Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.107
Filtrar
1.
Sci Rep ; 14(1): 10808, 2024 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734763

RESUMO

Finite element analysis (FEA) is commonly used in orthopaedic research to estimate localised tissue stresses and strains. A variety of boundary conditions have been proposed for isolated femur analysis, but it remains unclear how these assumed constraints influence FEA predictions of bone biomechanics. This study compared the femoral head deflection (FHD), stresses, and strains elicited under four commonly used boundary conditions (fixed knee, mid-shaft constraint, springs, and isostatic methods) and benchmarked these mechanics against the gold standard inertia relief method for normal and pathological femurs (extreme anteversion and retroversion, coxa vara, and coxa valga). Simulations were performed for the stance phase of walking with the applied femoral loading determined from patient-specific neuromusculoskeletal models. Due to unrealistic biomechanics observed for the commonly used boundary conditions, we propose a novel biomechanical constraint method to generate physiological femur biomechanics. The biomechanical method yielded FHD (< 1 mm), strains (approaching 1000 µÎµ), and stresses (< 60 MPa), which were consistent with physiological observations and similar to predictions from the inertia relief method (average coefficient of determination = 0.97, average normalized root mean square error = 0.17). Our results highlight the superior performance of the biomechanical method compared to current methods of constraint for  both healthy and pathological femurs.


Assuntos
Fêmur , Análise de Elementos Finitos , Marcha , Estresse Mecânico , Humanos , Fêmur/fisiologia , Marcha/fisiologia , Fenômenos Biomecânicos , Masculino , Adulto , Simulação por Computador , Feminino
2.
Medicine (Baltimore) ; 103(19): e38065, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728521

RESUMO

Knee varus (KV) deformity leads to abnormal forces in the different compartments of the joint cavity and abnormal mechanical loading thus leading to knee osteoarthritis (KOA). This study used computer-aided design to create 3-dimensional simulation models of KOA with varying varus angles to analyze stress distribution within the knee joint cavity using finite element analysis for different varus KOA models and to compare intra-articular loads among these models. Additionally, we developed a cartilage loading model of static KV deformity to correlate with dynamic clinical cases of cartilage injury. Different KV angle models were accurately simulated with computer-aided design, and the KV angles were divided into (0°, 3°, 6°, 9°, 12°, 15°, and 18°) 7 knee models, and then processed with finite element software, and the Von-Mises stress distribution and peak values of the cartilage of the femoral condyles, medial tibial plateau, and lateral plateau were obtained by simulating the human body weight in axial loading while performing the static extension position. Finally, intraoperative endoscopy visualization of cartilage injuries in clinical cases corresponding to KV deformity subgroups was combined to find cartilage loading and injury correlations. With increasing varus angle, there was a significant increase in lower limb mechanical axial inward excursion and peak Von-Mises stress in the medial interstitial compartment. Analysis of patients' clinical data demonstrated a significant correlation between varus deformity angle and cartilage damage in the knee, medial plateau, and patellofemoral intercompartment. Larger varus deformity angles could be associated with higher medial cartilage stress loads and increased cartilage damage in the corresponding peak stress area. When the varus angle exceeds 6°, there is an increased risk of cartilage damage, emphasizing the importance of early surgical correction to prevent further deformity and restore knee function.


Assuntos
Cartilagem Articular , Análise de Elementos Finitos , Articulação do Joelho , Osteoartrite do Joelho , Humanos , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/cirurgia , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Articulação do Joelho/fisiopatologia , Masculino , Suporte de Carga/fisiologia , Fenômenos Biomecânicos , Pessoa de Meia-Idade , Estresse Mecânico , Feminino , Simulação por Computador , Idoso
3.
J Orthop Surg (Hong Kong) ; 32(2): 10225536241251926, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38733065

RESUMO

AIM: To explore the effects of tibial osteotomy varus angle combined with posterior tibial slope (PTS) on the stress of polyethylene liner in total knee arthroplasty (TKA) by building finite element model (FEM). METHODS: Established the FEM of standard TKA with tibial osteotomy varus angle 0° to 9° were established and divided into 10 groups. Next, each group was created 10 FEMs with 0° to 9° PTS separately. Calculated the stress on polyethylene liner in each group in Abaqus. Finally, the relevancy between tibial osteotomy angle and polyethylene liner stress was statistically analyzed using multiple regression analysis. RESULTS: As the varus angle increased, the area of maximum stress gradually shifted medially on the polyethylene liner. As the PTS increases, the percentage of surface contact forces on the medial and lateral compartmental of the polyethylene liner gradually converge to the same. When the varus angle is between 0° and 3°, the maximum stress of the medial compartmental surfaces of polyethylene liner rises smoothly with the increase of the PTS. When the varus angle is between 4° and 9°, as the increase of the PTS, the maximum stress of polyethylene liner rises first and then falls, forming a trough at PTS 5° and then rises again. Compared to the PTS, the varus angle has a large effect on the maximum stress of the polyethylene liner (p < .001). CONCLUSION: When the varus angle is 0° to 3°, PTS 0° is recommended, which will result in a more equalized stress distribution of the polyethylene liner in TKA.


Assuntos
Artroplastia do Joelho , Análise de Elementos Finitos , Prótese do Joelho , Osteotomia , Polietileno , Estresse Mecânico , Tíbia , Humanos , Artroplastia do Joelho/métodos , Osteotomia/métodos , Tíbia/cirurgia , Desenho de Prótese
4.
J Orthop Surg Res ; 19(1): 290, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38735949

RESUMO

BACKGROUND: As an innovative internal fixation system, FNS (femoral neck system) is increasingly being utilized by surgeons for the treatment of femoral neck fractures. At present, there have been numerous finite element analysis experiments studying the immediate stability of FNS and CSS in treating femoral neck fractures. However, there is scarce mechanical analysis available regarding the effects post internal fixation removal. This study aimed to investigate the alterations in mechanical parameters of the proximal femur before and after the removal of FNS (femoral neck system), and to assess potential distinctions in indicators following the extraction of CSS (Cannulated Screws). METHODS: A proximal femur model was reconstructed using finite element numerical techniques. The models for CSS and FNS were formulated utilizing characteristics and parametric definitions. The internal fixation was combined with a normal proximal femur model to simulate the healing state after fracture surgery. Within the framework of static analysis, consistent stress burdens were applied across the entirety of the models. The total deformation and equivalent stress of the proximal femur were recorded before and after the removal of internal fixation. RESULTS: Under the standing condition, the total deformation of the model before and after removing CSS was 0.99 mm and 1.10 mm, respectively, indicating an increase of 12%. The total deformation of the model before and after removing FNS was 0.65 mm and 0.76 mm, respectively, indicating an increase of 17%. The equivalent stress for CSS and FNS were 55.21 MPa and 250.67 MPa, respectively. The average equivalent stress on the cross-section of the femoral neck before and after removal of CSS was 7.76 MPa and 6.11 MPa, respectively. The average equivalent stress on the cross-section of the femoral neck before and after removal of FNS was 9.89 MPa and 8.79 MPa, respectively. CONCLUSIONS: The retention of internal fixation may contribute to improved stability of the proximal femur. However, there still existed risks of stress concentration in internal fixation and stress shielding in the proximal femur. Compared to CSS, the removal of FNS results in larger bone tunnels and insufficient model stability. Further clinical interventions are recommended to address this issue.


Assuntos
Parafusos Ósseos , Fraturas do Colo Femoral , Análise de Elementos Finitos , Fixação Interna de Fraturas , Humanos , Fenômenos Biomecânicos , Fraturas do Colo Femoral/cirurgia , Fixação Interna de Fraturas/métodos , Colo do Fêmur/cirurgia , Colo do Fêmur/diagnóstico por imagem , Fêmur/cirurgia , Estresse Mecânico , Remoção de Dispositivo/métodos
5.
J Biomed Mater Res B Appl Biomater ; 112(5): e35417, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38742468

RESUMO

Stress shielding is one of the major concerns for total ankle replacement implants nowadays, because it is responsible for implant-induced bone resorption. The bone resorption contributes to the aseptic loosening and failure of ankle implants in later stages. To reduce the stress shielding, improvements can be made in the implant material by decreasing the elastic mismatch between the implant and the tibia bone. This study proposes a new functionally graded material (FGM) based tibial implant for minimizing the problem of stress shielding. Three-dimensional finite element (FE) models of the intact tibia and the implanted tibiae were created to study the influence of material gradation law and volume fraction index on stress shielding and implant-bone micromotion. Different implant materials were considered that is, cobalt-chromium, titanium (Ti), and FGM with Ti at the bottom and hydroxyapatite (HA) at the top. The FE models of FGM implants were generated by using different volume fractions and the rule of mixtures. The rule of mixtures was used to calculate the FGM properties based on the local volume fraction. The volume fraction was defined by using exponential, power, and sigmoid laws. For the power and sigmoid law varying volume fraction indices (0.1, 0.2, 0.5, 1, 2, and 5) were considered. The geometry resembling STAR® ankle system tibial implant was considered for the present study. The results indicate that FGMs lower stress shielding but also marginally increase implant-bone micromotion; however, the values were within the acceptable limit for bone ingrowth. It is observed that the material gradation law and volume fraction index influence the performance of FGM tibial implants. The tibial implant composed of FGM using power law with a volume fraction index of 0.1 was the preferred option because it showed the least stress shielding.


Assuntos
Artroplastia de Substituição do Tornozelo , Análise de Elementos Finitos , Tíbia , Titânio , Titânio/química , Humanos , Durapatita/química , Desenho de Prótese , Estresse Mecânico , Teste de Materiais
6.
Clin Exp Dent Res ; 10(3): e893, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38770579

RESUMO

OBJECTIVES: The present study reviews the current literature regarding the utilization of the extended finite element method (XFEM) in clinical and experimental endodontic studies and the suitability of XFEM in the assessment of cyclic fatigue in rotary endodontic nickel-titanium (NiTi) instruments. MATERIAL AND METHODS: An electronic literature search was conducted using the appropriate search terms, and the titles and abstracts were screened for relevance. The search yielded 13 hits after duplicates were removed, and four studies met the inclusion criteria for review. RESULTS: No studies to date have utilized XFEM to study cyclic fatigue or crack propagation in rotary endodontic NiTi instruments. Challenges such as modelling material inputs and fatigue criteria could explain the lack of utilization of XFEM in the analysis of mechanical behavior in NiTi instruments. CONCLUSIONS: The review showed that XFEM was seldom employed in endodontic literature. Recent work suggests potential promise in using XFEM for modelling NiTi structures.


Assuntos
Endodontia , Análise de Elementos Finitos , Níquel , Titânio , Humanos , Ligas Dentárias/química , Instrumentos Odontológicos , Endodontia/instrumentação , Endodontia/métodos , Teste de Materiais , Preparo de Canal Radicular/instrumentação , Preparo de Canal Radicular/métodos , Estresse Mecânico
7.
ACS Biomater Sci Eng ; 10(5): 2863-2879, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38696332

RESUMO

The present work describes a preclinical trial (in silico, in vivo and in vitro) protocol to assess the biomechanical performance and osteogenic capability of 3D-printed polymeric scaffolds implants used to repair partial defects in a sheep mandible. The protocol spans multiple steps of the medical device development pipeline, including initial concept design of the scaffold implant, digital twin in silico finite element modeling, manufacturing of the device prototype, in vivo device implantation, and in vitro laboratory mechanical testing. First, a patient-specific one-body scaffold implant used for reconstructing a critical-sized defect along the lower border of the sheep mandible ramus was designed using on computed-tomographic (CT) imagery and computer-aided design software. Next, the biomechanical performance of the implant was predicted numerically by simulating physiological load conditions in a digital twin in silico finite element model of the sheep mandible. This allowed for possible redesigning of the implant prior to commencing in vivo experimentation. Then, two types of polymeric biomaterials were used to manufacture the mandibular scaffold implants: poly ether ether ketone (PEEK) and poly ether ketone (PEK) printed with fused deposition modeling (FDM) and selective laser sintering (SLS), respectively. Then, after being implanted for 13 weeks in vivo, the implant and surrounding bone tissue was harvested and microCT scanned to visualize and quantify neo-tissue formation in the porous space of the scaffold. Finally, the implant and local bone tissue was assessed by in vitro laboratory mechanical testing to quantify the osteointegration. The protocol consists of six component procedures: (i) scaffold design and finite element analysis to predict its biomechanical response, (ii) scaffold fabrication with FDM and SLS 3D printing, (iii) surface treatment of the scaffold with plasma immersion ion implantation (PIII) techniques, (iv) ovine mandibular implantation, (v) postoperative sheep recovery, euthanasia, and harvesting of the scaffold and surrounding host bone, microCT scanning, and (vi) in vitro laboratory mechanical tests of the harvested scaffolds. The results of microCT imagery and 3-point mechanical bend testing demonstrate that PIII-SLS-PEK is a promising biomaterial for the manufacturing of scaffold implants to enhance the bone-scaffold contact and bone ingrowth in porous scaffold implants. MicroCT images of the harvested implant and surrounding bone tissue showed encouraging new bone growth at the scaffold-bone interface and inside the porous network of the lattice structure of the SLS-PEK scaffolds.


Assuntos
Materiais Biocompatíveis , Mandíbula , Alicerces Teciduais , Animais , Ovinos , Mandíbula/cirurgia , Mandíbula/diagnóstico por imagem , Alicerces Teciduais/química , Impressão Tridimensional , Análise de Elementos Finitos , Osteogênese
8.
BMC Vet Res ; 20(1): 188, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730373

RESUMO

Femoral fractures are often considered lethal for adult horses because femur osteosynthesis is still a surgical challenge. For equine femur osteosynthesis, primary stability is essential, but the detailed physiological forces occurring in the hindlimb are largely unknown. The objective of this study was to create a numerical testing environment to evaluate equine femur osteosynthesis based on physiological conditions. The study was designed as a finite element analysis (FEA) of the femur using a musculoskeletal model of the loading situation in stance. Relevant forces were determined in the musculoskeletal model via optimization. The treatment of four different fracture types with an intramedullary nail was investigated in FEA with loading conditions derived from the model. The analyzed diaphyseal fracture types were a transverse (TR) fracture, two oblique fractures in different orientations (OB-ML: medial-lateral and OB-AP: anterior-posterior) and a "gap" fracture (GAP) without contact between the fragments. For the native femur, the most relevant areas of increased stress were located distally to the femoral head and proximally to the caudal side of the condyles. For all fracture types, the highest stresses in the implant material were present in the fracture-adjacent screws. Maximum compressive (-348 MPa) and tensile stress (197 MPa) were found for the GAP fracture, but material strength was not exceeded. The mathematical model was able to predict a load distribution in the femur of the standing horse and was used to assess the performance of internal fixation devices via FEA. The analyzed intramedullary nail and screws showed sufficient stability for all fracture types.


Assuntos
Fraturas do Fêmur , Fixação Interna de Fraturas , Membro Posterior , Animais , Cavalos/fisiologia , Fenômenos Biomecânicos , Fraturas do Fêmur/veterinária , Fraturas do Fêmur/cirurgia , Fixação Interna de Fraturas/veterinária , Fixação Interna de Fraturas/métodos , Membro Posterior/cirurgia , Análise de Elementos Finitos , Fêmur/cirurgia , Modelos Biológicos , Suporte de Carga , Fixação Intramedular de Fraturas/veterinária , Fixação Intramedular de Fraturas/instrumentação
9.
BMC Oral Health ; 24(1): 545, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730391

RESUMO

BACKGROUND: This Finite Element Analysis was conducted to analyze the biomechanical behaviors of titanium base abutments and several crown materials with respect to fatigue lifetime and stress distribution in implants and prosthetic components. METHODS: Five distinct designs of implant-supported single crowns were modeled, including a polyetheretherketone (PEEK), polymer-infiltrated ceramic network, monolithic lithium disilicate, and precrystallized and crystallized zirconia-reinforced lithium silicates supported by a titanium base abutment. For the static load, a 100 N oblique load was applied to the buccal incline of the palatal cusp of the maxillary right first premolar. The dynamic load was applied in the same way as in static loading with a frequency of 1 Hz. The principal stresses in the peripheral bone as well as the von Mises stresses and fatigue strength of the implants, abutments, prosthetic screws, and crowns were assessed. RESULTS: All of the models had comparable von Mises stress values from the implants and abutments, as well as comparable maximum and minimum principal stress values from the cortical and trabecular bones. The PEEK crown showed the lowest stress (46.89 MPa) in the cervical region. The prosthetic screws and implants exhibited the highest von Mises stress among the models. The lithium disilicate crown model had approximately 9.5 times more cycles to fatique values for implants and 1.7 times more cycles to fatique values for abutments than for the lowest ones. CONCLUSIONS: With the promise of at least ten years of clinical success and favorable stress distributions in implants and prosthetic components, clinicians can suggest using an implant-supported lithium disilicate crown with a titanium base abutment.


Assuntos
Benzofenonas , Coroas , Dente Suporte , Prótese Dentária Fixada por Implante , Análise do Estresse Dentário , Análise de Elementos Finitos , Titânio , Titânio/química , Humanos , Porcelana Dentária/química , Polietilenoglicóis/química , Materiais Dentários/química , Polímeros , Cetonas/química , Zircônio/química , Implantes Dentários para Um Único Dente , Teste de Materiais , Projeto do Implante Dentário-Pivô , Fenômenos Biomecânicos
10.
Transl Vis Sci Technol ; 13(5): 2, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38696181

RESUMO

Purpose: Currently, no solution exists to restore natural eyelid kinematics for patients with complete eyelid paralysis due to loss of function of both the levator palpebrae superioris and orbicularis oculi. These rare cases are prone to complications of chronic exposure keratopathy which may lead to corneal blindness. We hypothesized that magnetic force could be used to fully automate eyelid movement in these cases through the use of eyelid-attached magnets and a spectacle-mounted magnet driven by a programmable motor (motorized magnetic levator prosthesis [MMLP]). Methods: To test this hypothesis and establish proof of concept, we performed a finite element analysis (FEA) for a prototype MMLP to check the eyelid-opening force generated by the device and verified the results with experimental measurements in a volunteer with total bidirectional eyelid paralysis. The subject was then fitted with a prototype to check the performance of the device and its success. Results: With MMLP, eye opening was restored to near normal, and blinking was fully automated in close synchrony with the motor-driven polarity reversal, with full closure on the blink. The device was well tolerated, and the participant was pleased with the comfort and performance. Conclusions: FEA simulation results conformed to the experimentally observed trend, further supporting the proof of concept and design parameters. This is the first viable approach in human patients with proof of concept for complete reanimation of a bidirectionally paretic eyelid. Further study is warranted to refine the prototype and determine the feasibility and safety of prolonged use. Translational Relevance: This is first proof of concept for our device for total bidirectional eyelid paralysis.


Assuntos
Piscadela , Pálpebras , Estudo de Prova de Conceito , Humanos , Piscadela/fisiologia , Pálpebras/fisiopatologia , Doenças Palpebrais/fisiopatologia , Doenças Palpebrais/terapia , Músculos Oculomotores/fisiopatologia , Análise de Elementos Finitos , Fenômenos Biomecânicos , Próteses e Implantes , Desenho de Prótese , Imãs , Masculino
11.
J Photochem Photobiol B ; 255: 112927, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38701631

RESUMO

Since the mechanism underlying real-time acquisition of mechanical strength during laser-induced skin wound fusion remains unclear, and collagen is the primary constituent of skin tissue, this study investigates the structural and mechanical alterations in collagen at temperatures ranging from 40 °C to 60 °C using various spectroscopic techniques and molecular dynamics calculations. The COMSOL Multiphysics coupling is employed to simulate the three-dimensional temperature field, stress-strain relationship, and light intensity distribution in the laser thermal affected zone of skin wounds during dual-beam laser welding process. Raman spectroscopy, synchronous fluorescence spectroscopy and circular dichroism measurement results confirm that laser energy activates biological activity in residues, leading to a transformation in the originally fractured structure of collagen protein for enhanced mechanical strength. Molecular dynamics simulations reveal that stable hydrogen bonds form at amino acid residues within the central region of collagen protein when the overall temperature peak around the wound reaches 60 °C, thereby providing stability to previously fractured skin incisions and imparting instantaneous strength. However, under a 55 °C system, Type I collagen ensures macrostructural stability while activating biological properties at amino acid bases to promote wound healing function; this finding aligns with experimental analysis results. The COMSOL simulation outcomes also correspond well with macroscopic morphology after laser welding samples, confirming that by maintaining temperatures between 55 °C-60 °C during laser welding of skin incisions not only can certain instantaneous mechanical strength be achieved but irreversible thermal damage can also be effectively controlled. It is anticipated that these findings will provide valuable insights into understanding the healing mechanism for laser-welded skin wounds.


Assuntos
Colágeno , Lasers , Simulação de Dinâmica Molecular , Pele , Análise Espectral Raman , Pele/química , Pele/efeitos da radiação , Colágeno/química , Colágeno/metabolismo , Cicatrização , Ligação de Hidrogênio , Análise de Elementos Finitos , Animais , Dicroísmo Circular , Temperatura , Espectrometria de Fluorescência
12.
BMC Musculoskelet Disord ; 25(1): 400, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773411

RESUMO

OBJECTIVE: Muscle dysfunction caused by repetitive work or strain in the neck region can interfere muscle responses. Muscle dysfunction can be an important factor in causing cervical spondylosis. However, there has been no research on how the biomechanical properties of the upper cervical spine change when the suboccipital muscle group experiences dysfunction. The objective of this study was to investigate the biomechanical evidence for cervical spondylosis by utilizing the finite element (FE) approach, thus and to provide guidance for clinicians performing acupoint therapy. METHODS: By varying the elastic modulus of the suboccipital muscle, the four FE models of C0-C3 motion segments were reconstructed under the conditions of normal muscle function and muscle dysfunction. For the two normal condition FE models, the elastic modulus for suboccipital muscles on both sides of the C0-C3 motion segments was equal and within the normal range In one muscle dysfunction FE model, the elastic modulus on both sides was equal and greater than 37 kPa, which represented muscle hypertonia; in the other, the elastic modulus of the left and right suboccipital muscles was different, indicating muscle imbalance. The biomechanical behavior of the lateral atlantoaxial joint (LAAJ), atlanto-odontoid joint (ADJ), and intervertebral disc (IVD) was analyzed by simulations, which were carried out under the six loadings of flexion, extension, left and right lateral bending, left and right axial rotation. RESULTS: Under flexion, the maximum stress in LAAJ with muscle imbalance was higher than that with normal muscle and hypertonia, while the maximum stress in IVD in the hypertonic model was higher than that in the normal and imbalance models. The maximum stress in ADJ was the largest under extension among all loadings for all models. Muscle imbalance and hypertonia did not cause overstress and stress distribution abnormalities in ADJ. CONCLUSION: Muscle dysfunction increases the stress in LAAJ and in IVD, but it does not affect ADJ.


Assuntos
Vértebras Cervicais , Análise de Elementos Finitos , Humanos , Fenômenos Biomecânicos , Vértebras Cervicais/fisiopatologia , Espondilose/fisiopatologia , Músculos do Pescoço/fisiopatologia , Módulo de Elasticidade , Amplitude de Movimento Articular/fisiologia , Articulação Atlantoaxial/fisiopatologia , Hipertonia Muscular/fisiopatologia , Hipertonia Muscular/etiologia
13.
Transl Vis Sci Technol ; 13(5): 11, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38748408

RESUMO

Purpose: Computational models can help clinicians plan surgeries by accounting for factors such as mechanical imbalances or testing different surgical techniques beforehand. Different levels of modeling complexity are found in the literature, and it is still not clear what aspects should be included to obtain accurate results in finite-element (FE) corneal models. This work presents a methodology to narrow down minimal requirements of modeling features to report clinical data for a refractive intervention such as PRK. Methods: A pipeline to create FE models of a refractive surgery is presented: It tests different geometries, boundary conditions, loading, and mesh size on the optomechanical simulation output. The mechanical model for the corneal tissue accounts for the collagen fiber distribution in human corneas. Both mechanical and optical outcome are analyzed for the different models. Finally, the methodology is applied to five patient-specific models to ensure accuracy. Results: To simulate the postsurgical corneal optomechanics, our results suggest that the most precise outcome is obtained with patient-specific models with a 100 µm mesh size, sliding boundary condition at the limbus, and intraocular pressure enforced as a distributed load. Conclusions: A methodology for laser surgery simulation has been developed that is able to reproduce the optical target of the laser intervention while also analyzing the mechanical outcome. Translational Relevance: The lack of standardization in modeling refractive interventions leads to different simulation strategies, making difficult to compare them against other publications. This work establishes the standardization guidelines to be followed when performing optomechanical simulations of refractive interventions.


Assuntos
Simulação por Computador , Córnea , Análise de Elementos Finitos , Ceratectomia Fotorrefrativa , Humanos , Córnea/cirurgia , Córnea/fisiologia , Ceratectomia Fotorrefrativa/métodos , Simulação por Computador/normas , Lasers de Excimer/uso terapêutico , Modelos Biológicos
14.
BMC Oral Health ; 24(1): 561, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745284

RESUMO

BACKGROUND: Prefabricated myofunctional appliance can guide tooth eruption, improve dentition alignment, correct myofunctional disorders and harmful oral habits. However, its application to skeletal discrepancy may result in unsatisfactory tooth inclination. This study aimed to construct a novel appliance with overjet design to avoid this side effect and investigated its shape and mechanical changes under occlusion using three-dimensional finite element method. METHODS: We established three samples of prefabricated myofunctional appliances. The first one was edge to edge without overjet, and the outer shield of both jaws were flattened. The second one was 3 mm overjet with stepped the outer shield. The last one was 3 mm overjet, and the outer shield of both jaws were flatted, which meant the front wall of lower jaw was strengthened with bumper, termed as lower bumper. A complete dentition model was applied to the study. 150 N occlusal force was applied to each type of appliance and the deformation displacement and the changes in stress was recorded. RESULTS: The deformation was significant in the incisors regions, especially in the vertical and lateral dimensions. The maximum displacements of 3 mm overjet with step shield group were 7.08 mm (vertical), 3.99 mm (lateral), and 2.90 mm (sagittal), while it decreased to 3.92 mm(vertical), 1.94 mm (lateral), and 1.55 mm (sagittal) in overjet with bumper group. Moreover, the upper molar regions exhibited higher vertical and sagittal displacement in 3 mm overjet with step shield group, which were 3.03 mm (vertical) and 1.99 mm (sagittal), and the bumper design could decrease the maximum displacement to 1.72 mm (vertical) and 0.72 mm (sagittal). In addition, the Von Mises stress of appliances was analyzed, and results indicated that 3 mm overjet with step shield generated higher stress than other groups, with the maximum Von Mises stress was 0.9387 MP, which were 0.5858 and 0.5657 MP in edge to edge group and 3 mm overjet with lower bumper group, respectively. CONCLUSION: The prefabricated myofunctional appliances may cause deformation during occlusion. Compared to step shield group, the application of lower bumper exhibited better resistance to occlusal force.


Assuntos
Análise de Elementos Finitos , Desenho de Aparelho Ortodôntico , Humanos , Terapia Miofuncional/instrumentação , Terapia Miofuncional/métodos , Força de Mordida , Imageamento Tridimensional/métodos , Sobremordida/terapia , Estresse Mecânico , Mandíbula , Incisivo , Fenômenos Biomecânicos
15.
Bioinspir Biomim ; 19(4)2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38714195

RESUMO

Euplectella aspergillummarine sponge spicules are renowned for their remarkable strength and toughness. These spicules exhibit a unique concentric layering structure, which contributes to their exceptional mechanical resistance. In this study, finite element method simulations were used to comprehensively investigate the effect of nested cylindrical structures on the mechanical properties of spicules. This investigation leveraged scanning electron microscopy images to guide the computational modeling of the microstructure and the results were validated by three-point bending tests of 3D-printed spicule-inspired structures. The numerical analyses showed that the nested structure of spicules induces stress and strain jumps on the layer interfaces, reducing the load on critical zones of the fiber and increasing its toughness. It was found that this effect shows a tapering enhancement as the number of layers increases, which combines with a threshold related to the 3D-printing manufacturability to suggest a compromise for optimal performance. A comprehensive evaluation of the mechanical properties of these fibers can assist in developing a new generation of bioinspired structures with practical real-world applications.


Assuntos
Análise de Elementos Finitos , Impressão Tridimensional , Estresse Mecânico , Animais , Poríferos/fisiologia , Simulação por Computador , Materiais Biomiméticos/química , Microscopia Eletrônica de Varredura
16.
PLoS One ; 19(5): e0301007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758827

RESUMO

Building on the Fano resonance observation, a new refractive index transducer structure at the nanoscale is proposed in this article, which is a refractive index transducer consisting of a metal-insulator-metal (MIM) waveguide structure coupled with a ring cavity internally connected to an h-shaped structure (RCIhS). Using an analytical method based on COMSOL software and finite element method (FEM), the effect of different geometric parameters of the structure on the trans-mission characteristics of the system is simulated and analyzed, which in turn illustrates the effect of the structural parameters on the output Fano curves. As simulation results show, the internally connected h-shaped structure is an influential component in the Fano resonance. By optimizing the geometrical parameters of the structure, the system finally accomplishes a sensitivity (S) of 2400 nm/RIU and a figure of merit (FOM) of 68.57. The sensor has also been demonstrated in the realm of temperature detection, having tremendous potential for utilization in future nano-sensing and optically integrated systems.


Assuntos
Refratometria , Transdutores , Análise de Elementos Finitos , Desenho de Equipamento , Nanotecnologia , Temperatura
17.
PLoS One ; 19(5): e0300961, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758938

RESUMO

The stable and site-specific operation of transmission lines is a crucial safeguard for grid functionality. This study introduces a comprehensive optimization design method for transmission line crossing frame structures based on the Biogeography-Based Optimization (BBO) algorithm, which integrates size, shape, and topology optimization. By utilizing the BBO algorithm to optimize the truss structure's design variables, the method ensures the structure's economic and practical viability while enhancing its performance. The optimization process is validated through finite element analysis, confirming the optimized structure's compliance with strength, stiffness, and stability requirements. The results demonstrate that the integrated design of size, shape, and topology optimization, as opposed to individual optimizations of size or shape and topology, yields the lightest structure mass and a maximum stress of 151.4 MPa under construction conditions. These findings also satisfy the criteria for strength, stiffness, and stability, verifying the method's feasibility, effectiveness, and practicality. This approach surpasses traditional optimization methods, offering a more effective solution for complex structural optimization challenges, thereby enhancing the sustainable utilization of structures.


Assuntos
Algoritmos , Análise de Elementos Finitos
18.
Eur Rev Med Pharmacol Sci ; 28(8): 3165-3175, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38708475

RESUMO

OBJECTIVE: Periprosthetic fractures following total knee replacement are rare but challenging. The goal of the treatment is to achieve the most stable fixation that allows early mobilization. Therefore, the aim of this study was to evaluate the biomechanical results of the use of different fixation systems in the treatment of distal femur periprosthetic fractures with finite element analysis. MATERIALS AND METHODS: A total knee prosthesis was implanted in Sawbone femur models. A transverse fracture line was created in the supracondylar region and was fixed in four different groups. In group 1, fracture line fixation was fixed using retrograde intramedullary nailing. In group 2, fixation was applied using a lateral anatomic distal femoral. In group 3, in addition to the fixation made in group 1, a lateral anatomic distal femoral plate was used. In group 4, in addition to the fixation made in group 2, a 3.5 mm Limited Contact Dynamic Compression Plate (LC-DCP) was applied medially. Computed Tomography (CT) scans were taken of the created models and were converted to three-dimensional models. Axial and rotational loading forces were applied to all the created models. RESULTS: The least deformation with axial loading was observed in the double plate group. Group 3 was determined to be more advantageous against rotational forces. The greatest movement in the fracture line was found in group 2. The application of the medial plate was determined to reduce the tension on the lateral plate and increase stability in the fracture line. CONCLUSIONS: Combining a lateral anatomic plate with intramedullary nailing or a medial plate was seen to be biomechanically more advantageous than using a lateral plate or intramedullary nailing alone in the treatment of distal femoral periprosthetic fractures.


Assuntos
Artroplastia do Joelho , Pinos Ortopédicos , Placas Ósseas , Fraturas do Fêmur , Análise de Elementos Finitos , Fixação Intramedular de Fraturas , Fraturas Periprotéticas , Artroplastia do Joelho/efeitos adversos , Fraturas do Fêmur/cirurgia , Humanos , Fraturas Periprotéticas/cirurgia , Fixação Intramedular de Fraturas/instrumentação , Parafusos Ósseos , Fenômenos Biomecânicos
19.
J Morphol ; 285(5): e21695, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38695520

RESUMO

Artiodactyls exhibit a striking diversity of the cervical vertebral column in terms of length and overall mobility. Using finite element analysis, this study explores the morphology at the cervico-thoracic boundary and its performance under loads in artiodactyls with different habitual neck postures and body sizes. The first thoracic vertebra of 36 species was loaded with (i) a compressive load on the vertebral body to model the weight of the head and neck exerted onto the trunk; and (ii) a tensile load at the spinous process to model the pull via the nuchal ligament. Additional focus was laid on the peculiar shape of the first thoracic vertebra in giraffes. We hypothesized that a habitually upright neck posture should be reflected in the greater ability to withstand compressive loads compared to tensile loads, whereas for species with a habitually suspended posture it should be the opposite. In comparison to species with a suspended posture, species with an upright posture exhibited lower stress (except Giraffidae). For compressive loads in larger species, stress surprisingly increased. Tensile loads in larger species resulted in decreased stress only in species with an intermediate or suspensory neck posture. High stress under tensile loads was mainly reflecting the relative length of the spinous process, while high stress under compressive loads was common in more "bell"-shaped vertebral bodies. The data supports a stability-mobility trade-off at the cervico-thoracic transition in giraffes. Performance under load at the cervico-thoracic boundary is indicative of habitual neck posture and is influenced by body size.


Assuntos
Artiodáctilos , Análise de Elementos Finitos , Vértebras Torácicas , Animais , Vértebras Torácicas/fisiologia , Vértebras Torácicas/anatomia & histologia , Artiodáctilos/anatomia & histologia , Artiodáctilos/fisiologia , Postura/fisiologia , Fenômenos Biomecânicos , Estresse Mecânico , Suporte de Carga/fisiologia
20.
PLoS One ; 19(5): e0301329, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38709745

RESUMO

It is imperative to understand how foundations behave on earthen slopes to accurately predict their allowable carrying capacity in geotechnical engineering. A comprehensive finite element (FE) simulation with PLAXIS 2D was conducted to assess the effects of various parameters on the bearing capacity (BC) of single- and double-strip foundations placed near the earth's slope crest. The specified parameters include foundation width (B) and depth (Df/B); setback distance between the slope edge and foundation (b/B); soil internal friction (ϕ) and cohesion (c); slope inclination (ß); and spacing between foundations (S/B). In addition, the numerically simulated database was used to develop simple mathematical expressions for predicting the capacities in both cases using evolutionary polynomial regression (EPR). The results revealed that the bearing capacity of single- and double-strip foundations increased with an increase in all studied parameters except slope inclination. For single-strip foundations, the outcomes demonstrated that slope inclination has no impact on BC when it is located 6B from the slope edge. However, under interference conditions, the critical center-to-center spacing between foundations is 3-4B, beyond which they behave as individual foundations. Additionally, EPR provides a robust method of predicting the BC of single- and double-strip foundations within slope crests based on the strong correlation of various statistical criteria between simulated and predicted results from training, validation, and testing. Finally, according to sensitivity analysis, in both single and double-strip foundations resting on an earthen slope crest, b/B, B, and ϕ are the most important input parameters that impact the output results.


Assuntos
Planeta Terra , Modelos Teóricos , Solo/química , Análise de Elementos Finitos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA