Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 15934, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987320

RESUMO

The draft genome sequence of an agriculturally important actinobacterial species Amycolatopsis sp. BCA-696 was developed and characterized in this study. Amycolatopsis BCA-696 is known for its biocontrol properties against charcoal rot and also for plant growth-promotion (PGP) in several crop species. The next-generation sequencing (NGS)-based draft genome of Amycolatopsis sp. BCA-696 comprised of ~ 9.05 Mb linear chromosome with 68.75% GC content. In total, 8716 protein-coding sequences and 61 RNA-coding sequences were predicted in the genome. This newly developed genome sequence has been also characterized for biosynthetic gene clusters (BGCs) and biosynthetic pathways. Furthermore, we have also reported that the Amycolatopsis sp. BCA-696 produces the glycopeptide antibiotic vancomycin that inhibits the growth of pathogenic gram-positive bacteria. A comparative analysis of the BCA-696 genome with publicly available closely related genomes of 14 strains of Amycolatopsis has also been conducted. The comparative analysis has identified a total of 4733 core and 466 unique orthologous genes present in the BCA-696 genome The unique genes present in BCA-696 was enriched with antibiotic biosynthesis and resistance functions. Genome assembly of the BCA-696 has also provided genes involved in key pathways related to PGP and biocontrol traits such as siderophores, chitinase, and cellulase production.


Assuntos
Amycolatopsis , Genoma Bacteriano , Genômica , Genômica/métodos , Amycolatopsis/genética , Amycolatopsis/metabolismo , Família Multigênica , Desenvolvimento Vegetal/genética , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Vancomicina/farmacologia
2.
Microb Cell Fact ; 23(1): 186, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943174

RESUMO

BACKGROUND: Oritavancin is a new generation of semi-synthetic glycopeptide antibiotics against Gram-positive bacteria, which served as the first and only antibiotic with a single-dose therapeutic regimen to treat ABSSSI. A naturally occurring glycopeptide A82846B is the direct precursor of oritavancin. However, its application has been hampered by low yields and homologous impurities. This study established a multi-step combinatorial strategy to rationally construct a high-quality and high-efficiency biosynthesis system for A82846B and systematically optimize its fermentation process to break through the bottleneck of microbial fermentation production. RESULTS: Firstly, based on the genome sequencing and analysis, we deleted putative competitive pathways and constructed a better A82846B-producing strain with a cleaner metabolic background, increasing A82846B production from 92 to 174 mg/L. Subsequently, the PhiC31 integrase system was introduced based on the CRISPR-Cas12a system. Then, the fermentation level of A82846B was improved to 226 mg/L by over-expressing the pathway-specific regulator StrR via the constructed PhiC31 system. Furthermore, overexpressing glycosyl-synthesis gene evaE enhanced the production to 332 mg/L due to the great conversion of the intermediate to target product. Finally, the scale-up production of A82846B reached 725 mg/L in a 15 L fermenter under fermentation optimization, which is the highest reported yield of A82846B without the generation of homologous impurities. CONCLUSION: Under approaches including blocking competitive pathways, inserting site-specific recombination system, overexpressing regulator, overexpressing glycosyl-synthesis gene and optimizing fermentation process, a multi-step combinatorial strategy for the high-level production of A82846B was developed, constructing a high-producing strain AO-6. The combinatorial strategies employed here can be widely applied to improve the fermentation level of other microbial secondary metabolites, providing a reference for constructing an efficient microbial cell factory for high-value natural products.


Assuntos
Amycolatopsis , Fermentação , Engenharia Metabólica , Amycolatopsis/metabolismo , Amycolatopsis/genética , Engenharia Metabólica/métodos , Sistemas CRISPR-Cas , Antibacterianos/biossíntese , Vias Biossintéticas , Glicopeptídeos/biossíntese
3.
J Bacteriol ; 206(5): e0000324, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38606980

RESUMO

In most actinomycetes, GlnR governs both nitrogen and non-nitrogen metabolisms (e.g., carbon, phosphate, and secondary metabolisms). Although GlnR has been recognized as a global regulator, its regulatory role in central carbon metabolism [e.g., glycolysis, gluconeogenesis, and the tricarboxylic acid (TCA) cycle] is largely unknown. In this study, we characterized GlnR as a direct transcriptional repressor of the pckA gene that encodes phosphoenolpyruvate carboxykinase, catalyzing the conversion of the TCA cycle intermediate oxaloacetate to phosphoenolpyruvate, a key step in gluconeogenesis. Through the transcriptomic and quantitative real-time PCR analyses, we first showed that the pckA transcription was upregulated in the glnR null mutant of Amycolatopsis mediterranei. Next, we proved that the pckA gene was essential for A. mediterranei gluconeogenesis when the TCA cycle intermediate was used as a sole carbon source. Furthermore, with the employment of the electrophoretic mobility shift assay and DNase I footprinting assay, we revealed that GlnR was able to specifically bind to the pckA promoter region from both A. mediterranei and two other representative actinomycetes (Streptomyces coelicolor and Mycobacterium smegmatis). Therefore, our data suggest that GlnR may repress pckA transcription in actinomycetes, which highlights the global regulatory role of GlnR in both nitrogen and central carbon metabolisms in response to environmental nutrient stresses. IMPORTANCE: The GlnR regulator of actinomycetes controls nitrogen metabolism genes and many other genes involved in carbon, phosphate, and secondary metabolisms. Currently, the known GlnR-regulated genes in carbon metabolism are involved in the transport of carbon sources, the assimilation of short-chain fatty acid, and the 2-methylcitrate cycle, although little is known about the relationship between GlnR and the TCA cycle and gluconeogenesis. Here, based on the biochemical and genetic results, we identified GlnR as a direct transcriptional repressor of pckA, the gene that encodes phosphoenolpyruvate carboxykinase, a key enzyme for gluconeogenesis, thus highlighting that GlnR plays a central and complex role for dynamic orchestration of cellular carbon, nitrogen, and phosphate fluxes and bioactive secondary metabolites in actinomycetes to adapt to changing surroundings.


Assuntos
Proteínas de Bactérias , Regulação Bacteriana da Expressão Gênica , Gluconeogênese , Nitrogênio , Gluconeogênese/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Nitrogênio/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Repressoras/genética , Amycolatopsis/metabolismo , Amycolatopsis/genética , Regiões Promotoras Genéticas , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Ciclo do Ácido Cítrico/genética , Actinobacteria/genética , Actinobacteria/metabolismo
4.
Appl Environ Microbiol ; 90(5): e0020524, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38625022

RESUMO

Dye-decolorizing peroxidases are heme peroxidases with a broad range of substrate specificity. Their physiological function is still largely unknown, but a role in the depolymerization of plant cell wall polymers has been widely proposed. Here, a new expression system for bacterial dye-decolorizing peroxidases as well as the activity with previously unexplored plant molecules are reported. The dye-decolorizing peroxidase from Amycolatopsis 75iv2 (DyP2) was heterologously produced in the Gram-positive bacterium Streptomyces lividans TK24 in both intracellular and extracellular forms without external heme supplementation. The enzyme was tested on a series of O-glycosides, which are plant secondary metabolites with a phenyl glycosidic linkage. O-glycosides are of great interest, both for studying the compounds themselves and as potential models for studying specific lignin-carbohydrate complexes. The primary DyP reaction products of salicin, arbutin, fraxin, naringin, rutin, and gossypin were oxidatively coupled oligomers. A cleavage of the glycone moiety upon radical polymerization was observed when using arbutin, fraxin, rutin, and gossypin as substrates. The amount of released glucose from arbutin and fraxin reached 23% and 3% of the total substrate, respectively. The proposed mechanism suggests a destabilization of the ether linkage due to the localization of the radical in the para position. In addition, DyP2 was tested on complex lignocellulosic materials such as wheat straw, spruce, willow, and purified water-soluble lignin fractions, but no remarkable changes in the carbohydrate profile were observed, despite obvious oxidative activity. The exact action of DyP2 on such lignin-carbohydrate complexes therefore remains elusive. IMPORTANCE: Peroxidases require correct incorporation of the heme cofactor for activity. Heterologous overproduction of peroxidases often results in an inactive enzyme due to insufficient heme synthesis by the host organism. Therefore, peroxidases are incubated with excess heme during or after purification to reconstitute activity. S. lividans as a production host can produce fully active peroxidases both intracellularly and extracellularly without the need for heme supplementation. This reduces the number of downstream processing steps and is beneficial for more sustainable production of industrially relevant enzymes. Moreover, this research has extended the scope of dye-decolorizing peroxidase applications by studying naturally relevant plant secondary metabolites and analyzing the formed products. A previously overlooked artifact of radical polymerization leading to the release of the glycosyl moiety was revealed, shedding light on the mechanism of DyP peroxidases. The key aspect is the continuous addition, rather than the more common approach of a single addition, of the cosubstrate, hydrogen peroxide. This continuous addition allows the peroxidase to complete a high number of turnovers without self-oxidation.


Assuntos
Amycolatopsis , Corantes , Glicosídeos , Corantes/metabolismo , Corantes/química , Glicosídeos/metabolismo , Amycolatopsis/metabolismo , Amycolatopsis/genética , Amycolatopsis/enzimologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Peroxidases/metabolismo , Peroxidases/genética , Peroxidase/metabolismo , Peroxidase/química , Peroxidase/genética , Streptomyces lividans/metabolismo , Streptomyces lividans/genética , Streptomyces lividans/enzimologia , Especificidade por Substrato
5.
J Antibiot (Tokyo) ; 77(5): 278-287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38409261

RESUMO

Ten new proansamycin B congeners (1-10) together with one known (11) were isolated and characterized on the basis of 1D and 2D NMR spectroscopic and HRESIMS data from the Amycolatopsis mediterranei S699 ΔPM::rifR+rif-orf19 mutant. Compounds 8 and 9 featured with six-membered ring and five-membered ring hemiketal, respectively. Compounds 1, 2, and 9 displayed antibacterial activity against MRSA (methicillin-resistant Staphylococcus aureus), with the MIC (minimal inhibitory concentration) values of 64, 8, and 128 µg/mL, respectively. Compound 1 showed significant cytotoxicity against MDA-MB-231, HepG2 and Panc-1 cell lines with IC50 (half maximal inhibitory concentration) values of 2.3 ± 0.2, 2.5 ± 0.3 and 3.8 ± 0.5 µM, respectively.


Assuntos
Amycolatopsis , Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Linhagem Celular Tumoral , Amycolatopsis/genética , Deleção de Genes , Antineoplásicos/farmacologia , Antineoplásicos/química , Espectroscopia de Ressonância Magnética , Células Hep G2 , Estrutura Molecular
6.
Biosci Biotechnol Biochem ; 87(6): 605-610, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37015872

RESUMO

Recently, phosphatidylglycerol (PG) focused on its important role in chloroplast photosynthesis, mitochondrial function of the sperm, an inhibitory effect on SARS-CoV-2 ability to infect naïve cells, and reducing lung inflammation caused by coronavirus disease 2019. To develop an enzymatic PG determination method as the high-throughput analysis of PG, a PG-specific phospholipase C (PG-PLC) was found in the culture supernatant of Amycolatopsis sp. NT115. PG-PLC (54 kDa by SDS-PAGE) achieved the maximal activity at pH 6.0 and 55 °C and was inhibited by detergents, such as Briji35, Tween 80, and sodium cholate, but not by EDTA and metal ions, except for Zn2+. The open reading frame of the PG-PLC gene consisted of 1620 bp encoding 515-amino-acid residues containing the preceding 25-amino-acid residues (Tat signal peptide sequence). The putative amino acid sequence of PG-PLC was highly similar to those of metallophosphoesterases; however, its substrate specificity was completely different from those of known PLCs.


Assuntos
COVID-19 , Fosfolipases Tipo C , Masculino , Humanos , Fosfolipases Tipo C/química , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Amycolatopsis/genética , Amycolatopsis/metabolismo , Fosfatidilgliceróis , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Sêmen , Clonagem Molecular , Sinais Direcionadores de Proteínas/genética
7.
Biochemistry ; 60(50): 3829-3840, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34845903

RESUMO

Catalytic promiscuity is the coincidental ability to catalyze nonbiological reactions in the same active site as the native biological reaction. Several lines of evidence show that catalytic promiscuity plays a role in the evolution of new enzyme functions. Thus, studying catalytic promiscuity can help identify structural features that predispose an enzyme to evolve new functions. This study identifies a potentially preadaptive residue in a promiscuous N-succinylamino acid racemase/o-succinylbenzoate synthase (NSAR/OSBS) enzyme from Amycolatopsis sp. T-1-60. This enzyme belongs to a branch of the OSBS family which includes many catalytically promiscuous NSAR/OSBS enzymes. R266 is conserved in all members of the NSAR/OSBS subfamily. However, the homologous position is usually hydrophobic in other OSBS subfamilies, whose enzymes lack NSAR activity. The second-shell amino acid R266 is close to the catalytic acid/base K263, but it does not contact the substrate, suggesting that R266 could affect the catalytic mechanism. Mutating R266 to glutamine in Amycolatopsis NSAR/OSBS profoundly reduces NSAR activity but moderately reduces OSBS activity. This is due to a 1000-fold decrease in the rate of proton exchange between the substrate and the general acid/base catalyst K263. This mutation is less deleterious for the OSBS reaction because K263 forms a cation-π interaction with the OSBS substrate and/or the intermediate, rather than acting as a general acid/base catalyst. Together, the data explain how R266 contributes to NSAR reaction specificity and was likely an essential preadaptation for the evolution of NSAR activity.


Assuntos
Isomerases de Aminoácido/química , Isomerases de Aminoácido/metabolismo , Carbono-Carbono Liases/química , Carbono-Carbono Liases/metabolismo , Isomerases de Aminoácido/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Amycolatopsis/enzimologia , Amycolatopsis/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biocatálise , Carbono-Carbono Liases/genética , Domínio Catalítico/genética , Sequência Conservada , Cristalografia por Raios X , Estabilidade Enzimática/genética , Evolução Molecular , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
8.
ACS Synth Biol ; 10(11): 3009-3016, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34628852

RESUMO

Oritavancin is a new-generation semisynthetic lipoglycopeptide antibiotic used to prevent the spread of vancomycin-resistant Gram-positive bacteria. The glycopeptide A82846B is the direct precursor of oritavancin. Considering the structural similarity between A82846B and vancomycin, the vancomycin producer Amycolatopsis orientalis was used as a chassis for the construction of a strain producing high-quality A82846B. To construct the A82846B synthetic pathway, we established a highly efficient CRISPR-Cas12a system by optimizing the conditions of conjugation and by screening the regulatory elements in the A. orientalis, which is difficult to be genetically manipulated. The efficiency of gene knockout was almost 100%. The glycosyltransferases module (gtfDE) and glycosyl synthesis module (vcaAEBD) in the vancomycin gene cluster were replaced with the corresponding glycosyltransferases module (gtfABC) and glycosyl synthesis module (evaAEBD) in the A82846B cluster, respectively. A82846B was successfully produced by the artificially constructed synthetic pathway. Moreover, the titer of A82846B was increased 80% by expressing the pathway-specific regulatory strR. This strategy has excellent potential for remodification of natural products to solve antibiotic resistance.


Assuntos
Antibacterianos/metabolismo , Sistemas CRISPR-Cas/genética , Glicopeptídeos/genética , Glicopeptídeos/metabolismo , Actinomycetales/genética , Actinomycetales/metabolismo , Amycolatopsis/genética , Amycolatopsis/metabolismo , Resistência Microbiana a Medicamentos/genética , Lipoglicopeptídeos/genética , Lipoglicopeptídeos/metabolismo , Família Multigênica/genética , Vancomicina/metabolismo
9.
Appl Environ Microbiol ; 87(19): e0106621, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34505824

RESUMO

Amycolatopsis sp. strain TNS106 harbors a ristomycin-biosynthetic gene cluster (asr) in its genome and produces ristomycin A. Deletion of the sole cluster-situated StrR family regulatory gene, asrR, abolished ristomycin A production and the transcription of the asr genes orf5 to orf39. The ristomycin A fermentation titer in Amycolatopsis sp. strain TNS106 was dramatically improved by overexpression of asrR and a heterologous StrR family regulatory gene, bbr, from the balhimycin-biosynthetic gene cluster (BGC) utilizing strong promoters and multiple gene copies. Ristomycin A production was improved by approximately 60-fold, resulting in a fermentation titer of 4.01 g/liter in flask culture, in one of the engineered strains. Overexpression of AsrR and Bbr upregulated transcription of tested asr biosynthetic genes, indicating that these asr genes were positively regulated by AsrR and Bbr. However, only the promoter region of the asrR operon and the intergenic region upstream of orf12 were bound by AsrR and Bbr in gel retardation assays, suggesting that AsrR and Bbr directly regulated the asrR operon and probably orf12 to orf14 but no other asr biosynthetic genes. Further assays with synthetic short probes showed that AsrR and Bbr specifically bound not only probes containing the canonical inverted repeats but also a probe with only one 7-bp element of the inverted repeats in its native context. AsrR and Bbr have an N-terminal ParB-like domain and a central winged helix-turn-helix DNA-binding domain. Site-directed mutations indicated that the N-terminal ParB-like domain was involved in activation of ristomycin A biosynthesis and did not affect the DNA-binding activity of AsrR and Bbr. IMPORTANCE This study showed that overexpression of either a native StrR family regulator (AsrR) or a heterologous StrR family regulator (Bbr) dramatically improved ristomycin A production by increasing the transcription of biosynthetic genes directly or indirectly. The conserved ParB-like domain of AsrR and Bbr was demonstrated to be involved in the regulation of asr BGC expression. These findings provide new insights into the mechanism of StrR family regulators in the regulation of glycopeptide antibiotic biosynthesis. Furthermore, the regulator overexpression plasmids constructed in this study could serve as valuable tools for strain improvement and genome mining for new glycopeptide antibiotics. In addition, ristomycin A is a type III glycopeptide antibiotic clinically used as a diagnostic reagent due to its side effects. The overproduction strains engineered in this study are ideal materials for industrial production of ristomycin A.


Assuntos
Amycolatopsis/genética , Amycolatopsis/metabolismo , Hemaglutininas/biossíntese , Ristocetina/biossíntese , Fermentação , Genes Bacterianos , Genes Reguladores , Engenharia Metabólica , Família Multigênica
10.
Biomolecules ; 11(7)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206314

RESUMO

Rifamycin W, the most predominant intermediate in the biosynthesis of rifamycin, needs to undergo polyketide backbone rearrangement to produce rifamycin B via an oxidative cleavage of the C-12/C-29 double bond. However, the mechanism of this putative oxidative cleavage has not been characterized yet. Rif-Orf5 (a putative cytochrome P450 monooxygenase) was proposed to be involved in the cleavage of this olefinic moiety of rifamycin W. In this study, the mutant strain Amycolatopsis mediterranei S699 Δrif-orf5 was constructed by in-frame deleting the rif-orf5 gene to afford thirteen rifamycin W congeners (1-13) including seven new ones (1-7). Their structures were elucidated by extensive analysis of 1D and 2D NMR spectroscopic data and high-resolution ESI mass spectra. Presumably, compounds 1-4 were derivatized from rifamycin W via C-5/C-11 retro-Claisen cleavage, and compounds 1-3, 9 and 10 featured a hemiacetal. Compounds 5-7 and 11 showed oxygenations at various sites of the ansa chain. In addition, compounds 1-3 exhibited antibacterial activity against Staphylococcus aureus with minimal inhibitory concentration (MIC) values of 5, 40 and 0.5 µg/mL, respectively. Compounds 1 and 3 showed modest antiproliferative activity against HeLa and Caco-2 cells with half maximal inhibitory concentration (IC50) values of about 50 µM.


Assuntos
Antibacterianos , Proliferação de Células/efeitos dos fármacos , Rifamicinas , Staphylococcus aureus/crescimento & desenvolvimento , Amycolatopsis/química , Amycolatopsis/genética , Amycolatopsis/metabolismo , Antibacterianos/biossíntese , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Células CACO-2 , Células HeLa , Humanos , Rifamicinas/biossíntese , Rifamicinas/química , Rifamicinas/isolamento & purificação , Rifamicinas/farmacologia
11.
Protein J ; 40(3): 342-347, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33818657

RESUMO

A novel alanine dehydrogenase (AlaDH; EC.1.4.1.1) was isolated from Amycolatopsis sulphurea and the AlaDH gene was cloned into a pET28a(+) plasmid and expressed in E. coli BL21 (DE3). The molecular mass of this enzyme was calculated as 41.09 kDa and the amino acid residues of the pure protein indicated the presence of N terminus polyhistidine tags. Its enzyme kinetic values were Km 2.03 mM, kcat 13.24 (s-1), and kcat/Km 6.53 (s-1 mM-1). AlaDH catalyzes the reversible conversion of L-alanine and pyruvate, which has an important role in the TCA energy cycle. Maximum AlaDH activity occurred at about pH 10.5 and 25 °C for the oxidative deamination of L-alanine. AlaDH retained about 10% of its relative activity at 55 °C and it remained about 90% active at 50 °C. These findings show that the AsAlaDH from A. sulphurea has the ability to produce valuable molecules for various industrial purposes and could represent a new potential biocatalyst for biotechnological applications after further characterization and improvement of its catalytic properties.


Assuntos
Alanina Desidrogenase , Proteínas de Bactérias , Expressão Gênica , Temperatura Alta , Alanina Desidrogenase/biossíntese , Alanina Desidrogenase/química , Alanina Desidrogenase/genética , Alanina Desidrogenase/isolamento & purificação , Amycolatopsis/enzimologia , Amycolatopsis/genética , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Estabilidade Enzimática , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
12.
Microb Cell Fact ; 20(1): 28, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531006

RESUMO

BACKGROUND: Norvancomycin has been widely used in clinic to treat against MRSA (Methicillin-resistant Staphylococcus aureus) and MRSE (Methicillin-resistant Staphylococcus epidermidis) infections in China. Amycolatopsis orientalis NCPC 2-48, a high yield strain derived from A. orientalis CPCC 200066, has been applied in industrial large-scale production of norvancomycin by North China Pharmaceutical Group. However, the potential high-yield and regulatory mechanism involved in norvancomycin biosynthetic pathway has not yet been addressed. RESULTS: Here we sequenced and compared the genomes and transcriptomes of A. orientalis CPCC 200066 and NCPC 2-48. These two genomes are extremely similar with an identity of more than 99.9%, and no duplication and structural variation was found in the norvancomycin biosynthetic gene cluster. Comparative transcriptomic analysis indicated that biosynthetic genes of norvancomycin, as well as some primary metabolite pathways for the biosynthetic precursors of norvancomycin were generally upregulated. AoStrR1 and AoLuxR1, two cluster-situated regulatory genes in norvancomycin cluster, were 23.3-fold and 5.8-fold upregulated in the high yield strain at 48 h, respectively. Over-expression of AoStrR1 and AoLuxR1 in CPCC 200066 resulted in an increase of norvancomycin production, indicating their positive roles in norvancomycin biosynthesis. Furthermore, AoStrR1 can regulate the production of norvancomycin by directly interacting with at least 8 promoters of norvancomycin biosynthetic genes or operons. CONCLUSION: Our results suggested that the high yield of NCPC 2-48 can be ascribed to increased expression level of norvancomycin biosynthetic genes in its cluster as well as the genes responsible for the supply of its precursors. The norvancomycin biosynthetic genes are presumably regulated by AoStrR1 and AoLuxR1, of them AoStrR1 is possibly the ultimate pathway-specific regulator for the norvancomycin production. These results are helpful for further clarification of the holistic and pathway-specific regulatory mechanism of norvancomycin biosynthesis in the industrial production strain.


Assuntos
Genômica , Transcriptoma/genética , Vancomicina/análogos & derivados , Amycolatopsis/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Vias Biossintéticas , Família Multigênica , Regiões Promotoras Genéticas/genética , Ligação Proteica , Vancomicina/biossíntese , Vancomicina/química
13.
Microbiologyopen ; 10(1): e1145, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33449449

RESUMO

The l-δ-(α-aminoadipoyl)-l-cysteinyl-d-valine synthetase (ACVS) is a trimodular nonribosomal peptide synthetase (NRPS) that provides the peptide precursor for the synthesis of ß-lactams. The enzyme has been extensively characterized in terms of tripeptide formation and substrate specificity. The first module is highly specific and is the only NRPS unit known to recruit and activate the substrate l-α-aminoadipic acid, which is coupled to the α-amino group of l-cysteine through an unusual peptide bond, involving its δ-carboxyl group. Here we carried out an in-depth investigation on the architecture of the first module of the ACVS enzymes from the fungus Penicillium rubens and the bacterium Nocardia lactamdurans. Bioinformatic analyses revealed the presence of a previously unidentified domain at the N-terminus which is structurally related to condensation domains, but smaller in size. Deletion variants of both enzymes were generated to investigate the potential impact on penicillin biosynthesis in vivo and in vitro. The data indicate that the N-terminal domain is important for catalysis.


Assuntos
Antibacterianos/biossíntese , Penicillium/enzimologia , Peptídeo Sintases/genética , Domínios Proteicos/genética , beta-Lactamas/metabolismo , Ácido 2-Aminoadípico/metabolismo , Sequência de Aminoácidos , Amycolatopsis/enzimologia , Amycolatopsis/genética , Amycolatopsis/metabolismo , Antibacterianos/metabolismo , Vias Biossintéticas/genética , Vias Biossintéticas/fisiologia , Cisteína/química , Variação Genética/genética , Penicillium/genética , Penicillium/metabolismo
14.
J Antibiot (Tokyo) ; 74(3): 199-205, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33128034

RESUMO

A polyphasic approach was used to describe strain K13G38T, a novel actinomycete isolated from peat swamp forest soil collected from Surat Thani Province, Thailand. The 16S rRNA gene phylogenetic analysis indicated that the strain belonged to the genus Amycolatopsis and showed the highest sequence similarities to both Amycolatopsis acidiphila JCM 30562T and Amycolatopsis bartoniae DSM 45807T (96.8% sequence similarity). Furthermore, strain K13G38T, which formed extensively branched substrate and aerial mycelia, exhibited chemotaxonomical characteristics of the genus Amycolatopsis which included phospholipid pattern type II and cell-wall chemotype IV. The polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, hydroxy-phosphatidylethanolamine, phosphatidylinositol, phosphatidylglycerol, two unidentified phospholipids, and an unidentified aminolipid. MK-9(H4) was a predominant menaquinone of the organism. The major cellular fatty acids were iso-C16:0, anteiso-C17:0, and C16:0. The genomic DNA size of strain K13G38T was 8.5 Mbp with 69.5 mol% G+C content. On the basis of phenotypic characteristics, overall genomic relatedness index and phylogenetic distinctiveness, strain K13G38T represents a novel species of the genus Amycolatopsis, for which the name A. acididurans sp. nov. is proposed. The type strain is K13G38T (=TBRC 12507T = NBRC 114553T).


Assuntos
Amycolatopsis/isolamento & purificação , Ácidos Graxos/química , Lipídeos/química , Microbiologia do Solo , Amycolatopsis/classificação , Amycolatopsis/genética , Composição de Bases , Filogenia , RNA Ribossômico 16S/genética , Solo , Tailândia , Áreas Alagadas
15.
Microb Cell Fact ; 19(1): 230, 2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33341113

RESUMO

BACKGROUND: Chelocardin (CHD) exhibits a broad-spectrum antibiotic activity and showed promising results in a small phase II clinical study conducted on patients with urinary tract infections. Importantly, CHD was shown to be active also against tetracycline-resistant Gram-negative pathogens, which is gaining even more importance in today's antibiotic crisis. We have demonstrated that modifications of CHD through genetic engineering of its producer, the actinomycete Amycolatopsis sulphurea, are not only possible but yielded even more potent antibiotics than CHD itself, like 2-carboxamido-2-deacetyl-chelocardin (CD-CHD), which is currently in preclinical evaluation. A. sulphurea is difficult to genetically manipulate and therefore manipulation of the chd biosynthetic gene cluster in a genetically amenable heterologous host would be of high importance for further drug-discovery efforts. RESULTS: We report heterologous expression of the CHD biosynthetic gene cluster in the model organism Streptomyces albus del14 strain. Unexpectedly, we found that the originally defined CHD gene cluster fails to provide all genes required for CHD formation, including an additional cyclase and two regulatory genes. Overexpression of the putative pathway-specific streptomyces antibiotic regulatory protein chdB in A. sulphurea resulted in an increase of both, CHD and CD-CHD production. Applying a metabolic-engineering approach, it was also possible to generate the potent CHD analogue, CD-CHD in S. albus. Finally, an additional yield increase was achieved in S. albus del14 by in-trans overexpression of the chdR exporter gene, which provides resistance to CHD and CDCHD. CONCLUSIONS: We identified previously unknown genes in the CHD cluster, which were shown to be essential for chelocardin biosynthesis by expression of the full biosynthetic gene cluster in S. albus as heterologous host. When comparing to oxytetracycline biosynthesis, we observed that the CHD gene cluster contains additional enzymes not found in gene clusters encoding the biosynthesis of typical tetracyclines (such as oxytetracycline). This finding probably explains the different chemistries and modes of action, which make CHD/CD-CHD valuable lead structures for clinical candidates. Even though the CHD genes are derived from a rare actinomycete A. sulphurea, the yield of CHD in the heterologous host was very good. The corrected nucleotide sequence of the CHD gene cluster now contains all gene products required for the production of CHD in a genetically amenable heterologous host, thus opening new possibilities towards production of novel and potent tetracycline analogues with a new mode of action.


Assuntos
Genes Bacterianos , Família Multigênica , Streptomyces/genética , Tetraciclinas/biossíntese , Amycolatopsis/genética , Amycolatopsis/metabolismo , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Vias Biossintéticas , Clonagem Molecular , Cosmídeos , Engenharia Metabólica , Streptomyces/metabolismo , Tetraciclinas/farmacologia
16.
Biomolecules ; 10(9)2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887371

RESUMO

Proansamycin X, a hypothetical earliest macrocyclic precursor in the biosynthesis of rifamycin, had never been isolated and identified. According to bioinformatics analysis, it was proposed that RifT (a putative NADH-dependent dehydrogenase) may be a candidate target responsible for the dehydrogenation of proansamycin X. In this study, the mutant strain Amycolatopsis mediterranei S699 ΔrifT was constructed by deleting the rifT gene. From this strain, eleven 8-deoxy-rifamycin derivatives (1-11) and seven known analogues (12-18) were isolated. Their structures were elucidated by extensive analysis of 1D and 2D NMR spectroscopic data and high-resolution ESI mass spectra. Compound 1 is a novel amide N-glycoside of seco-rifamycin. Compounds 2 and 3 feature conserved 11,12-seco-rifamycin W skeleton. The diverse post-modifications in the polyketide chain led to the production of 4-11. Compounds 2, 3, 5, 6, 13 and 15 exhibited antibacterial activity against Staphylococcus aureus (MIC (minimal inhibitory concentration) values of 10, 20, 20, 20, 40 and 20 µg/mL, respectively). Compounds 14, 15, 16, 17 and 18 showed potent antiproliferative activity against KG1 cells with IC50 (half maximal inhibitory concentration) values of 14.91, 44.78, 2.16, 18.67 and 8.07 µM, respectively.


Assuntos
Antibacterianos/biossíntese , Antibacterianos/química , Rifamicinas/biossíntese , Rifamicinas/química , Amycolatopsis/química , Amycolatopsis/genética , Amycolatopsis/metabolismo , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Inativação de Genes , Humanos , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Oxirredutases/genética , Policetídeos/química , Rifamicinas/isolamento & purificação , Rifamicinas/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Staphylococcus aureus/efeitos dos fármacos
17.
Biomolecules ; 10(9)2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854378

RESUMO

cis,cis-Muconic acid (MA) is a valuable C6 dicarboxylic acid platform chemical that is used as a starting material for the production of various valuable polymers and drugs, including adipic acid and terephthalic acid. As an alternative to traditional chemical processes, bio-based MA production has progressed to the establishment of de novo MA pathways in several microorganisms, such as Escherichia coli, Corynebacterium glutamicum, Pseudomonas putida, and Saccharomyces cerevisiae. Redesign of the metabolic pathway, intermediate flux control, and culture process optimization were all pursued to maximize the microbial MA production yield. Recently, MA production from biomass, such as the aromatic polymer lignin, has also attracted attention from researchers focusing on microbes that are tolerant to aromatic compounds. This paper summarizes recent microbial MA production strategies that involve engineering the metabolic pathway genes as well as the heterologous expression of some foreign genes involved in MA biosynthesis. Microbial MA production will continue to play a vital role in the field of bio-refineries and a feasible way to complement various petrochemical-based chemical processes.


Assuntos
Engenharia Metabólica/métodos , Ácido Sórbico/análogos & derivados , Amycolatopsis/genética , Amycolatopsis/metabolismo , Biomassa , Vias Biossintéticas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Microbiologia Industrial/métodos , Microbiologia Industrial/tendências , Engenharia Metabólica/tendências , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Chiquímico/química , Ácido Chiquímico/metabolismo , Ácido Sórbico/química , Ácido Sórbico/metabolismo , Estereoisomerismo
18.
Nat Chem Biol ; 16(10): 1071-1077, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32601485

RESUMO

The increase in multi-drug resistant pathogenic bacteria is making our current arsenal of clinically used antibiotics obsolete, highlighting the urgent need for new lead compounds with distinct target binding sites to avoid cross-resistance. Here we report that the aromatic polyketide antibiotic tetracenomycin (TcmX) is a potent inhibitor of protein synthesis, and does not induce DNA damage as previously thought. Despite the structural similarity to the well-known translation inhibitor tetracycline, we show that TcmX does not interact with the small ribosomal subunit, but rather binds to the large subunit, within the polypeptide exit tunnel. This previously unappreciated binding site is located adjacent to the macrolide-binding site, where TcmX stacks on the noncanonical basepair formed by U1782 and U2586 of the 23S ribosomal RNA. Although the binding site is distinct from the macrolide antibiotics, our results indicate that like macrolides, TcmX allows translation of short oligopeptides before further translation is blocked.


Assuntos
Amycolatopsis/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Amycolatopsis/genética , Amycolatopsis/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Farmacorresistência Bacteriana , Escherichia coli , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Modelos Moleculares , Mutação , Naftacenos/química , Naftacenos/farmacologia , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Conformação Proteica , Ribossomos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA