RESUMO
Intratumoral heterogeneity is a leading cause of treatment failure resulting in tumor recurrence. For the antibody-drug conjugate (ADC) ado-trastuzumab emtansine (T-DM1), two major types of resistance include changes in human epidermal growth factor receptor 2 (HER2) expression and reduced payload sensitivity, which is often exacerbated by heterogenous HER2 expression and ADC distribution during treatment. ADCs with bystander payloads, such as trastuzumab-monomethyl auristatin E (T-MMAE), can reach and kill adjacent cells with lower receptor expression that cannot be targeted directly with the ADC. Additionally, coadministration of T-DM1 with its unconjugated antibody, trastuzumab, can improve distribution and minimize heterogeneous delivery. However, the effectiveness of trastuzumab coadministration and ADC bystander killing in heterogenous tumors in reducing the selection of resistant cells is not well understood. Here, we use an agent-based model to predict outcomes with these different regimens. The simulations demonstrate that both T-DM1 and T-MMAE benefit from trastuzumab coadministration for tumors with high average receptor expression (up to 70% and 40% decrease in average tumor volume, respectively), with greater benefit for nonbystander payloads. However, the benefit decreases as receptor expression is reduced, reversing at low concentrations (up to 360% and 430% increase in average tumor volume for T-DM1 and T-MMAE, respectively) for this mechanism that impacts both ADC distribution and efficacy. For tumors with intrinsic payload resistance, coadministration uniformly exhibits better efficacy than ADC monotherapy (50%-70% and 19%-36% decrease in average tumor volume for T-DM1 and T-MMAE, respectively). Finally, we demonstrate that several regimens select for resistant cells at clinical tolerable doses, which highlights the need to pursue other mechanisms of action for durable treatment responses. SIGNIFICANCE STATEMENT: Experimental evidence demonstrates heterogeneity in the distribution of both the antibody-drug conjugate and the target receptor in the tumor microenvironment, which can promote the selection of resistant cells and lead to recurrence. This study quantifies the impact of increasing the antibody dose and utilizing bystander payloads in heterogeneous tumors. Alternative cell-killing mechanisms are needed to avoid enriching resistant cell populations.
Assuntos
Anticorpos Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Imunotoxinas/uso terapêutico , Receptor ErbB-2/genética , Ado-Trastuzumab Emtansina , Aminobenzoatos/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Imunoconjugados , Imunoterapia , Imunotoxinas/farmacocinética , Modelos Biológicos , Oligopeptídeos/uso terapêutico , Trastuzumab/uso terapêutico , Resultado do Tratamento , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
After a sublethal ischemic preconditioning (IPC) stimulus, the brain has a remarkable capability of acquiring tolerance to subsequent ischemic insult by establishing precautionary self-protective mechanism. Understanding this endogenous mechanism would reveal novel and effective neuroprotective targets for ischemic brain injury. Our previous study has implied that telomerase reverse transcriptase (TERT) is associated with IPC-induced tolerance. Here, we investigated the mechanism of TERT-mediated ischemic tolerance. Preconditioning was modeled by oxygen-glucose deprivation (OGD) and by TERT inhibitor BIBR1532 in primary neurons. We found that ischemic tolerance was conferred by BIBR1532 preconditioning. We used the Cleavage-Under-Targets-And-Tagmentation approach, a recently developed method with superior signal-to-noise ratio, to comprehensively map the genomic binding sites of TERT in primary neurons, and showed that more than 50% of TERT-binding sites were located at the promoter regions. Mechanistically, we demonstrated that under normal conditions TERT physically bound to many previously unknown genomic loci in neurons, whereas BIBR1532 preconditioning significantly altered TERT-chromatin-binding profile. Intriguingly, we found that BIBR1532-preconditioned neurons showed significant up-regulation of promoter binding of TERT to the mitochondrial anti-oxidant genes, which were correlated with their elevated expression. Functional analysis further indicated that BIBR1532-preconditioning significantly reduced ROS levels and enhanced tolerance to severe ischemia-induced mitochondrial oxidative stress in neurons in a TERT-dependent manner. Together, these results demonstrate that BIBR1532 confers neuronal ischemic tolerance through TERT-mediated transcriptional reprogramming for up-regulation of mitochondrial anti-oxidation gene expression, suggesting the translational potential of BIBR1532 as a therapeutic agent for the treatment of cerebral ischemic injury and oxidative stress-induced neurological disorders.
Assuntos
Aminobenzoatos/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Naftalenos/uso terapêutico , Neurônios , Inibidores da Transcriptase Reversa/farmacologia , Telomerase/metabolismo , Animais , Antioxidantes/metabolismo , Sítios de Ligação/genética , Isquemia Encefálica/patologia , Cromatina/metabolismo , Mapeamento Cromossômico , Feminino , Técnicas de Silenciamento de Genes , Glucose/deficiência , Hipóxia , Precondicionamento Isquêmico , Camundongos , Camundongos Endogâmicos C57BL , Neuroproteção , Gravidez , Cultura Primária de Células , Espécies Reativas de Oxigênio , Razão Sinal-Ruído , Telomerase/antagonistas & inibidores , Telomerase/genética , Ativação TranscricionalRESUMO
In view of postsynaptic density 95kDA (PSD95) tethers neuronal NO synthase (nNOS) to N-methyl-d-aspartate receptor (NMDAR), the PSD95-nNOS complex represents a therapeutic target of neuropathic pain. This study therefore sought to explore the ability of PCC-0105002, a novel PSD95-nNOS small molecule inhibitor, to alter pain sensitivity in rodent neuropathic pain models. Firstly, the IC50 of PCC-0105002 for PSD95 and NOS1 binding activity was determined using an Alpha Screen assay kit. Then, we examined the effects of PCC-0105002 in the mouse formalin test and in the rat spinal nerve ligation (SNL) model, and explored the ability of PCC-0105002 to mediate analgesia and to effect motor coordination in a rota-rod test. Moreover, the mechanisms whereby PCC-0105002 mediates analgesia was explored via western blotting, Golgi staining, and co-immunoprecipitation experiments in dorsal horn. The outcomes indicated that PCC-0105002 exhibited dose-dependent attenuation of phase II pain-associated behaviors in the formalin test. The result indicated that PCC-0105002 disrupted the PSD95-nNOS interaction with IC50 of 1.408 µM. In the SNL model, PCC-0105002 suppressed mechanical allodynia, thermal hyperalgesia, and abnormal dorsal horn wide dynamic range neuron discharge. PCC-0105002 mediated an analgesic effect comparable to that of MK-801, while it was better able to enhance motor coordination as compared with MK-801. Moreover, PCC-0105002 altered signaling downstream of NMDAR and thus functionally and structurally attenuating synaptic plasticity through respective regulation of the NR2B/GluR1/CaMKIIα and Rac1/RhoA pathways. These findings suggest that the novel PSD95-nNOS inhibitor PCC-0105002 is an effective agent for alleviating neuropathic pain, and that it produces fewer motor coordination-associated side effects than do NMDAR antagonists.
Assuntos
Aminobenzoatos/uso terapêutico , Analgésicos/farmacologia , Proteína 4 Homóloga a Disks-Large/metabolismo , Ésteres/uso terapêutico , Atividade Motora/efeitos dos fármacos , Neuralgia/tratamento farmacológico , Óxido Nítrico Sintase Tipo I/metabolismo , Células do Corno Posterior/efeitos dos fármacos , Nervos Espinhais/efeitos dos fármacos , Aminobenzoatos/farmacologia , Analgésicos/toxicidade , Animais , Modelos Animais de Doenças , Ésteres/farmacologia , Masculino , Camundongos , Neuralgia/enzimologia , Neuralgia/fisiopatologia , Plasticidade Neuronal/efeitos dos fármacos , Células do Corno Posterior/enzimologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Ratos Sprague-Dawley , Teste de Desempenho do Rota-Rod , Transdução de Sinais , Nervos Espinhais/enzimologia , Nervos Espinhais/fisiopatologiaRESUMO
Auristatins, a class of clinically validated anti-tubulin agents utilized as payloads in antibody-drug conjugates, are generally classified by their membrane permeability and the extent of cytotoxic bystander activity on neighboring cells after targeted delivery. The drugs typically fall within two categories: membrane permeable monomethyl auristatin E-type molecules with high bystander activities and susceptibility to efflux pumps, or charged and less permeable monomethyl auristatin F (MMAF) analogs with low bystander activities and resistance to efflux pumps. Herein, we report the development of novel auristatins that combine the attributes of each class by having both bystander activity and cytotoxicity on multidrug-resistant (MDR+) cell lines. Structure-based design focused on the hydrophobic functionalization of the N-terminal N-methylvaline of the MMAF scaffold to increase cell permeability. The resulting structure-activity relationships of the new auristatins demonstrate that optimization of hydrophobicity and structure can lead to highly active free drugs and antibody-drug conjugates with in vivo bystander activities.
Assuntos
Aminobenzoatos/uso terapêutico , Oligopeptídeos/uso terapêutico , Aminobenzoatos/farmacologia , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Camundongos , Oligopeptídeos/farmacologia , Ratos , Relação Estrutura-AtividadeRESUMO
We are interested in developing a second generation of antibody-drug conjugates (ADCs) for the treatment of non-Hodgkin lymphoma (NHL) that could provide a longer duration of response and be more effective in indolent NHL than the microtubule-inhibiting ADCs pinatuzumab vedotin [anti-CD22-vc-monomethyl auristatin E (MMAE)] and polatuzumab vedotin (anti-CD79b-vc-MMAE). Pinatuzumab vedotin (anti-CD22-vc-MMAE) and polatuzumab vedotin (anti-CD79b-vc-MMAE) are ADCs that contain the microtubule inhibitor MMAE. Clinical trial data suggest that these ADCs have promising efficacy for the treatment of NHL; however, some patients do not respond or become resistant to the ADCs. We tested an anti-CD22 ADC with a seco-CBI-dimer payload, thio-Hu anti-CD22-(LC:K149C)-SN36248, and compared it with pinatuzumab vedotin for its efficacy and duration of response in xenograft models and its ability to deplete normal B cells in cynomolgus monkeys. We found that anti-CD22-(LC:K149C)-SN36248 was effective in xenograft models resistant to pinatuzumab vedotin, gave a longer duration of response, had a different mechanism of resistance, and was able to deplete normal B cells better than pinatuzumab vedotin. These studies provide evidence that anti-CD22-(LC:K149C)-SN36248 has the potential for longer duration of response and more efficacy in indolent NHL than MMAE ADCs and may provide the opportunity to improve outcomes for patients with NHL.
Assuntos
Aminobenzoatos/uso terapêutico , Imunoconjugados/uso terapêutico , Linfoma não Hodgkin/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Aminobenzoatos/farmacologia , Animais , Linhagem Celular Tumoral , Haplorrinos , Humanos , Imunoconjugados/farmacologia , Oligopeptídeos/farmacologiaRESUMO
Telomerase has become one of the new popular targets for the development of anti-tumor drugs. Based on the structural characteristics of the BIBR1532 which has entered the stage of clinical research, six series total of 64 new compounds with diverse structural characteristics were designed and synthesized. The inhibitory activity against SGC-7901, MGC-803, SMMC-7721, A375 and GES cell lines and their telomerase inhibitory activity were tested. Among them, eight compounds showed good activity against cancer cells, among them compounds 56, 57 and 59 also showed low toxicity. Some of them showed excellent telomerase inhibitory activity with IC50 values ranging from 0.62 µM to 8.87 µM. Based on above, in depth structure-activity relationships were summarized, the compounds by replacing methyl group with cyanide and retaining amide moiety had good anti-tumor activity, moderate cytotoxicity, and better telomerase inhibitory activity. The results should be used for reference in BIBR1532-based structural optimization for further development of small molecule telomerase inhibitors.
Assuntos
Aminobenzoatos/síntese química , Aminobenzoatos/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Naftalenos/síntese química , Naftalenos/uso terapêutico , Telomerase/antagonistas & inibidores , Aminobenzoatos/farmacologia , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Estrutura Molecular , Naftalenos/farmacologia , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Current acute myeloid leukemia (AML) therapy fails to eliminate quiescent leukemic blasts in the bone marrow, leading to about 50% of patient relapse by increasing AML burden in the bone marrow, blood, and extramedullar sites. We developed a protein-based nanoparticle conjugated to the potent antimitotic agent Auristatin E that selectively targets AML blasts because of their CXCR4 receptor overexpression (CXCR4+) as compared to normal cells. The therapeutic rationale is based on the involvement of CXCR4 overexpression in leukemic blast homing and quiescence in the bone marrow, and the association of these leukemic stem cells with minimal residual disease, dissemination, chemotherapy resistance, and lower patient survival. METHODS: Monomethyl Auristatin E (MMAE) was conjugated with the CXCR4 targeted protein nanoparticle T22-GFP-H6 produced in E. coli. Nanoconjugate internalization and in vitro cell viability assays were performed in CXCR4+ AML cell lines to analyze the specific antineoplastic activity through the CXCR4 receptor. In addition, a disseminated AML animal model was used to evaluate the anticancer effect of T22-GFP-H6-Auristatin in immunosuppressed NSG mice (n = 10/group). U of Mann-Whitney test was used to consider if differences were significant between groups. RESULTS: T22-GFP-H6-Auristatin was capable to internalize and exert antineoplastic effects through the CXCR4 receptor in THP-1 and SKM-1 CXCR4+ AML cell lines. In addition, repeated administration of the T22-GFP-H6-Auristatin nanoconjugate (9 doses daily) achieves a potent antineoplastic activity by internalizing specifically in the leukemic cells (luminescent THP-1) to selectively eliminate them. This leads to reduced involvement of leukemic cells in the bone marrow, peripheral blood, liver, and spleen, while avoiding toxicity in normal tissues in a luminescent disseminated AML mouse model. CONCLUSIONS: A novel nanoconjugate for targeted drug delivery of Auristatin reduces significantly the acute myeloid leukemic cell burden in the bone marrow and blood and blocks its dissemination to extramedullar organs in a CXCR4+ AML model. This selective drug delivery approach validates CXCR4+ AML cells as a target for clinical therapy, not only promising to improve the control of leukemic dissemination but also dramatically reducing the severe toxicity of classical AML therapy.
Assuntos
Aminobenzoatos/uso terapêutico , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Nanoconjugados/uso terapêutico , Oligopeptídeos/uso terapêutico , Receptores CXCR4/metabolismo , Aminobenzoatos/administração & dosagem , Animais , Antineoplásicos/administração & dosagem , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos NOD , Nanoconjugados/administração & dosagem , Invasividade Neoplásica/patologia , Invasividade Neoplásica/prevenção & controle , Oligopeptídeos/administração & dosagemRESUMO
The most successful therapeutic strategies for locally advanced cancers continue to combine decades-old classical radiosensitizing chemotherapies with radiotherapy. Molecular targeted radiosensitizers offer the potential to improve the therapeutic ratio by increasing tumor-specific kill while minimizing drug delivery and toxicity to surrounding normal tissue. Auristatins are a potent class of anti-tubulins that sensitize cells to ionizing radiation damage and are chemically amenable to antibody conjugation. To achieve tumor-selective radiosensitization, we synthesized and tested anti-HER2 antibody-drug conjugates of two auristatin derivatives with ionizing radiation. Monomethyl auristatin E (MMAE) and monomethyl auristatin F (MMAF) were attached to the anti-HER2 antibodies trastuzumab and pertuzumab through a cleavable linker. While MMAE is cell permeable, MMAF has limited cell permeability as free drug resulting in diminished cytotoxicity and radiosensitization. However, when attached to trastuzumab or pertuzumab, MMAF was as efficacious as MMAE in blocking HER2-expressing tumor cells in G2-M. Moreover, MMAF anti-HER2 conjugates selectively killed and radiosensitized HER2-rich tumor cells. Importantly, when conjugated to targeting antibody, MMAF had the advantage of decreased bystander and off-target effects compared with MMAE. In murine xenograft models, MMAF anti-HER2 antibody conjugates had less drug accumulated in the normal tissue surrounding tumors compared with MMAE. Therapeutically, systemically injected MMAF anti-HER2 conjugates combined with focal ionizing radiation increased tumor control and improved survival of mice with HER2-rich tumor xenografts. In summary, our results demonstrate the potential of cell-impermeable radiosensitizing warheads to improve the therapeutic ratio of radiotherapy by leveraging antibody-drug conjugate technology.
Assuntos
Aminobenzoatos/uso terapêutico , Quimiorradioterapia/métodos , Oligopeptídeos/uso terapêutico , Receptor ErbB-2/metabolismo , Aminobenzoatos/farmacologia , Animais , Feminino , Humanos , Camundongos , Camundongos Nus , Oligopeptídeos/farmacologia , Permeabilidade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
G-quadruplex telomeric secondary structures represent natural replication fork barriers and must be resolved to permit efficient replication. Stabilization of telomeric G4 leads to telomere dysfunctions demonstrated by telomere shortening or damage, resulting in genome instability and apoptosis. Chemical compounds targeting G4 structures have been reported to induce telomere disturbance and tumor suppression. Here, virtual screening was performed in a natural compound library using PyRx to identify novel G4 ligands. Emodin was identified as one of the best candidates, showing a great G4-binding potential. Subsequently, we confirmed that emodin could stabilize G4 structures in vitro and trigger telomere dysfunctions including fragile telomeres, telomere loss, and telomeric DNA damage. However, this telomere disturbance could be rescued by subsequent elevation of telomerase activity; in contrast, when we treated the cells with the telomerase inhibitor BIBR1532 upon emodin treatment, permanent telomere disturbance and obvious growth inhibition of 4T1-cell xenograft tumors were observed in mice. Taken together, our results show for the first time that emodin-induced telomeric DNA damage can upregulate telomerase activity, which may weaken its anticancer effect. The combined use of emodin and the telomerase inhibitor synergistically induced telomere dysfunction and inhibited tumor generation.
Assuntos
Aminobenzoatos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Emodina/uso terapêutico , Quadruplex G/efeitos dos fármacos , Naftalenos/uso terapêutico , Telomerase/antagonistas & inibidores , Encurtamento do Telômero/efeitos dos fármacos , Telômero/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Emodina/química , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/genética , Telomerase/metabolismo , Telômero/química , Telômero/enzimologia , Telômero/patologia , Transplante HeterólogoRESUMO
Bacterial fatty acid synthases are promising antibacterial targets against multidrug-resistant pathogens. Platensimycin (PTM) is a potent FabB/FabF inhibitor, while its poor pharmacokinetics hampers the clinical development. In this study, a focused library of PTM derivatives was prepared through thiolysis of PTM oxirane (1), followed by various C-C cross-coupling reactions in high yields. Antibacterial screening of these compounds in vitro yielded multiple hits with improved anti-Staphylococcus activities over PTM. Among them, compounds A1, A3, A17, and A28 exhibited improved antibacterial activities over PTM against methicillin-resistant Staphylococcus aureus (MRSA) in a mouse peritonitis model. Compound A28 was further shown to be effective against MRSA infection in a mouse wound model, in comparison to mupirocin. Therefore, the facile preparation and screening of these PTM derivatives, together with their potent antibacterial activities in vivo, suggest a promising strategy to improve the antibacterial activity and pharmacokinetic properties of PTM.
Assuntos
Adamantano/química , Adamantano/farmacologia , Aminobenzoatos/química , Aminobenzoatos/farmacologia , Anilidas/química , Anilidas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus/efeitos dos fármacos , Adamantano/uso terapêutico , Aminobenzoatos/uso terapêutico , Anilidas/uso terapêutico , Animais , Antibacterianos/uso terapêutico , Humanos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Peritonite/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/uso terapêuticoRESUMO
Introduction: Compared to the antibody and drug components of an ADC, the linker part has been somewhat neglected. However, its importance for the reduction of failures in ADC approvals is increasingly recognized. Next of being a stable glue between drug and antibody, an ideal linker should improve the manufacturability and widen the therapeutic window of ADCs. Areas covered: The biopharmaceutical company LinXis started an ADC development program in which platinum(II) is the key element of the first metal-organic linker. The cationic complex [ethylenediamineplatinum(II)]2+, herein called 'Lx®', is used successfully for conjugation of drugs to antibodies. Expert opinion: Based on lessons learned from ADC development, Lx linker technology fulfills most of the desirable linker characteristics. Lx allows large-scale cost-effective manufacturing of ADCs via a straightforward two-step 'plug-and-play' process. First clinical candidate trastuzumab-Lx-auristatin F shows favorable preclinical safety as well as outstanding in vivo tumor targeting performance and therapeutic efficacy.
Assuntos
Aminobenzoatos/química , Antineoplásicos/química , Imunoconjugados/química , Oligopeptídeos/química , Compostos Organoplatínicos/química , Trastuzumab/química , Aminobenzoatos/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Compostos Organoplatínicos/uso terapêutico , Trastuzumab/uso terapêuticoRESUMO
Staphylococcus aureus is one of the most common pathogens causing hospital-acquired and community-acquired infections. Methicillin-resistant S. aureus (MRSA)-formed biofilms in wounds are difficult to treat with conventional antibiotics. By targeting FabB/FabF of bacterial fatty acid synthases, platensimycin (PTM) was discovered to act as a promising natural antibiotic against MRSA infections. In this study, PTM and its previously synthesized sulfur-Michael derivative PTM-2t could reduce over 95% biofilm formation by S. aureus ATCC 29213 when used at 2 µg/mL in vitro. Topical application of ointments containing PTM or PTM-2t (2 × 4 mg/day/mouse) was successfully used to treat MRSA infections in a BABL/c mouse burn wound model. As a potential prodrug lead, PTM-2t showed improved in vivo efficacy in a mouse peritonitis model compared with PTM. Our study suggests that PTM and its analogue may be used topically or locally to treat bacterial infections. In addition, the use of prodrug strategies might be instrumental to improve the poor pharmacokinetic properties of PTM.
Assuntos
Adamantano/uso terapêutico , Aminobenzoatos/uso terapêutico , Anilidas/uso terapêutico , Antibacterianos/uso terapêutico , Queimaduras/tratamento farmacológico , Inibidores da Síntese de Ácidos Graxos/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Peritonite/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Infecções Cutâneas Estafilocócicas/tratamento farmacológico , Adamantano/administração & dosagem , Aminobenzoatos/administração & dosagem , Anilidas/administração & dosagem , Animais , Antibacterianos/administração & dosagem , Biofilmes/efeitos dos fármacos , Queimaduras/microbiologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana/efeitos dos fármacos , Estabilidade de Medicamentos , Ácido Graxo Sintase Tipo II/antagonistas & inibidores , Inibidores da Síntese de Ácidos Graxos/administração & dosagem , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microssomos/efeitos dos fármacos , Peritonite/microbiologia , Pró-Fármacos/administração & dosagem , Infecções Cutâneas Estafilocócicas/microbiologia , Sulfetos , Resultado do TratamentoRESUMO
BACKGROUND AND AIM: Treatment options for functional dyspepsia (FD) refractory to pharmacological treatments are limited but the effectiveness of electroacupuncture (EA) is uncertain. We assessed the effectiveness of EA combined with on-demand gastrocaine. METHODS: We conducted a single-center, assessor-blind, randomized parallel-group 2-arm trial on Helicobacter pylori negative FD patients of the postprandial distress syndrome subtype refractory to proton pump inhibitor, prokinetics, or H2 antagonists. Enrolled participants were block randomized in a 1:1 ratio, with concealed random sequence. The treatment and control groups both received on-demand gastrocaine for 12 weeks, but only those in treatment group were offered 20 sessions of EA over 10 weeks. The primary endpoint was the between-group difference in proportion of patients achieving adequate relief of symptoms at week 12. RESULTS: Of 132 participants randomly assigned to EA plus on-demand gastrocaine (n = 66) or on-demand gastrocaine alone (n = 66), 125 (94.7%) completed all follow-up at 12 weeks. The EA group had a compliance rate 97.7%. They had a significantly higher likelihood in achieving adequate symptom relief at 12 weeks, with a clinically relevant number needed to treat (NNT) value of 2.36 (95% CI: 1.74, 3.64). Among secondary outcomes, statistically and clinically significant improvements were observed among global symptom (NNT = 3.85 [95% CI: 2.63, 7.69]); postprandial fullness and early satiation (NNT = 5.00 [95% CI: 2.86, 25.00]); as well as epigastric pain, epigastric burning, and postprandial nausea (NNT = 4.17 [95% CI: 2.56, 11.11]). Adverse events were minimal and nonsignificant. CONCLUSION: For refractory FD, EA provides significant, clinically relevant symptom relief when added to on-demand gastrocaine (ChiCTR-IPC-15007109).
Assuntos
Hidróxido de Alumínio/uso terapêutico , Aminobenzoatos/uso terapêutico , Atropina/uso terapêutico , Dispepsia/tratamento farmacológico , Eletroacupuntura/métodos , Compostos de Magnésio/uso terapêutico , Adulto , Hidróxido de Alumínio/administração & dosagem , Aminobenzoatos/administração & dosagem , Atropina/administração & dosagem , Terapia Combinada , Esquema de Medicação , Combinação de Medicamentos , Eletroacupuntura/efeitos adversos , Feminino , Humanos , Compostos de Magnésio/administração & dosagem , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Método Simples-Cego , Resultado do TratamentoRESUMO
Although tricaine methanesulfonate (MS-222) immersion has historically been standard of care for fish and anuran euthanasia, recent research has proven it insufficient for euthanasia of goldfish. To assess appropriateness for humane euthanasia of anurans, this study evaluated the efficacy of MS-222 in Smokey Jungle Frogs (Leptodactylus pentadactylus). Eighteen frogs (21-33 g) were exposed to one of three MS-222 concentrations via partial immersion: 2.5 g/L for 90 min (M2.5/90), 5 g/L for 60 min (M5/60), or 10 g/L for 60 min (M10/60). Physiologic parameters and times to loss of spontaneous movement, righting reflex, and noxious stimulus response were recorded. Following exposure, frogs were rinsed with dechlorinated water, and time to cessation of heart beat was recorded. Survival in M2.5/90, M5/60, and M10/60 was one of six, zero of six, and zero of six, respectively. In M2.5/90, three of six frogs had continued purposeful, spontaneous movement throughout exposure. In M5/60 and M10/60, median (range) time to initial loss of movement was 14.3 (5.5-30.0) and 7.6 (4.8-19.7) min, respectively. Twelve of 18 frogs among all groups demonstrated a median (range) of two (one to six) episodes of regained consciousness with purposeful, spontaneous movement following loss of noxious stimulus response. Median (range) time to heart beat cessation in M2.5/90, M5/60, and M10/60 was 150 (135-210), 157.5 (60-225), and 90 (75-210) min, respectively. Although death was achieved in 17 of 18 frogs, given the repeated events of regained consciousness, MS-222 immersion when used at concentrations ≤10 g/L did not result in rapid and distress-free death and is not sufficient for humane euthanasia in this species.
Assuntos
Aminobenzoatos/uso terapêutico , Anestésicos/uso terapêutico , Anuros/fisiologia , Eutanásia Animal/métodos , Animais , Relação Dose-Resposta a Droga , ImersãoRESUMO
Telomerase-mediated immortalization and proliferation of tumor cells is a promising anti-cancer treatment strategy and development of potent telomerase inhibitors is believed to open new window of treatments in human malignancies. In the present study, we found that BIBR1532, a small molecule inhibitor of human telomerase, exerted cytotoxic effects on a panel of human cancer cells spanning from solid tumors to hematologic malignancies; however, as compared with solid tumors, leukemic cells were more sensitive to this inhibitor. This was independent of molecular status of p53 in the leukemic cells. The results of a miRNA PCR array revealed that BIBR1532-induced cytotoxic effects in NB4, the most sensitive cell line, was coupled with alteration in a substantial number of cancer-related miRNAs. Interestingly, most of these miRNAs were found to act as tumor suppressors with validated targets in cell cycle or nuclear factor (NF)-κB-mediated apoptosis. In accordance with a bioinformatics analysis, our experimental studies showed that BIBR1532-induced apoptosis is mediated, at least partly, by inhibition of NF-κB. Moreover, we found that the alteration in the expression of miRNAs was coupled with the alteration in the cell cycle progression. To sum up with, a straightforward interpretation of our results is that telomerase inhibition using BIBR1532 not only induced CDKN1A-mediated G1 arrest in NB4, but also resulted in a caspase-3-dependent apoptotic cell death mostly through suppression of NF-κB axis.
Assuntos
Aminobenzoatos/uso terapêutico , Leucemia Promielocítica Aguda/tratamento farmacológico , MicroRNAs/metabolismo , Naftalenos/uso terapêutico , Telomerase/antagonistas & inibidores , Aminobenzoatos/farmacologia , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , NF-kappa B/metabolismo , Naftalenos/farmacologiaRESUMO
INTRODUCTION: This trial proposes to compare the effectiveness and cost-effectiveness of electroacupuncture (EA) plus on-demand gastrocaine with waiting list for EA plus on-demand gastrocaine in providing symptom relief and quality-of-life improvement among patients with functional dyspepsia (FD). METHODS AND ANALYSIS: This is a single-centre, pragmatic, randomised parallel-group, superiority trial comparing the outcomes of (1) EA plus on-demand gastrocaine group and (2) waiting list to EA plus on-demand gastrocaine group. 132 (66/arm) endoscopically confirmed, Helicobacter pylori-negative patients with FD will be recruited. Enrolled patients will respectively be receiving (1) 20 sessions of EA over 10 weeks plus on-demand gastrocaine; or (2) on-demand gastrocaine and being nominated on to a waiting list for EA, which entitles them 20 sessions of EA over 10 weeks after 12 weeks of waiting. The primary outcome will be the between-group difference in proportion of patients achieving adequate relief of symptoms over 12 weeks. The secondary outcomes will include patient-reported change in global symptoms and individual symptoms, Nepean Dyspepsia Index, Nutrient Drink Test, 9-item Patient Health Questionnaire (PHQ9), and 7-item Generalised Anxiety Disorder Scale (GAD7). Adverse events will be assessed formally. Results on direct medical costs and on the EuroQol (EQ-5D) questionnaire will also be used to assess cost-effectiveness. Analysis will follow the intention-to-treat principle using appropriate univariate and multivariate methods. A mixed model analysis taking into account missing data of these outcomes will be performed. Cost-effectiveness analysis will be performed using established approach. ETHICS AND DISSEMINATION: The study is supported by the Health and Medical Research Fund, Government of the Hong Kong Special Administrative Region of China. It has been approved by the Joint Chinese University of Hong Kong - New Territories East Cluster Clinical Research Ethics Committee. Results will be published in peer-reviewed journals and be disseminated in international conference. TRIAL REGISTRATION NUMBER: ChiCTR-IPC-15007109; Pre-result.
Assuntos
Hidróxido de Alumínio/uso terapêutico , Aminobenzoatos/uso terapêutico , Atropina/uso terapêutico , Análise Custo-Benefício/economia , Dispepsia/terapia , Eletroacupuntura/métodos , Compostos de Magnésio/uso terapêutico , Projetos de Pesquisa , Padrão de Cuidado/economia , Adolescente , Adulto , Idoso , Hidróxido de Alumínio/economia , Aminobenzoatos/economia , Atropina/economia , Combinação de Medicamentos , Dispepsia/economia , Eletroacupuntura/economia , Feminino , Hong Kong , Humanos , Compostos de Magnésio/economia , Masculino , Pessoa de Meia-Idade , Satisfação do Paciente , Qualidade de Vida , Inquéritos e Questionários , Resultado do Tratamento , Listas de Espera , Adulto JovemRESUMO
Purpose and Methods Trop-2 is a glycoprotein over-expressed in many solid tumors but at low levels in normal human tissue, providing a potential therapeutic target. We conducted a phase 1 dose-finding study of PF-06664178, an antibody-drug conjugate that targets Trop-2 for the selective delivery of the cytotoxic payload Aur0101. The primary objective was to determine the maximum tolerated dose and recommended phase 2 dose. Secondary objectives included further characterization of the safety profile, pharmacokinetics and antitumor activity. Eligible patients were enrolled and received multiple escalating doses of PF-06664178 in an open-label and unblinded manner based on a modified continual reassessment method. Results Thirty-one patients with advanced or metastatic solid tumors were treated with escalating doses of PF-06664178 given intravenously every 21 days. Doses explored ranged from 0.15 mg/kg to 4.8 mg/kg. Seven patients experienced at least one dose limiting toxicity (DLT), either neutropenia or rash. Doses of 3.60 mg/kg, 4.2 mg/kg and 4.8 mg/kg were considered intolerable due to DLTs in skin rash, mucosa and neutropenia. Best overall response was stable disease in 11 patients (37.9%). None of the patients had a partial or complete response. Systemic exposure of PF-06664178 increased in a dose-related manner. Serum concentrations of free Aur0101 were substantially lower than those of PF-06664178 and total antibody. No correlation of Trop-2 expression and objective response was observed, although Trop-2 overexpression was not required for study entry. The intermediate dose of 2.4 mg/kg appeared to be the highest tolerated dose, but this was not fully explored as the study was terminated early due to excess toxicity. Conclusion PF-06664178 showed toxicity at high dose levels with modest antitumor activity. Neutropenia, skin rash and mucosal inflammation were dose limiting toxicities. Findings from this study may potentially aid in future antibody drug conjugate design and trials.
Assuntos
Aminobenzoatos/uso terapêutico , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Moléculas de Adesão Celular/antagonistas & inibidores , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Aminobenzoatos/farmacocinética , Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Moléculas de Adesão Celular/metabolismo , Exantema/induzido quimicamente , Feminino , Humanos , Imunoconjugados/farmacocinética , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Neoplasias/metabolismo , Neutropenia/induzido quimicamente , Oligopeptídeos/farmacocinética , Resultado do TratamentoRESUMO
Attaching a cytotoxic "payload" to an antibody to form an antibody-drug conjugate (ADC) provides a mechanism for selective delivery of the cytotoxic agent to cancer cells via the specific binding of the antibody to cancer-selective cell surface molecules. The first ADC to receive marketing authorization was gemtuzumab ozogamicin, which comprises an anti-CD33 antibody conjugated to a highly potent DNA-targeting antibiotic, calicheamicin, approved in 2000 for treating acute myeloid leukemia. It was withdrawn from the US market in 2010 following an unsuccessful confirmatory trial. The development of two classes of highly potent microtubule-disrupting agents, maytansinoids and auristatins, as payloads for ADCs resulted in approval of brentuximab vedotin in 2011 for treating Hodgkin lymphoma and anaplastic large cell lymphoma, and approval of ado-trastuzumab emtansine in 2013 for treating HER2-positive breast cancer. Their success stimulated much research into the ADC approach, with >60 ADCs currently in clinical evaluation, mostly targeting solid tumors. Five ADCs have advanced into pivotal clinical trials for treating various solid tumors-platinum-resistant ovarian cancer, mesothelioma, triple-negative breast cancer, glioblastoma, and small cell lung cancer. The level of target expression is a key parameter in predicting the likelihood of patient benefit for all these ADCs, as well as for the approved compound, ado-trastuzumab emtansine. The development of a patient selection strategy linked to target expression on the tumor is thus critically important for identifying the population appropriate for receiving treatment.
Assuntos
Aminobenzoatos/uso terapêutico , Aminoglicosídeos/uso terapêutico , Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Imunoconjugados/uso terapêutico , Maitansina/análogos & derivados , Neoplasias/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/uso terapêutico , Ado-Trastuzumab Emtansina , Gemtuzumab , Humanos , Maitansina/uso terapêutico , Neoplasias/imunologia , TrastuzumabRESUMO
Disease relapse after treatment is common in triple-negative breast cancer (TNBC), ovarian cancer (OVCA), and non-small cell lung cancer (NSCLC). Therapies that target tumor-initiating cells (TICs) should improve patient survival by eliminating the cells that can drive tumor recurrence and metastasis. We demonstrate that protein tyrosine kinase 7 (PTK7), a highly conserved but catalytically inactive receptor tyrosine kinase in the Wnt signaling pathway, is enriched on TICs in low-passage TNBC, OVCA, and NSCLC patient-derived xenografts (PDXs). To deliver a potent anticancer drug to PTK7-expressing TICs, we generated a targeted antibody-drug conjugate (ADC) composed of a humanized anti-PTK7 monoclonal antibody, a cleavable valine-citrulline-based linker, and Aur0101, an auristatin microtubule inhibitor. The PTK7-targeted ADC induced sustained tumor regressions and outperformed standard-of-care chemotherapy. Moreover, the ADC specifically reduced the frequency of TICs, as determined by serial transplantation experiments. In addition to reducing the TIC frequency, the PTK7-targeted ADC may have additional antitumor mechanisms of action, including the inhibition of angiogenesis and the stimulation of immune cells. Together, these preclinical data demonstrate the potential for the PTK7-targeted ADC to improve the long-term survival of cancer patients.
Assuntos
Anticorpos/uso terapêutico , Moléculas de Adesão Celular/química , Imunoconjugados/uso terapêutico , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores Proteína Tirosina Quinases/química , Aminobenzoatos/uso terapêutico , Animais , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Moléculas de Adesão Celular/imunologia , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Feminino , Humanos , Imunoterapia/métodos , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/terapia , Macaca fascicularis , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Microtúbulos/química , Recidiva Local de Neoplasia/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/terapia , Receptores Proteína Tirosina Quinases/imunologia , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/terapia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Natural products have served as the main source of drugs and drug leads, and natural products produced by microorganisms are one of the most prevalent sources of clinical antibiotics. Their unparalleled structural and chemical diversities provide a basis to investigate fundamental biological processes while providing access to a tremendous amount of chemical space. There is a pressing need for novel antibiotics with new mode of actions to combat the growing challenge of multidrug resistant pathogens. This review begins with the pioneering discovery and biological activities of platensimycin (PTM) and platencin (PTN), two antibacterial natural products isolated from Streptomyces platensis. The elucidation of their unique biochemical mode of action, structure-activity relationships, and pharmacokinetics is presented to highlight key aspects of their biological activities. It then presents an overview of how microbial genomics has impacted the field of PTM and PTN and revealed paradigm-shifting discoveries in terpenoid biosynthesis, fatty acid metabolism, and antibiotic and antidiabetic therapies. It concludes with a discussion covering the future perspectives of PTM and PTN in regard to natural products discovery, bacterial diterpenoid biosynthesis, and the pharmaceutical promise of PTM and PTN as antibiotics and for the treatment of metabolic disorders. PTM and PTN have inspired new discoveries in chemistry, biology, enzymology, and medicine and will undoubtedly continue to do so.