1-dependent arginylation. Such property enabled researchers to test ATE1 activity in cells indirectly by assaying for the degradation of such arginylation-dependent substrates. The most commonly used substrate for this assay is E. coli beta-galactosidase (beta-Gal) because its level can be easily measured using standardized colorimetric assays. Here, we describe this method, which has served as a quick and easy way to characterize ATE1 activity during identification of arginyltransferases in different species.


Assuntos
Aminoaciltransferases , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , beta-Galactosidase/metabolismo , Ubiquitinação , Aminoaciltransferases/química , Arginina/metabolismo
18.
Methods Mol Biol ; 2620: 71-80, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37010750

RESUMO

Here, we describe an antibody-based method to evaluate the enzymatic activity of arginyltransferase1 (Ate1). The assay is based on the arginylation of a reporter protein, which contains the N-terminal peptide of beta-actin, a known endogenous substrate of Ate1, and a C-terminal GFP. The arginylation level of the reporter protein is determined  on an immunoblot with an antibody specific for the arginylated N-terminus, while the total amount of substrate is evaluated with anti-GFP antibody. This method can be used to conveniently and accurately examine the Ate1 activity in yeast and mammalian cell lysates. Moreover, the effect of mutation on Ate1 critical residues and effect of stress and other factors on Ate1 activity can also be successfully determined with this method.


Assuntos
Aminoaciltransferases , Processamento de Proteína Pós-Traducional , Animais , Aminoaciltransferases/química , Actinas/metabolismo , Peptídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Arginina/metabolismo , Mamíferos/metabolismo
19.
Methods Mol Biol ; 2620: 119-122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37010757

RESUMO

Here, we describe the biochemical assay for ATE1-mediated arginylation in microplate format, which can be applied to high-throughput screens for the identification of small molecule inhibitors and activators of ATE1, high-volume analysis of AE1 substrates, and other similar applications. Originally, we have applied this screen to a library of 3280 compounds and identified 2 compounds which specifically affect ATE1-regulated processes in vitro and in vivo. The assay is based on in vitro ATE1-mediated arginylation of beta-actin's N-terminal peptide, but it can also be applied using other ATE1 substrates.


Assuntos
Aminoaciltransferases , Processamento de Proteína Pós-Traducional , Ensaios de Triagem em Larga Escala , Aminoaciltransferases/química , Arginina/metabolismo
20.
Methods Mol Biol ; 2620: 123-127, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37010758

RESUMO

Here, we describe arginylation assays performed on peptide arrays immobilized on cellulose membranes via chemical synthesis. In this assay, it is possible to simultaneously compare arginylation activity on hundreds of peptide substrates to analyze the specificity of arginyltransferase ATE1 toward its target site(s) and the amino acid sequence context. This assay was successfully employed in prior studies to dissect the arginylation consensus site and enable predictions of arginylated proteins encoded in eukaryotic genomes.


Assuntos
Aminoaciltransferases , Processamento de Proteína Pós-Traducional , Proteólise , Aminoaciltransferases/química , Peptídeos/metabolismo , Arginina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA