Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.254
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 399, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38951177

RESUMO

Dehydroepiandrosterone (DHEA) has a promising market due to its capacity to regulate human hormone levels as well as preventing and treating various diseases. We have established a chemical esterification coupled biocatalytic-based scheme by lipase-catalyzed 4-androstene-3,17-dione (4-AD) hydrolysis to obtain the intermediate product 5-androstene-3,17-dione (5-AD), which was then asymmetrically reduced by a ketoreductase from Sphingomonas wittichii (SwiKR). Co-enzyme required for KR is regenerated by a glucose dehydrogenase (GDH) from Bacillus subtilis. This scheme is more environmentally friendly and more efficient than the current DHEA synthesis pathway. However, a significant amount of 4-AD as by-product was detected during the catalytic process. Focused on the control of by-products, we investigated the source of 4-AD and identified that it is mainly derived from the isomerization activity of SwiKR and GDH. Increasing the proportion of glucose in the catalytic system as well as optimizing the catalytic conditions drastically reduced 4-AD from 24.7 to 6.5% of total substrate amount, and the final yield of DHEA achieved 40.1 g/L. Furthermore, this is the first time that both SwiKR and GDH have been proved to be promiscuous enzymes with dehydrogenase and ketosteroid isomerase (KSI) activities, expanding knowledge of the substrate diversity of the short-chain dehydrogenase family enzymes. KEY POINTS: • A strategy of coupling lipase, ketoreductase, and glucose dehydrogenase in producing DHEA from 4-AD • Both SwiKR and GDH are identified with ketosteroid isomerase activity. • Development of catalytic strategy to control by-product and achieve highly selective DHEA production.


Assuntos
Desidroepiandrosterona , Lipase , Sphingomonas , Desidroepiandrosterona/metabolismo , Lipase/metabolismo , Sphingomonas/enzimologia , Sphingomonas/metabolismo , Biocatálise , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , Bacillus subtilis/genética , Glucose 1-Desidrogenase/metabolismo , Glucose 1-Desidrogenase/genética , Androstenodiona/metabolismo , Androstenodiona/biossíntese , Hidrólise
2.
J Inorg Biochem ; 257: 112582, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723329

RESUMO

When subjected to γ-irradiation at cryogenic temperatures the oxygenated complexes of Cytochrome P450 CYP17A1 (CYP17A1) bound with either of the lyase substrates, 17α-Hydroxypregnenolone (17-OH PREG) or 17α-Hydroxyprogesterone (17-OH PROG) are shown to generate the corresponding lyase products, dehydroepiandrosterone (DHEA) and androstenedione (AD) respectively. The current study uses gas chromatography-mass spectrometry (GC/MS) to document the presence of the initial substrates and products in extracts of the processed samples. A rapid and efficient method for the simultaneous determination of residual substrate and products by GC/MS is described without derivatization of the products. It is also shown that no lyase products were detected for similarly treated control samples containing no nanodisc associated CYP17 enzyme, demonstrating that the product is formed during the enzymatic reaction and not by GC/MS conditions, nor the conditions produced by the cryoradiolysis process.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas , Esteroide 17-alfa-Hidroxilase , Esteroide 17-alfa-Hidroxilase/metabolismo , Desidroepiandrosterona/química , Desidroepiandrosterona/metabolismo , 17-alfa-Hidroxiprogesterona/química , 17-alfa-Hidroxiprogesterona/metabolismo , 17-alfa-Hidroxipregnenolona/química , 17-alfa-Hidroxipregnenolona/metabolismo , Androstenodiona/química , Androstenodiona/metabolismo , Humanos , Liases/metabolismo , Liases/química , Raios gama , Especificidade por Substrato , Oxigênio/química
3.
Steroids ; 205: 109391, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38437943

RESUMO

A unified total synthesis route has been used to prepare 18- and 19-trideuterated testosterone, androstenedione and progesterone. The 18-trideuterated steroid synthetic method starts with the synthesis of 2-(methyl-d3)-1,3-cyclopentanedione from CD3I and 1,3-cyclopentanedione and is subsequently converted into the Hajos-Parrish ketone for synthesis of these trideuterated steroids. The 19-trideuterated steroid synthesis proceeds through non-deuterated Hajos-Parrish ketone with incorporation of the 19-methyl-d3 group from CD3I at a later stage of the same synthetic route. Utilization of CD3I at both the initial and later stages of the synthesis provides a route to 18,19-hexadeuterated steroids. The deuterated steroids are useful for studies of steroid biosynthesis and metabolism.


Assuntos
Androstenodiona , Progesterona , Androstenodiona/metabolismo , Progesterona/metabolismo , Testosterona/metabolismo , Esteroides , Cetonas
4.
Chem Biol Interact ; 390: 110872, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38244963

RESUMO

In patients with prostate carcinoma as well as in some other cancer types, the reduction of testosterone levels is desired because the hormone stimulates cancer cell growth. One molecular target for this goal is the inhibition of 17ß-hydroxysteroid dehydrogenase type 3 (17ßHSD3), which produces testosterone from its direct precursor androstenedione. Recent research in this field is trying to harness photopharmacological properties of certain compounds so that the inhibitory effect could be turned on and off by irradiation. Seven new light-switchable diazocines were investigated with regard to their inhibition of 17ßHSD3. For this purpose, transfected HEK-293 cells and isolated microsomes were treated with the substrate and the potential inhibitors with and without irradiation for an incubation period of 3 or 5 h. The amount of generated testosterone was measured by UHPLC and compared between samples and control as well as between irradiated and non-irradiated samples. There was no significant difference between samples with and without irradiation. However, four of the seven diazocines led to a significantly lower testosterone production both in cell and in microsome assays. In some of the irradiated samples, a partial destruction of the diazocines was observed, indicated by an additional UHPLC peak. However, the influence on the inhibition is negligible, because the majority of the substance remained intact. In conclusion, new inhibitors of 17ßHSD3 have been found, but so far without the feature of a light switch, since the configurational alteration of the diazocines by irradiation did not lead to a change in bioactivity. Further modification might help to find a light-switching molecule that inhibits only in one configuration.


Assuntos
Neoplasias da Próstata , Testosterona , Masculino , Humanos , Testosterona/metabolismo , Células HEK293 , Neoplasias da Próstata/metabolismo , 17-Hidroxiesteroide Desidrogenases/metabolismo , Androstenodiona/metabolismo , Androstenodiona/uso terapêutico
5.
Gen Comp Endocrinol ; 347: 114423, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38086427

RESUMO

17ß-hydroxysteroid dehydrogenases (Hsd17bs) play a critical role in sex steroid biosynthesis. Although multiple types of Hsd17b have been found in fish, there is limited research on their expression and function. Recently, we succeeded in identifying eight types of Hsd17b (types 3, 4, 7, 8, 10, 12a, 12b, and 14) by RNA sequencing in the Japanese sardine Sardinops melanostictus, a commercially important clupeoid fish; however, a homologous sequence of Hsd17b1, which catalyzes the key reaction of estradiol-17ß (E2) synthesis, was absent. Here, we aimed to identify the Hsd17b type that plays a major role in E2 synthesis during ovarian development in Japanese sardine. The cDNAs encoding those eight types of Hsd17b were cloned and sequenced. The expressions of hsd17b3, hsd17b12a, and hsd17b12b were higher in ovary than in testis. In particular, hsd17b12a was predominantly expressed in the ovary. Expression of hsd17b3, hsd17b4, hsd17b12a, and hsd17b12b in the ovary increased during ovarian development. The enzymatic activities of Hsd17b3, Hsd17b12a, and Hsd17b12b were evaluated by expressing their recombinants in human embryonic kidney 293T cells. Hsd17b12a and Hsd17b12b catalyzed the conversion of androstenedione (AD) to testosterone (T) and estrone (E1) to E2. The results of in vitro bioassays using sardine ovaries indicated that E2 is synthesized from pregnenolone via AD and T, but not E1. These results suggest that Hsd17b12a plays a major role in E2 synthesis in sardine ovary by catalyzing the conversion of AD to T.


Assuntos
Estradiol , Ovário , Masculino , Feminino , Animais , Humanos , Ovário/metabolismo , Estradiol/metabolismo , Testículo/metabolismo , Testosterona/metabolismo , 17-Hidroxiesteroide Desidrogenases/genética , 17-Hidroxiesteroide Desidrogenases/metabolismo , Androstenodiona/metabolismo , Peixes/genética , Peixes/metabolismo
6.
Steroids ; 201: 109331, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926183

RESUMO

Steroid biosynthesis and biotransformation are based on a cascade of enzymatic processes being highly sensitive to various external influences. Amongst those, ethanol was shown to affect testosterone metabolism. For doping analyses, athlete steroid profiles comprise seven urinary steroid metabolites, of which relevant ratios are significantly increased following ethanol consumption. This effect is presumably based on the lack of hepatic NAD+-coenzyme as a consequence of ethanol oxidation. Only recently, testosterone (T) and androstenedione (A4) blood profiles have been introduced as additional approach for doping control. However, a potential influence of ethanol intake on testosterone biosynthesis and thus on blood steroid profiles has not been investigated so far. Therefore, steroid concentrations from 10 males and 10 females receiving an ethanol infusion up to a breath alcohol concentration of 0.5 mg/L which was hold as a plateau for two hours were conducted. Blood samples were drawn every 15 min for steroid quantification. An ethanol-dependent T/A4 increase up to 385% resulting from A4 suppression was observed in 14 volunteers. In addition, we observed sporadic A4 increases coinciding with cortisol and ACTH pulses pointing to a meal-induced adrenal stimulation. While testosterone levels in males showed diurnal variation solely, testosterone levels in some females were found to be susceptible to ethanol- and ACTH-dependent perturbations, which is thought to be due to its predominant adrenal synthesis in females. In conclusion, the results of the present study emphasize the importance of blood sampling at a sufficient time interval from food and ethanol intake. This is of interest if T and A4 are used for diagnostics in doping control.


Assuntos
Esteroides , Testosterona , Masculino , Feminino , Humanos , Testosterona/farmacologia , Esteroides/metabolismo , Androstenodiona/metabolismo , Congêneres da Testosterona , Etanol , Hormônio Adrenocorticotrópico , Ingestão de Alimentos
7.
Methods Enzymol ; 689: 387-431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37802580

RESUMO

The "rediscovery" 11ß-hydroxyandrostenedione (11OHA4) placed the spotlight on this unique adrenal-derived hormone with researchers and clinicians once again focusing on the steroid's presence in endocrine pathology. Little was known about the steroid other than its chemical characterisation and that a mitochondrial cytochrome P450 enzyme catalysed the 11ß-hydroxylation of 11OHA4. The fact that neither the biosynthesis nor metabolism of 11OHA4 had been fully characterised presented an ideal opportunity to investigate the metabolic pathways. In addition, methodologies and analytical tools have improved vastly since 11OHA4 was first identified in the 1950s. Cell models, recombinant DNA technology and steroid quantification using liquid chromatography mass spectrometry have greatly facilitated investigations in the field of steroidogenesis. Evident from the structure is that 11OHA4 can be metabolised by hydroxysteroid dehydrogenases and reductases acting on the C4/C5 double bond and on functional moieties at specific carbons on the cyclopentane-perhydro-phenanthrene backbone of the steroid. In this chapter, the biosynthesis and metabolism of 11OHA4 is followed using two strategies that complement each another; (i) human cell models either transiently transfected with recombinant DNA or expressing endogenous steroidogenic enzymes and (ii) steroid identification and quantification using high resolution mass spectrometry. These methodologies have proven invaluable in the determination of 11OHA4's metabolic route. Both strategies are presented with the focus on the accurate identification and quantification of steroids using UHPLC-MS/MS and UPC2-MS/MS. The protocols described in this chapter lay a sound foundation which can aid the researcher and be adapted and implement in future studies.


Assuntos
Androstenodiona , Espectrometria de Massas em Tandem , Humanos , Androstenodiona/química , Androstenodiona/metabolismo , DNA Recombinante/metabolismo , Esteroides/química , Esteroides/metabolismo , Redes e Vias Metabólicas
8.
Prostate ; 83(13): 1306-1309, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37321973

RESUMO

BACKGROUND: Conversion of adrenally produced dehydroepiandrosterone (DHEA) to the potent androgen dihydrotestosterone (DHT) is an important mechanism by which prostate cancer reaches castration resistance. At the start of this pathway is a branch point at which DHEA can be converted to Δ4 -androstenedione by the enzyme 3ß-hydroxysteroid dehydrogenase (3ßHSD) or to Δ5 -androstenediol by 17ßHSD. To better understand this process, we studied the kinetics of these reactions in cells. METHODS: Prostate cancer cells (LNCaP cell line) were incubated with steroids (DHEA and Δ5 -androstenediol) over a range of concentrations and the steroid metabolism reaction products were measured by mass spectrometry or by high-performance liquid chromatography to determine reaction kinetics. To confirm the generalizability of results, experiments were also performed in JEG-3 placental choriocarcinoma cells. RESULTS: The two reactions displayed very different saturation profiles, with only the 3ßHSD-catalyzed reaction beginning to saturate within a physiological substrate concentration range. Strikingly, incubating LNCaP cells with low (in the ~10 nM range) concentrations of DHEA resulted in a large majority of the DHEA undergoing 3ßHSD-catalyzed conversion to Δ4 -androstenedione, whereas high concentrations of DHEA (in the 100s of nM range) resulted in most of the DHEA undergoing 17ßHSD-catalyzed conversion to Δ5 -androstenediol. CONCLUSION: Contrary to expectations from previous studies that used purified enzyme, cellular metabolism of DHEA by 3ßHSD begins to saturate in the physiological concentration range, suggesting that fluctuations in DHEA concentrations could be buffered at the downstream active androgen level.


Assuntos
Androgênios , Neoplasias da Próstata , Humanos , Masculino , Androstenodióis , Androstenodiona/metabolismo , Linhagem Celular Tumoral , Desidroepiandrosterona/metabolismo , Neoplasias da Próstata/patologia
9.
J Endocrinol ; 258(2)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37161994

RESUMO

In birds, exposure to maternal (yolk) testosterone affects a diversity of offspring post-hatching traits, which eventually affect offspring competitiveness. However, maternal testosterone is heavily metabolized at very early embryonic developmental stages to hydrophilic metabolites that are often assumed to be much less biologically potent. Either the rapid metabolism could either keep the maternal testosterone from reaching the embryos, opening the possibility for a mother-offspring conflict or the metabolites may facilitate the uptake of the lipophilic testosterone from the yolk into the embryonic circulation after which they are either converted back to the testosterone or functioning directly as metabolites. To test these possibilities, we injected isotope-labeled testosterone (T-[D5]) into the yolk of freshly laid Rock pigeon (Columba livia) eggs and determined the concentration and distribution of T-[D5] and its labeled metabolites within different egg fractions by liquid chromatography combined with tandem mass spectrometry at day 2, 5 and 10 of incubation. Although under a supraphysiological dosage injection, yolk testosterone decreased within 2 days and was metabolized into androstenedione, conjugated testosterone, etiocholanolone and other components that were unidentifiable due to methodological limitation. We show for the first time that testosterone, androstenedione and conjugated testosterone, but not etiocholanolone, reached the embryo including its brain. Their high concentrations in the yolk and extraembryonic membranes suggest that conversion takes place here. We also found no sex-specific metabolism, explaining why maternal testosterone does not affect sexual differentiation. Our findings showed that maternal testosterone is quickly converted by the embryo, with several but not all metabolites reaching the embryo providing evidence for both hypotheses.


Assuntos
Androgênios , Androstenodiona , Animais , Androgênios/metabolismo , Androstenodiona/análise , Androstenodiona/metabolismo , Columbidae/metabolismo , Herança Materna , Testosterona/metabolismo , Gema de Ovo/química , Gema de Ovo/metabolismo
10.
J Assist Reprod Genet ; 40(7): 1611-1622, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37079226

RESUMO

PURPOSE: Despite the significant advances in the in vitro development of human primordial follicles, it is still a challenging approach with great potential for improvements. Therefore, the present study aimed to investigate the effect of a feeder layer of human theca progenitor cells (hTPCs) on the development of primordial follicles embedded in human ovarian tissue. METHODS: Fragments of frozen-thawed ovarian tissue were activated using the vanadate-derivative dipotassium bisperoxo (5-hydroxy-pyridine-2-carboxylic) oxovanadate (V) and kit ligand for 24 h. Then, the specimens were divided into the co-culture and mono-culture groups and were cultured with and without a hTPC feeder layer for 6 days, respectively. Afterward, the follicles were counted and classified, and the hormone levels and expression levels of apoptosis- and folliculogenesis-related genes were assessed. RESULTS: Both culture groups showed significant follicle growth (P < 0.05). However, the co-culture group had a significantly higher number of growing follicles compared to the other group (P < 0.05). Moreover, the expression levels of ZP1, ZP2, ZP3, BMP-7, AMH, and GDF9 were significantly higher in the co-culture group compared to the other group (P < 0.05), while the expression levels of P53 and CASP3 were significantly lower (P < 0.05). Also, the concentrations of estradiol, progesterone, testosterone, and androstenedione were significantly higher in the co-culture group compared to the other group (P < 0.05). CONCLUSION: The present study results provided novel evidence on the direct role of hTPCs in the growth and development of human primordial follicles. However, there is a need for future studies to illustrate the underlying mechanisms. Schematic summary of the results. According to our results, the expression of ZP1, ZP2, ZP3, and GDF9 in the oocytes, AMH in the granulosa cells, and BMP4 in the theca cells of the co-culture group were significantly higher than those of the mono-culture and non-culture groups, while the expression of apoptotic genes (BAX, CASP3, and P53) was significantly lower. Moreover, the co-culture group showed significantly increased levels of estradiol, progesterone, testosterone, and androstenedione in its culture media compared to the mono-culture groups.


Assuntos
Progesterona , Células Tecais , Feminino , Humanos , Células Tecais/metabolismo , Caspase 3 , Progesterona/metabolismo , Androstenodiona/metabolismo , Androstenodiona/farmacologia , Técnicas de Cocultura , Proteína Supressora de Tumor p53/genética , Células da Granulosa/metabolismo , Estradiol/metabolismo , Testosterona/metabolismo
11.
ACS Synth Biol ; 12(3): 788-799, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36857753

RESUMO

Substrate competition within a metabolic network constitutes a common challenge in microbial biosynthesis system engineering, especially if indispensable enzymes can produce multiple intermediates from a single substrate. Androstenedione (4AD) is a central intermediate in the production of a series of steroidal pharmaceuticals; however, its yield via the coexpression of 3ß-hydroxysteroid dehydrogenase (3ß-HSD) and 17α-hydroxylase/17,20-lyase (CYP17A1) in a microbial chassis affords a nonlinear pathway in which these enzymes compete for substrates and produce structurally similar unwanted intermediates, thereby reducing 4AD yields. To avoid substrate competition, we split the competing 3ß-HSD and CYP17A1 pathway components into two separate Yarrowia lipolytica strains to linearize the pathway. This spatial segregation increased substrate availability for 3ß-HSD in the upstream strain, consequently decreasing the accumulation of the unwanted intermediate 17-hydroxypregnenolone (17OHP5) from 94.8 ± 4.4% in single-chassis monocultures to 24.8 ± 12.6% in cocultures of strains expressing 3ß-HSD and CYP17A1 separately. Orthologue screening to increase CYP17A1 catalytic efficiency and the preferential production of desired intermediates increased the biotransformation capacity in the downstream pathway, further decreasing 17OHP5 accumulation to 3.9%. Furthermore, nitrogen limitation induced early 4AD accumulation (final titer, 7.71 mg/L). This study provides a framework for reducing intrapathway competition between essential enzymes during natural product biosynthesis as well as a proof-of-concept platform for linear steroid production.


Assuntos
Androstenodiona , Redes e Vias Metabólicas , Androstenodiona/metabolismo , Técnicas de Cocultura
12.
Gen Comp Endocrinol ; 333: 114213, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36642229

RESUMO

Maternal androgen exposure can have crucial effects on offspring development. Bird eggs are frequently used for studying these effects and virtually all research in this field has focused on post-hatching offspring traits. Yet, much of the yolk, in which the maternal hormones are deposited, is consumed during the embryonic phase. Here, we studied the effects of yolk androgens during this prenatal period. As there is evidence that androgens stimulate post-hatching traits such as increased growth, we measured heart rate throughout incubation as a proxy for prenatal metabolism. Rock pigeons (Columba livia) typically lay 2-egg clutches with yolk androgen levels in second-laid eggs being consistently higher than in first-laid eggs. We investigated whether embryonic heart rate was higher in second- than first-laid eggs. Additionally, we increased yolk androgen levels (testosterone and androstenedione) with the mean difference between those in first- and second-laid eggs, to investigate whether the effects of androgens are egg sequence dependent. As expected, embryonic heart rate predicted body embryo organ- and body mass, and body dimensions, with body mass being significantly higher in second- than first-laid eggs. Androgen treated first-laid eggs increased heart rate to that of second-laid control eggs only temporally, yet it had an overall positive effect on embryo body dimensions but not on tissue mass. Our findings indicate that embryos from different egg laying sequence differed in heart rate and prenatal development outcomes but this can only partially be explained by their difference in maternal androgen levels.


Assuntos
Androgênios , Columbidae , Animais , Androgênios/metabolismo , Columbidae/metabolismo , Frequência Cardíaca , Testosterona/metabolismo , Androstenodiona/metabolismo , Gema de Ovo/metabolismo
13.
J Steroid Biochem Mol Biol ; 227: 106236, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36563764

RESUMO

Fungal hydroxylation of steroids is a key step in the industrial production of various steroid drugs. The main enzymes that enable these reactions are Cytochrome P450s (CYP), though very few industrially important CYPs have been identified and characterized. In this study, we identified a CYP enzyme (CYP-N2) and a cytochrome P450 reductase (CPRns) from Nigrospora sphaerica 722 by a combination of transcriptome sequencing and heterologous expression in Pichia pastoris. Gene CYP-N2 co-expressed with CPRns in Pichia pastoris GS115 showed 6ß- and 15α-hydroxylation activities on progesterone. Different hydroxylation specificity of CYP-N2 was observed on different steroid substrates. CYP-N2 showed 1α-hydroxylation on cortisone and 1α-hydroxylation and 6ß-hydroxylation activities on androstenedione (AD). With dehydroepiandrosterone (DHEA) as a substrate, the hydroxylated products of CYP-N2 included 7α-hydroxy-DHEA and 7α,15α-dihydroxy-DHEA. In order to precisely elucidate CYP-N2 biological function and find out the key amino acids influencing its hydroxylation capabilities in the binding pocket, new generation artificial intelligence technology AlphaFold 2 was used to predict the function-structure of CYP-N2 with high reliability. Through molecular docking, it was concluded that the residues almost binding all substrates were located in the same substrate binding pocket and the various hydroxylation abilities might be due to the different binding conformations of different substrates in the binding pocket. Alanine scanning mutagenesis was used to verify key amino acids identified by the molecular docking with steroid substrates. The 128 THR mutation resulted in conversion rate increase for substrates AD and cortisone by 2.6-fold and 2.1-fold respectively. The information obtained in this study is beneficial to facilitating the engineering of more efficient steroid hydroxylases for industrial applications.


Assuntos
Cortisona , Hidroxilação , Simulação de Acoplamento Molecular , Inteligência Artificial , Reprodutibilidade dos Testes , Esteroide Hidroxilases/metabolismo , Esteroides/metabolismo , Androstenodiona/metabolismo , Aminoácidos , Desidroepiandrosterona/metabolismo , Especificidade por Substrato
14.
Proc Natl Acad Sci U S A ; 119(40): e2207505119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161908

RESUMO

Mycobacterium abscessus, an opportunistic pathogen responsible for pulmonary infections, contains genes predicted to encode two steroid catabolic pathways: a cholesterol catabolic pathway similar to that of Mycobacterium tuberculosis and a 4-androstenedione (4-AD) catabolic pathway. Consistent with this prediction, M. abscessus grew on both steroids. In contrast to M. tuberculosis, Rhodococcus jostii RHA1, and other Actinobacteria, the cholesterol and 4-AD catabolic gene clusters of the M. abscessus complex lack genes encoding HsaD, the meta-cleavage product (MCP) hydrolase. However, M. abscessus ATCC 19977 harbors two hsaD homologs elsewhere in its genome. Only one of the encoded enzymes detectably transformed steroid metabolites. Among tested substrates, HsaDMab and HsaDMtb of M. tuberculosis had highest substrate specificities for MCPs with partially degraded side chains thioesterified with coenzyme A (kcat/KM = 1.9 × 104 and 5.7 × 103 mM-1s-1, respectively). Consistent with a dual role in cholesterol and 4-AD catabolism, HsaDMab also transformed nonthioesterified substrates efficiently, and a ΔhsaD mutant of M. abscessus grew on neither steroid. Interestingly, both steroids prevented growth of the mutant on acetate. The ΔhsaD mutant of M. abscessus excreted cholesterol metabolites with a fully degraded side chain, while the corresponding RHA1 mutant excreted metabolites with partially degraded side chains. Finally, the ΔhsaD mutant was not viable in macrophages. Overall, our data establish that the cholesterol and 4-AD catabolic pathways of M. abscessus are unique in that they converge upstream of where this occurs in characterized steroid-catabolizing bacteria. The data further indicate that cholesterol is a substrate for intracellular bacteria and that cholesterol-dependent toxicity is not strictly dependent on coenzyme A sequestration.


Assuntos
Androstenodiona , Colesterol , Mycobacterium abscessus , Androstenodiona/metabolismo , Colesterol/metabolismo , Coenzima A/metabolismo , Humanos , Hidrolases/metabolismo , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo
15.
Mol Hum Reprod ; 28(10)2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36069625

RESUMO

Follicles are the functional unit of the ovary and several methods have been developed to grow follicles ex vivo, which recapitulate key events of oogenesis and folliculogenesis. Enzymatic digestion protocols are often used to increase the yield of follicles from the ovary. However, the impact of these protocols on the outermost theca and granulosa cells, and thereby follicle function, is not well defined. To investigate the impact of enzymatic digestion on follicle function, we collected preantral follicles from CD1 mice either by enzymatic digestion (Enzy-FL) or mechanical isolation (Mech-FL) and compared follicle growth, steroidogenesis and cell differentiation within an encapsulated in vitro follicle growth system which maintains the 3D architecture of the oocyte and its surrounding somatic cells. Follicles were encapsulated in 0.5% alginate and cultured for 8 days. Compared with Enzy-FL, Mech-FL grew more rapidly and produced significantly higher levels of androstenedione, estradiol and progesterone. The expression of theca-interstitial cell marker genes, Cyp17a1, which encodes 17-hydroxylase/17, 20-lyase and catalyzes the hydroxylation of pregnenolone and progesterone to 17-hydroxypregnenolone and 17-hydroxyprogesterone, and the conversion of these products into dehydroepiandrosterone and androstenedione, and Star, which encodes a transport protein essential for cholesterol entry into mitochondria, were also higher in Mech-FL than in Enzy-FL. Mech-FL maintained an intact theca-interstitial layer on the outer edge of the follicle that phenocopied in vivo patterns as confirmed by alkaline phosphatase staining, whereas theca-interstitial cells were absent from Enzy-FL from the onset of culture. Therefore, preservation of the theca cell layer at the onset of culture better supports follicle growth and function. Interestingly, granulosa cells in the outermost layers of Enzy-FL expressed CYP17A1 by Day 4 of culture while maintaining inhibin α-subunit expression and a cuboidal nucleus. Thus, in the absence of theca-interstitial cells, granulosa cells have the potential to differentiate into androgen-producing cells. This work may have implications for human follicle culture, where enzymatic isolation is required owing to the density of the ovarian cortex.


Assuntos
Liases , Progesterona , 17-alfa-Hidroxipregnenolona/metabolismo , 17-alfa-Hidroxiprogesterona/metabolismo , Alginatos/metabolismo , Fosfatase Alcalina/metabolismo , Androgênios/metabolismo , Androstenodiona/metabolismo , Animais , Proteínas de Transporte/metabolismo , Desidroepiandrosterona/metabolismo , Estradiol/metabolismo , Feminino , Células da Granulosa/metabolismo , Humanos , Inibinas/metabolismo , Liases/metabolismo , Camundongos , Pregnenolona/metabolismo , Progesterona/metabolismo , Células Tecais
16.
J Assist Reprod Genet ; 39(10): 2239-2247, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36044164

RESUMO

OBJECTIVE: The purpose of this study was to explore the association of expression of cystic fibrosis transmembrane conductance regulator (CFTR) in cumulus cells (CCs) from mature oocytes with oocyte quality and embryonic development. METHODS: A total of 338 infertile women who underwent ovarian stimulation cycle of oocyte retrieval in Zhejiang University School of Medicine were retrospectively enrolled in this study. The relative mRNA expression levels of CFTR, bone morphogenetic protein 15 (BMP15), and growth differentiation factor 9 (GDF9) in CCs were detected by qPCR technology. ROC curve was applied for the diagnosis of oocyte maturation. The serum levels of anti-Müllerian hormone (AMH), E2, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and androstenedione were measured. Oocyte maturation rate, fertilization rate, cleavage rate, high-quality embryo formation rate, and implantation rate after embryo transfer were also determined. RESULTS: The mRNA expression levels of CFTR in CCs were significantly increased in metaphase II (MII) oocytes compared to that in metaphase I (MI) or germinal vesicle (GV) oocytes. The ROC curve analysis illustrated that CFTR mRNA expression could efficiently discriminate MII oocytes from MI or GV oocytes (AUC = 0.954), and revealed that 0.695 RQU is the optimal cut-off value for diagnosis. So the cut-off value of 2-ΔΔCT = 0.70 was used to divide the patients into two groups: low- (n = 114) and high-CFTR group (n = 224). The mRNA expression of CFTR in CCs was positively correlated with the antral follicular count (AFC), number of oocytes retrieved, number of MII oocytes, serum E2 level on hCG day, and BMP15 and GDF9 expression in CCs. Under continuous stimulation with the same dose of recombinant follicle-stimulating hormone (rFSH), the number of follicles, average recovered oocytes, recovered oocytes, MII oocytes, as well as the oocyte recovery rate, fertilization rate, oocyte cleavage rate, high-quality embryo formation rate, and implantation rate were decreased in patients with lower CFTR. CONCLUSIONS: This study suggests that CFTR expression in CCs is associated with the developmental potential of human oocytes.


Assuntos
Células do Cúmulo , Infertilidade Feminina , Gravidez , Feminino , Humanos , Células do Cúmulo/metabolismo , Proteína Morfogenética Óssea 15/genética , Fator 9 de Diferenciação de Crescimento/genética , Fator 9 de Diferenciação de Crescimento/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Hormônio Antimülleriano/genética , Hormônio Antimülleriano/metabolismo , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Androstenodiona/metabolismo , Estudos Retrospectivos , Oócitos/metabolismo , Hormônio Foliculoestimulante , Hormônio Luteinizante/metabolismo , Desenvolvimento Embrionário , RNA Mensageiro/metabolismo
17.
J Clin Endocrinol Metab ; 107(9): 2626-2635, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35696182

RESUMO

CONTEXT: Syndromes of severe insulin resistance (SIR) include insulin receptoropathy, in which all signaling downstream of the insulin receptor is lost, and lipodystrophy, in which some signaling pathways are impaired and others preserved. Women with SIR commonly have ovarian hyperandrogenemia; adrenal-derived 11-oxygenated androgens, produced by CYP11B1, have not been studied. OBJECTIVE: We aimed to evaluate classic pathway androgens (androstenedione, testosterone) and 11-oxygenated androgens in women with SIR and hyperandrogenemia, and to elucidate the role of insulin receptor signaling for 11-oxygenated androgen production by comparing lipodystrophy and receptoropathy. METHODS: Steroid hormones were quantified using LC-MS/MS in a cross-sectional study of 18 women with hyperandrogenemia and SIR (11 lipodystrophy, 7 receptoropathy) and 23 controls. To assess ovarian vs adrenal origin, steroids were compared in receptoropathy patients with (Ovary+) vs without (Ovary-) ovarian function. RESULTS: Compared with controls, classic androgens were elevated in both lipodystrophy and receptoropathy, and 11-oxygenated androgens were increased in lipodystrophy (2.9-fold higher 11ß-hydroxyandrostenedione (11OHA4), 2.4-fold higher 11-ketoandrostenedione (11KA4), 3.6-fold higher 11-ketotestosterone (11KT); P < 0.01), but not receptoropathy. Product-to-precursor ratios for CYP11B1 conversion of androstenedione to 11OHA4 were similar in lipodystrophy and controls but decreased in receptoropathy (6.5-fold lower than control; P = 0.001). Classic androgens were elevated in Ovary + but not Ovary- patients. CONCLUSIONS: 11-Oxygenated androgens are elevated in lipodystrophy but not receptoropathy. In SIR, insulin receptor signaling is necessary for adrenal hyperandrogenemia but not ovarian hyperandrogenemia; excess classic androgens are derived from the ovaries. Insulin receptor signaling increases adrenal 19-carbon steroid production, which may have implications for more common disorders of mild IR.


Assuntos
Hiperandrogenismo , Resistência à Insulina , Lipodistrofia , Síndrome do Ovário Policístico , Androgênios/metabolismo , Androstenodiona/metabolismo , Antígenos CD , Cromatografia Líquida , Estudos Transversais , Feminino , Humanos , Síndrome do Ovário Policístico/metabolismo , Receptor de Insulina , Esteroide 11-beta-Hidroxilase , Esteroides/metabolismo , Espectrometria de Massas em Tandem , Testosterona/metabolismo
18.
Reprod Biol Endocrinol ; 20(1): 88, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701786

RESUMO

BACKGROUND: According to current definitions of Polycystic Ovary Syndrome (PCOS), hyperandrogenism is considered as a key element in the pathogenesis of this common endocrinopathy. However, until now, studies about ovarian androgen profile in women are very rare. Our aim was then to characterise the expression profile of the androgens in follicular fluid of 30 PCOS patients, and compare it to those of 47 Control women and 29 women with only polycystic ovary morphology on ultrasounds (ECHO group). METHODS: A retrospective, single-centre cohort study was performed. The intrafollicular concentrations of the key androgens were assessed and correlated with the intrafollicular levels of some adipokines of interest. Androgens were quantified by mass spectrophotometry combined with ultra-high-performance liquid chromatography, while adipokine concentrations were measured by ELISA assays. RESULTS: In PCOS patients, the intrafollicular concentrations of the androgens synthesised by ovarian theca cells, i.e., 17OH-pregnenolone, dehydroepiandrosterone, Δ4-androstenedione and testosterone, were significantly higher than those of the androgens of adrenal origin, and positively correlated with the main PCOS clinical and biological features, as well as with the adipokines mostly expressed in the follicular fluid of PCOS patients, i.e. resistin, omentin, chemerin and apelin. Conversely, Control women showed the highest levels of 17OH-progesterone, deoxycorticosterone and 11-deoxycortisol. Confirming these results, apelin levels were negatively associated with pregnenolone and deoxycorticosterone concentrations, while visfatin levels, which were higher in the Control group, negatively correlated with the Δ4-androstenedione and testosterone ones. CONCLUSIONS: PCOS is characterised by a selective increase in the intrafollicular levels of the androgens synthesised by theca cells, strengthening the hypothesis that ovarian hyperandrogenism plays a central role in its pathogenesis. Further, the significant correlation between the intrafollicular concentrations of the androgens and most of the adipokines of interest, including apelin, chemerin, resistin and omentin, confirms the existence of a close relationship between these two hormonal systems, which appear deeply involved in ovarian physiology and PCOS physiopathology.


Assuntos
Hiperandrogenismo , Síndrome do Ovário Policístico , Adipocinas , Androgênios/metabolismo , Androstenodiona/metabolismo , Apelina , Estudos de Coortes , Desoxicorticosterona , Feminino , Líquido Folicular/metabolismo , Humanos , Hiperandrogenismo/metabolismo , Síndrome do Ovário Policístico/metabolismo , Pregnenolona , Resistina , Estudos Retrospectivos , Testosterona
19.
Molecules ; 27(10)2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35630641

RESUMO

Androstenedione (AD) is a key intermediate in the body's steroid metabolism, used as a precursor for several steroid substances, such as testosterone, estradiol, ethinyl estradiol, testolactone, progesterone, cortisone, cortisol, prednisone, and prednisolone. The world market for AD and ADD (androstadienedione) exceeds 1000 tons per year, which stimulates the pharmaceutical industry's search for newer and cheaper raw materials to produce steroidal compounds. In light of this interest, we aimed to investigate the progress of AD biosynthesis from phytosterols by prospecting scientific articles (Scopus, Web of Science, and Google Scholar databases) and patents (USPTO database). A wide variety of articles and patents involving AD and phytosterol were found in the last few decades, resulting in 108 relevant articles (from January 2000 to December 2021) and 23 patents of interest (from January 1976 to December 2021). The separation of these documents into macro, meso, and micro categories revealed that most studies (articles) are performed in China (54.8%) and in universities (76%), while patents are mostly granted to United States companies. It also highlights the fact that AD production studies are focused on "process improvement" techniques and on possible modifications of the "microorganism" involved in biosynthesis (64 and 62 documents, respectively). The most-reported "process improvement" technique is "chemical addition" (40%), which means that the addition of solvents, surfactants, cofactors, inducers, ionic liquids, etc., can significantly increase AD production. Microbial genetic modifications stand out in the "microorganism" category because this strategy improves AD yield considerably. These documents also revealed the main aspects of AD and ADD biosynthesis: Mycolicibacterium sp. (basonym: Mycobacterium sp.) (40%) and Mycolicibacterium neoaurum (known previously as Mycobacterium neoaurum) (32%) are the most recurrent species studied. Microbial incubation temperatures can vary from 29 °C to 37 °C; incubation can last from 72 h to 14 days; the mixture is agitated at 140 to 220 rpm; vegetable oils, mainly soybean, can be used as the source of a mixture of phytosterols. In general, the results obtained in the present technological prospecting study are fundamental to mapping the possibilities of AD biosynthesis process optimization, as well as to identifying emerging technologies and methodologies in this scenario.


Assuntos
Androstenodiona , Fitosteróis , Androgênios , Androstenodiona/metabolismo , Biotransformação , Mycobacteriaceae , Fitosteróis/química , Esteroides/metabolismo
20.
Domest Anim Endocrinol ; 80: 106712, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35276581

RESUMO

The various fibroblast growth factors (FGF) regulate their function via binding to 4 main FGF receptor (FGFR) subtypes and their splice variants, FGFR1b, FGF1c, FGFR2b, FGFR2c and FGFR3c and FGFR4, but which of these FGFR are expressed in the granulosa (GC) and theca cells (TC), the 2 main cell layers of ovarian follicles, or change during follicular development is unknown. We hypothesized that FGFR1c, FGFR2c and FGFR3c (but not FGFR4) gene expression in GC (but not TC) would change with follicular development. Hence, the objective of this study was to determine if abundance of FGFR1c, FGFR2c, FGFR3c, and FGFR4 mRNA change according to follicular size, steroidogenic status, and days post-ovulation during growth of first-wave dominant follicles in Holstein cattle exhibiting regular estrous cycles. Estrous cycles of non-lactating dairy cattle were synchronized, and ovaries were collected on either d 3 to 4 (n = 8) or d 5 to 6 (n = 8) post-ovulation for GC and TC RNA extraction from small (1-5 mm), medium (5.1 to 8 mm) or large (8.1-18 mm) follicles for real-time PCR analysis. In GC, FGFR1c and FGFR2c mRNA relative abundance was greater in estrogen (E2)-inactive (ie, concentrations of E2 < progesterone, P4) follicles of all sizes than in GC from large E2-active follicles (ie, E2 > P4), whereas FGFR3c and FGFR4 mRNA abundance did not significantly differ among follicle types or days post-estrus. In TC, medium E2-inactive follicles had greater FGFR1c and FGFR4 mRNA abundance than large E2-active and E2-inactive follicles on d 5 to 6 post-ovulation whereas FGFR2c and FGFR3c mRNA abundance did not significantly differ among follicle types or day post-estrus. In vitro experiments revealed that androstenedione increased abundance of FGFR1c, FGFR2c and FGFR4 mRNA in GC whereas estradiol decreased FGFR2c mRNA abundance. Neither androstenedione nor estradiol affected abundance of the various FGFR mRNAs in cultured TC. Taken together, the findings that FGFR1c and FGFR2c mRNA abundance was less in GC of E2-active follicles and FGFR1c and FGFR4 mRNA was greater in TC of medium inactive follicles at late than at early growing phase of the first dominant follicle support an anti-differentiation role for FGF and their FGFR as well as support the idea that steroid-induced changes in FGF and their receptors may regulate selection of dominant follicles in cattle.


Assuntos
Androstenodiona , Células Tecais , Androstenodiona/análise , Androstenodiona/metabolismo , Animais , Bovinos , Estradiol/metabolismo , Feminino , Células da Granulosa/metabolismo , Ovário/metabolismo , RNA Mensageiro/análise , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Células Tecais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA