Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.035
Filtrar
1.
Cells ; 13(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38727271

RESUMO

Vascular smooth muscle cells (VSMCs) play a key role in aortic aneurysm formation. Bone morphogenetic proteins (BMPs) have been implicated as important regulators of VSMC phenotype, and dysregulation of the BMP pathway has been shown to be associated with vascular diseases. The aim of this study was to investigate for the first time the effects of BMP-4 on the VSMC phenotype and to understand its role in the development of thoracic aortic aneurysms (TAAs). Using the angiotensin II (AngII) osmotic pump model in mice, aortas from mice with VSMC-specific BMP-4 deficiency showed changes similar to AngII-infused aortas, characterised by a loss of contractile markers, increased fibrosis, and activation of matrix metalloproteinase 9. When BMP-4 deficiency was combined with AngII infusion, there was a significantly higher rate of apoptosis and aortic dilatation. In vitro, VSMCs with mRNA silencing of BMP-4 displayed a dedifferentiated phenotype with activated canonical BMP signalling. In contrast, BMP-2-deficient VSMCs exhibited the opposite phenotype. The compensatory regulation between BMP-2 and BMP-4, with BMP-4 promoting the contractile phenotype, appeared to be independent of the canonical signalling pathway. Taken together, these results demonstrate the impact of VSMC-specific BMP-4 deficiency on TAA development.


Assuntos
Angiotensina II , Aneurisma da Aorta Torácica , Proteína Morfogenética Óssea 2 , Proteína Morfogenética Óssea 4 , Músculo Liso Vascular , Miócitos de Músculo Liso , Fenótipo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/genética , Camundongos , Proteína Morfogenética Óssea 2/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Angiotensina II/farmacologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Transdução de Sinais , Camundongos Endogâmicos C57BL , Masculino , Apoptose/efeitos dos fármacos , Modelos Animais de Doenças
2.
Sci Transl Med ; 16(746): eadg6298, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38718134

RESUMO

Thoracic aortic aneurysm (TAA) is a life-threatening vascular disease frequently associated with underlying genetic causes. An inadequate understanding of human TAA pathogenesis highlights the need for better disease models. Here, we established a functional human TAA model in an animal host by combining human induced pluripotent stem cells (hiPSCs), bioengineered vascular grafts (BVGs), and gene editing. We generated BVGs from isogenic control hiPSC-derived vascular smooth muscle cells (SMCs) and mutant SMCs gene-edited to carry a Loeys-Dietz syndrome (LDS)-associated pathogenic variant (TGFBR1A230T). We also generated hiPSC-derived BVGs using cells from a patient with LDS (PatientA230T/+) and using genetically corrected cells (Patient+/+). Control and experimental BVGs were then implanted into the common carotid arteries of nude rats. The TGFBR1A230T variant led to impaired mechanical properties of BVGs, resulting in lower burst pressure and suture retention strength. BVGs carrying the variant dilated over time in vivo, resembling human TAA formation. Spatial transcriptomics profiling revealed defective expression of extracellular matrix (ECM) formation genes in PatientA230T/+ BVGs compared with Patient+/+ BVGs. Histological analysis and protein assays validated quantitative and qualitative ECM defects in PatientA230T/+ BVGs and patient tissue, including decreased collagen hydroxylation. SMC organization was also impaired in PatientA230T/+ BVGs as confirmed by vascular contraction testing. Silencing of collagen-modifying enzymes with small interfering RNAs reduced collagen proline hydroxylation in SMC-derived tissue constructs. These studies demonstrated the utility of BVGs to model human TAA formation in an animal host and highlighted the role of reduced collagen modifying enzyme activity in human TAA formation.


Assuntos
Prótese Vascular , Colágeno , Células-Tronco Pluripotentes Induzidas , Receptor do Fator de Crescimento Transformador beta Tipo I , Animais , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Colágeno/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/metabolismo , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ratos Nus , Modelos Animais de Doenças , Ratos , Bioengenharia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Edição de Genes , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/patologia , Masculino
3.
J Mol Cell Cardiol ; 191: 63-75, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38718563

RESUMO

INTRODUCTION: Thoracic aortic aneurysm (TAA) is a severe vascular disease that threatens human life, characterized by focal dilatation of the entire aortic wall, with a diameter 1.5 times larger than normal. PIEZO1, a mechanosensitive cationic channel, monitors mechanical stimulations in the environment, transduces mechanical signals into electrical signals, and converts them into biological signals to activate intracellular signaling pathways. However, the role of PIEZO1 in TAA is still unclear. METHODS: We analyzed a single-cell database to investigate the expression level of PIEZO1 in TAA. We constructed a conditional knockout mouse model of Piezo1 and used the PIEZO1 agonist Yoda1 to intervene in the TAA model mice established by co-administration of BAPN and ANG-II. Finally, we explored the effect of Yoda1 on TAA in vitro. RESULTS AND DISCUSSION: We observed decreased PIEZO1 expression in TAA at both RNA and protein levels. Single-cell sequencing identified a specific reduction in Piezo1 expression in endothelial cells. Administration of PIEZO1 agonist Yoda1 prevented the formation of TAA. In PIEZO1 endothelial cell conditional knockout mice, Yoda1 inhibited TAA formation by interfering with PIEZO1. In vivo and in vitro experiments demonstrated that the effect of Yoda1 on endothelial cells involved macrophage infiltration, extracellular matrix degradation, and neovascularization. This study highlights the role of PIEZO1 in TAA and its potential as a therapeutic target, providing opportunities for clinical translation.


Assuntos
Aneurisma da Aorta Torácica , Modelos Animais de Doenças , Células Endoteliais , Canais Iônicos , Camundongos Knockout , Análise de Célula Única , Animais , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Canais Iônicos/metabolismo , Canais Iônicos/genética , Camundongos , Células Endoteliais/metabolismo , Humanos , Masculino , Pirazinas , Tiadiazóis
4.
Basic Res Cardiol ; 119(3): 371-395, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38700707

RESUMO

Ascending thoracic aortic aneurysm (ATAA) remains a significant medical concern, with its asymptomatic nature posing diagnostic and monitoring challenges, thereby increasing the risk of aortic wall dissection and rupture. Current management of aortic repair relies on an aortic diameter threshold. However, this approach underestimates the complexity of aortic wall disease due to important knowledge gaps in understanding its underlying pathologic mechanisms.Since traditional risk factors cannot explain the initiation and progression of ATAA leading to dissection, local vascular factors such as extracellular matrix (ECM) and vascular smooth muscle cells (VSMCs) might harbor targets for early diagnosis and intervention. Derived from diverse embryonic lineages, VSMCs exhibit varied responses to genetic abnormalities that regulate their contractility. The transition of VSMCs into different phenotypes is an adaptive response to stress stimuli such as hemodynamic changes resulting from cardiovascular disease, aging, lifestyle, and genetic predisposition. Upon longer exposure to stress stimuli, VSMC phenotypic switching can instigate pathologic remodeling that contributes to the pathogenesis of ATAA.This review aims to illuminate the current understanding of cellular and molecular characteristics associated with ATAA and dissection, emphasizing the need for a more nuanced comprehension of the impaired ECM-VSMC network.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Músculo Liso Vascular , Miócitos de Músculo Liso , Humanos , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/fisiopatologia , Dissecção Aórtica/patologia , Dissecção Aórtica/genética , Dissecção Aórtica/metabolismo , Animais , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/patologia , Miócitos de Músculo Liso/metabolismo , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Remodelação Vascular , Matriz Extracelular/patologia , Matriz Extracelular/metabolismo , Fenótipo
5.
Med Eng Phys ; 126: 104157, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38621853

RESUMO

Both ageing and hypertension are clinical factors that may lead to a higher propensity for dissection or rupture of ascending thoracic aortic aneurysms (ATAAs). This study sought to investigate effect of valve morphology on regional delamination strength of ATAAs in the elderly hypertensive patients. Whole fresh ATAA samples were harvested from 23 hypertensive patients (age, 71 ± 8 years) who underwent elective aortic surgery. Peeling tests were performed to measure region-specific delamination strengths of the ATAAs, which were compared between patients with bicuspid aortic valve (BAV) and tricuspid aortic valve (TAV). The regional delamination strengths of the ATAAs were further correlated with patient ages and aortic diameters for BAV and TAV groups. In the anterior and right lateral regions, the longitudinal delamination strengths of the ATAAs were statistically significantly higher for BAV patients than TAV patients (33 ± 7 vs. 23 ± 8 mN/mm, p = 0.01; 30 ± 7 vs. 19 ± 9 mN/mm, p = 0.02). For both BAV and TAV patients, the left lateral region exhibited significantly higher delamination strengths in both directions than the right lateral region. Histology revealed that disruption of elastic fibers in the right lateral region of the ATAAs was more severe for the TAV patients than the BAV patients. A strong inverse correlation between longitudinal delamination strength and age was identified in the right lateral region of the ATAAs of the TAV patients. Results suggest that TAV-ATAAs are more vulnerable to aortic dissection than BAV-ATAAs for the elderly hypertensive patients. Regardless of valve morphotypes, the right lateral region may be a special quadrant which is more likely to initiate dissection when compared with other regions.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma Aórtico , Doença da Válvula Aórtica Bicúspide , Hipertensão , Humanos , Idoso , Pessoa de Meia-Idade , Valva Aórtica , Aneurisma da Aorta Torácica/complicações , Aneurisma da Aorta Torácica/patologia , Aorta/patologia , Aneurisma Aórtico/patologia , Doença da Válvula Aórtica Bicúspide/patologia , Hipertensão/complicações , Hipertensão/patologia
6.
J Biol Chem ; 300(5): 107260, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582447

RESUMO

Thoracic aortic dissection (TAD) is a highly dangerous cardiovascular disorder caused by weakening of the aortic wall, resulting in a sudden tear of the internal face. Progressive loss of the contractile apparatus in vascular smooth muscle cells (VSMCs) is a major event in TAD. Exploring the endogenous regulators essential for the contractile phenotype of VSMCs may aid the development of strategies to prevent TAD. Krüppel-like factor 15 (KLF15) overexpression was reported to inhibit TAD formation; however, the mechanisms by which KLF15 prevents TAD formation and whether KLF15 regulates the contractile phenotype of VSMCs in TAD are not well understood. Therefore, we investigated these unknown aspects of KLF15 function. We found that KLF15 expression was reduced in human TAD samples and ß-aminopropionitrile monofumarate-induced TAD mouse model. Klf15KO mice are susceptible to both ß-aminopropionitrile monofumarate- and angiotensin II-induced TAD. KLF15 deficiency results in reduced VSMC contractility and exacerbated vascular inflammation and extracellular matrix degradation. Mechanistically, KLF15 interacts with myocardin-related transcription factor B (MRTFB), a potent serum response factor coactivator that drives contractile gene expression. KLF15 silencing represses the MRTFB-induced activation of contractile genes in VSMCs. Thus, KLF15 cooperates with MRTFB to promote the expression of contractile genes in VSMCs, and its dysfunction may exacerbate TAD. These findings indicate that KLF15 may be a novel therapeutic target for the treatment of TAD.


Assuntos
Dissecção Aórtica , Fatores de Transcrição Kruppel-Like , Camundongos Knockout , Músculo Liso Vascular , Miócitos de Músculo Liso , Animais , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/citologia , Camundongos , Humanos , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Dissecção Aórtica/genética , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Masculino , Fenótipo , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Camundongos Endogâmicos C57BL , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Contração Muscular , Dissecção da Aorta Torácica
7.
Cardiovasc Pathol ; 70: 107617, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38309490

RESUMO

The telocyte (TC) is a new interstitial cell type described in a wide variety of organs and loose connective tissues around small vessels, but its presence in large arteries remains unexplored. TCs have small cell bodies and remarkably thin, long, moniliform processes called telopods (Tps). Using transmission electron microscopy and immunofluorescence, we identified TCs in normal human thoracic aortas and in those with aneurysm or acute dissection (TAAD). In normal aortas the TCs were distributed throughout the connective tissue of the adventitial layer, in its innermost portion and at the zone of transition with the medial layer, with their long axes oriented parallel to the external elastic lamellae, forming a three-dimensional network, without prevalence in the media layer. In contrast, TAAD TCs were present in the medial layer and in regions of neovascularization. The most important feature of the adventitia of diseased aortas was the presence of numerous contacts between TCs and stem cells, including vascular progenitor cells. Although the biologically functional correlations need to be elucidated, the morphological observations presented here provide strong evidence of the involvement of TCs in maintaining vascular homeostasis in pathological situations of tissue injury.


Assuntos
Aorta Torácica , Dissecção Aórtica , Homeostase , Microscopia Eletrônica de Transmissão , Telócitos , Humanos , Telócitos/patologia , Telócitos/metabolismo , Telócitos/ultraestrutura , Dissecção Aórtica/patologia , Dissecção Aórtica/fisiopatologia , Dissecção Aórtica/metabolismo , Aorta Torácica/patologia , Aorta Torácica/metabolismo , Masculino , Pessoa de Meia-Idade , Idoso , Túnica Adventícia/patologia , Túnica Adventícia/metabolismo , Aneurisma da Aorta Torácica/patologia , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/fisiopatologia , Feminino , Telopódios/patologia , Telopódios/metabolismo , Adulto , Imunofluorescência , Estudos de Casos e Controles
8.
Comput Biol Med ; 170: 108071, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325212

RESUMO

BACKGROUND: Thoracic aortic aneurysm (TAA) refers to dilation and enlargement of the thoracic aorta caused by various reasons. Most patients have no apparent symptoms in the early stage and are subject to a poor prognosis once the aneurysm ruptures. It is crucial to identify individuals who are predisposed to TAA and to discover effective therapeutic targets for early intervention. METHODS: We conducted a label-free quantitative proteomic analysis among aorta tissue samples from TAA patients to screen differentially expressed proteins (DEPs) and key co-expression modules. Two datasets from Gene Expression Omnibus (GEO) database were included for integrative analysis, and the identified genes were subjected to immunohistochemistry (IHC) validation. Detailed vesicle transport related enrichment analysis was conducted and two FDA-approved drugs, chlorpromazine (CPZ) and chloroquine (CQ), were selected for in vivo inhibition of vesicle transport in mice TAA model. The diameter of thoracic aorta, mortality and histological differences after interventions were evaluated. RESULTS: We found significant enrichments in functions involved with vesicle transport, extracellular matrix organizing, and infection diseases in TAA. Endocytosis was the most essential vesicle transport process in TAA formation. Interventions with CPZ and CQ significantly reduced the aneurysm diameter and elastin degradation in vivo and enhanced the survival rates of TAA mice. CONCLUSIONS: We systematically screened the aberrantly regulated bioprocesses in TAA based on integrative multi-omics analyses, identified and demonstrated the importance of vesicle transport in the TAA formation. Our study provided pilot evidence that vesicular transport was a potential and promising target for the treatment of TAA.


Assuntos
Aneurisma da Aorta Torácica , Multiômica , Humanos , Animais , Camundongos , Proteômica , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Modelos Animais de Doenças
9.
Eur J Cardiothorac Surg ; 65(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38218720

RESUMO

OBJECTIVES: This study aimed to analyse and determine the role of aortic length and curvature in the pathogenesis of acute type A aortic dissection (ATAAD) with ascending aortic diameters (AADs) <5 cm. METHODS: We reviewed the clinical and imaging data of patients with ATAAD (n = 201) and ascending aortic dilation (n = 83). Thoracic aortic bending index (TABI) was used to quantify aortic curvature and analyse its role in ATAAD below the diameter risk threshold. RESULTS: The AAD was <5.0 and <4.0 cm in 78% and 37% of patients with ATAAD, respectively. The median ascending aortic length (AAL) was 104.6 mm (Q1-Q3, 96.5-113.6 mm), and in 62.7% of patients, it was <11 cm. The median TABI was 14.99 mm/cm (Q1-Q3, 14.18-15.86 mm/cm). Patients with ATAAD and those with aortic dilation were matched for AAD, age, sex, height and other clinical factors. After matched, the dissection group had higher AALs (median, 102.9 mm; Q1-Q3, 96.0-112.5 mm vs median, 88.2 mm; Q1-Q3, 83.7-95.9 mm; P < 0.001) and TABI (median, 14.84 mm/cm; Q1-Q3, 14.06-15.83 mm/cm vs median, 13.55 mm/cm; Q1-Q3, 13.03-14.28 mm/cm; P < 0.001). According to the regression analysis, the area under the curve required to distinguish patients with ATAAD from those with aortic dilation was 0.831 in AAL, 0.837 in TABI and 0.907 when AAL was combined with TABI. CONCLUSIONS: The patients with ATAAD had higher AAL and TABI than those with aortic dilation. The combination of TABI and AAL might be a potential morphological marker for determining ATAAD risk below the current aortic diameter risk threshold.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Humanos , Estudos Retrospectivos , Dissecção Aórtica/diagnóstico por imagem , Aorta/cirurgia , Aorta Torácica/diagnóstico por imagem , Tórax , Aneurisma da Aorta Torácica/patologia
10.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119661, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38218386

RESUMO

Estrogen receptor 1 (ESR1) has been recently demonstrated as a potential diagnostic biomarker for thoracic aortic aneurysm (TAA). However, its precise role in the progression of TAA remains unclear. In this study, TAA models were established in ApoE-knockout mice and primary mouse vascular smooth muscle cells (VSMCs) through treatment with angiotensin (Ang) II. Our findings revealed a downregulation of ESR1 in Ang II-induced TAA mice and VSMCs. Upregulation of ESR1 mitigated expansion and cell apoptosis in the mouse aorta, reduced pathogenetic transformation of VSMCs, and reduced inflammatory infiltration and oxidative stress both in vitro and in vivo. Furthermore, we identified macrophage migration inhibitory factor (MIF) as a biological target of ESR1. ESR1 bound to the MIF promoter to suppress its transcription. Artificial MIF restoration negated the mitigating effects of ESR1 on TAA. Additionally, we discovered that murine double minute 2 (MDM2) was highly expressed in TAA models and mediated protein degradation of ESR1 through ubiquitination modification. Silencing of MDM2 reduced VSMC dedifferentiation and suppressed oxidative stress. However, these effects were reversed upon further silencing of ESR1. In conclusion, this study demonstrates that MDM2 activates MIF by mediating ESR1 degradation, thus promoting VSMC dedifferentiation and oxidative stress during TAA progression.


Assuntos
Aneurisma da Aorta Torácica , Fatores Inibidores da Migração de Macrófagos , Animais , Camundongos , Músculo Liso Vascular/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/metabolismo , Desdiferenciação Celular/genética , Receptor alfa de Estrogênio/metabolismo , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Estresse Oxidativo
11.
Am J Physiol Cell Physiol ; 326(2): C647-C658, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189133

RESUMO

Thoracic aortic aneurysm/dissection (TAAD) is a lethal vascular disease, and several pathological factors participate in aortic medial degeneration. We previously discovered that the complement C3a-C3aR axis in smooth muscle cells promotes the development of thoracic aortic dissection (TAD) through regulation of matrix metalloproteinase 2. However, discerning the specific complement pathway that is activated and elucidating how inflammation of the aortic wall is initiated remain unknown. We ascertained that the plasma levels of C3a and C5a were significantly elevated in patients with TAD and that the levels of C3a, C4a, and C5a were higher in acute TAD than in chronic TAD. We also confirmed the activation of the complement in a TAD mouse model. Subsequently, knocking out Cfb (Cfb) or C4 in mice with TAD revealed that the alternative pathway and Cfb played a significant role in the TAD process. Activation of the alternative pathway led to generation of the anaphylatoxins C3a and C5a, and knocking out their receptors reduced the recruitment of inflammatory cells to the aortic wall. Moreover, we used serum from wild-type mice or recombinant mice Cfb as an exogenous source of Cfb to treat Cfb KO mice and observed that it exacerbated the onset and rupture of TAD. Finally, we knocked out Cfb in the FBN1C1041G/+ Marfan-syndrome mice and showed that the occurrence of TAA was reduced. In summary, the alternative complement pathway promoted the development of TAAD by recruiting infiltrating inflammatory cells. Targeting the alternative pathway may thus constitute a strategy for preventing the development of TAAD.NEW & NOTEWORTHY The alternative complement pathway promoted the development of TAAD by recruiting infiltrating inflammatory cells. Targeting the alternative pathway may thus constitute a strategy for preventing the development of TAAD.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Azidas , Desoxiglucose/análogos & derivados , Humanos , Camundongos , Animais , Via Alternativa do Complemento , Metaloproteinase 2 da Matriz , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Dissecção Aórtica/genética , Inflamação
12.
BMC Med ; 21(1): 396, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37858098

RESUMO

BACKGROUND: Thoracic aortic dissection (TAD) is a life-threatening disease caused by an intimal tear in the aorta. The histological characteristics differ significantly between the tear area (TA) and the distant area. Previous studies have emphasized that certain specific genes tend to cluster at the TA. Obtaining a thorough understanding of the precise molecular signatures near the TA will assist in discovering therapeutic strategies for TAD. METHODS: We performed a paired comparison of the pathological patterns in the TA with that in the remote area (RA). We used Tomo-seq, genome-wide transcriptional profiling with spatial resolution, to obtain gene expression signatures spanning from the TA to the RA. Samples from multiple sporadic TAD patients and animal models were used to validate our findings. RESULTS: Pathological examination revealed that the TA of TAD exhibited more pronounced intimal hyperplasia, media degeneration, and inflammatory infiltration compared to the RA. The TA also had more apoptotic cells and CD31+α-SMA+ cells. Tomo-seq revealed four distinct gene expression patterns from the TA to the RA, which were inflammation, collagen catabolism, extracellular matrix remodeling, and cell stress, respectively. The spatial distribution of genes allowed us to identify genes that were potentially relevant with TAD. NINJ1 encoded the protein-mediated cytoplasmic membrane rupture, regulated tissue remodeling, showed high expression levels in the tear area, and co-expressed within the inflammatory pattern. The use of short hairpin RNA to reduce NINJ1 expression in the beta-aminopropionitrile-induced TAD model led to a significant decrease in TAD formation. Additionally, it resulted in reduced infiltration of inflammatory cells and a decrease in the number of CD31+α-SMA+ cells. The NINJ1-neutralizing antibody also demonstrated comparable therapeutic effects and can effectively impede the formation of TAD. CONCLUSIONS: Our study showed that Tomo-seq had the advantage of obtaining spatial expression information of TAD across the TA and the RA. We pointed out that NINJ1 may be involved in inflammation and tissue remodeling, which played an important role in the formation of TAD. NINJ1 may serve as a potential therapeutic target for TAD.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Dissecção da Aorta Torácica , Animais , Humanos , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Dissecção Aórtica/genética , Anti-Inflamatórios , Inflamação/genética , Aorta Torácica/metabolismo , Aorta Torácica/patologia , Fatores de Crescimento Neural , Moléculas de Adesão Celular Neuronais
13.
J Mol Cell Cardiol ; 184: 61-74, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37844423

RESUMO

AIMS: Aorta exhibits regional heterogeneity (structural and functional), while different etiologies for thoracic and abdominal aortic aneurysm (TAA, AAA) are recognized. Tissue inhibitor of metalloproteinases (TIMPs) regulate vascular remodeling through different mechanisms. Region-dependent functions have been reported for TIMP3 and TIMP4 in vascular pathologies. We investigated the region-specific function of these TIMPs in development of TAA versus AAA. METHODS & RESULTS: TAA or AAA was induced in male and female mice lacking TIMP3 (Timp3-/-), TIMP4 (Timp4-/-) or in wildtype (WT) mice by peri-adventitial elastase application. Loss of TIMP3 exacerbated TAA and AAA severity in males and females, with a greater increase in proteinase activity, smooth muscle cell phenotypic switching post-AAA and -TAA, while increased inflammation was detected in the media post-AAA, but in the adventitia post-TAA. Timp3-/- mice showed impaired intimal barrier integrity post-AAA, but a greater adventitial vasa-vasorum branching post-TAA, which could explain the site of inflammation in AAA versus TAA. Severity of TAA and AAA in Timp4-/- mice was similar to WT mice. In vitro, Timp3 knockdown more severely compromised the permeability of human aortic EC monolayer compared to Timp4 knockdown or the control group. In aneurysmal aorta specimens from patients, TIMP3 expression decreased in the media in AAA, and in adventitial in TAA specimens, consistent with the impact of its loss in AAA versus TAA in mice. CONCLUSION: TIMP3 loss exacerbates inflammation, adverse remodeling and aortic dilation, but triggers different patterns of remodeling in AAA versus TAA, and through different mechanisms.


Assuntos
Aneurisma da Aorta Abdominal , Aneurisma da Aorta Torácica , Humanos , Masculino , Feminino , Animais , Camundongos , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Inibidores Teciduais de Metaloproteinases/genética , Inibidores Teciduais de Metaloproteinases/metabolismo , Aneurisma da Aorta Abdominal/metabolismo , Aorta/patologia , Inflamação/patologia , Inibidor Tecidual de Metaloproteinase-3/genética , Inibidor Tecidual de Metaloproteinase-3/metabolismo
14.
Acta Biomater ; 169: 107-117, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37579911

RESUMO

The ascending thoracic aortic aneurysm (ATAA) is a permanent dilatation of the vessel with a high risk of adverse events, and shows heterogeneous properties. To investigate regional differences in the biomechanical properties of ATAAs, tissue samples were collected from 10 patients with tricuspid aortic valve phenotype and specimens from minor, anterior, major, and posterior regions were subjected to multi-ratio planar biaxial extension tests and second-harmonic generation (SHG) imaging. Using the data, parameters of a microstructure-motivated constitutive model were obtained considering fiber dispersion. SHG imaging showed disruptions in the organization of the layers. Structural and material parameters did not differ significantly between regions. The non-symmetric fiber dispersion model proposed by Holzapfel et al. [25] was used to fit the data. The mean angle of collagen fibers was negatively correlated between minor and anterior regions, and the parameter associated with collagen fiber stiffness was positively correlated between minor and major regions. Furthermore, correlations were found between the stiffness of the ground matrix and the mean fiber angle, and between the parameter associated with the collagen fiber stiffness and the out-of-plane dispersion parameter in the posterior and minor regions, respectively. The experimental data collected in this study contribute to the biomechanical data available in the literature on human ATAAs. Region-specific parameters for the constitutive models are fundamental to improve the current risk stratification strategies, which are mainly based on aortic size. Such investigations can facilitate the development of more advanced finite element models capable of capturing the regional heterogeneity of pathological tissues. STATEMENT OF SIGNIFICANCE: Tissue samples of human ascending thoracic aortic aneurysms (ATAA) were collected. Samples from four regions underwent multi-ratio planar biaxial extension tests and second-harmonic generation imaging. Region-specific parameters of a microstructure-motivated model considering fiber dispersion were obtained. Structural and material parameters did not differ significantly between regions, however, the mean fiber angle was negatively correlated between minor and anterior regions, and the parameter associated with collagen fiber stiffness was positively correlated between minor and major regions. Furthermore, correlations were found between the stiffness of the ground matrix and the mean fiber angle, and between the parameter associated with the collagen fiber stiffness and the out-of-plane dispersion parameter in the posterior and minor regions, respectively. This study provides a unique set of mechanical and structural data, supporting the microstructural influence on the tissue response. It may facilitate the development of better finite element models capable of capturing the regional tissue heterogeneity.


Assuntos
Aneurisma da Aorta Ascendente , Aneurisma da Aorta Torácica , Humanos , Aneurisma da Aorta Torácica/patologia , Aorta , Matriz Extracelular/patologia , Colágeno , Fenômenos Biomecânicos , Estresse Mecânico
15.
Signal Transduct Target Ther ; 8(1): 255, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37394473

RESUMO

Thoracic aortic aneurysms (TAAs) develop asymptomatically and are characterized by dilatation of the aorta. This is considered a life-threating vascular disease due to the risk of aortic rupture and without effective treatments. The current understanding of the pathogenesis of TAA is still limited, especially for sporadic TAAs without known genetic mutation. Sirtuin 6 (SIRT6) expression was significantly decreased in the tunica media of sporadic human TAA tissues. Genetic knockout of Sirt6 in mouse vascular smooth muscle cells accelerated TAA formation and rupture, reduced survival, and increased vascular inflammation and senescence after angiotensin II infusion. Transcriptome analysis identified interleukin (IL)-1ß as a pivotal target of SIRT6, and increased IL-1ß levels correlated with vascular inflammation and senescence in human and mouse TAA samples. Chromatin immunoprecipitation revealed that SIRT6 bound to the Il1b promoter to repress expression partly by reducing the H3K9 and H3K56 acetylation. Genetic knockout of Il1b or pharmacological inhibition of IL-1ß signaling with the receptor antagonist anakinra rescued Sirt6 deficiency mediated aggravation of vascular inflammation, senescence, TAA formation and survival in mice. The findings reveal that SIRT6 protects against TAA by epigenetically inhibiting vascular inflammation and senescence, providing insight into potential epigenetic strategies for TAA treatment.


Assuntos
Aneurisma da Aorta Torácica , Sirtuínas , Humanos , Camundongos , Animais , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/metabolismo , Aneurisma da Aorta Torácica/patologia , Inflamação/genética , Angiotensina II/genética , Angiotensina II/farmacologia , Epigênese Genética/genética , Sirtuínas/genética
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(3): 699-704, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37248608

RESUMO

Thoracic aortic dissection (TAD) is a cardiovascular disease entailing a high lethality between 65% and 85%. Surgery-assissed implant/interventional stenting is the prevailing treatment of TAD. However, surgical treatment can cause severe postoperative complications and patients incur a relatively higher risk of postoperative mortality. Since the pathogenic mechanism underlying TAD is not clear, effective medication therapies are still not available. In recent years, along with advances in single-cell sequencing and other molecular biological technologies, there have been prelimiary findings suggesting the special role of dysfunctional vascular smooth muscle cells (VSMCs) in the pathogenesis and development of TAD. Furthermore, the molecular mechanisms regulating the dysfunction of VSMCs have been initially explored. It is expected that these new findings will contribute to the development of new strategies to prevent TAD and lead to new ideas for the identifiction of potential drug therapeutic targets. Herein, we summarized the critical role of dysfunctional VSMCs in the pathogenesis and development of TAD and presented in detail the biological factors and the related molecular mechanisms that regulate the dysfunction of VSMCs. We hope this review will provide a reference for further investigation into the central role of dysfunctional VSMCs in the pathogenesis and development of TAD and exploration for effective molecular drug targets for TAD.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Dissecção da Aorta Torácica , Humanos , Aneurisma da Aorta Torácica/patologia , Aorta Torácica/patologia
17.
Comput Biol Med ; 160: 106925, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37141651

RESUMO

There is a pressing need to establish novel biomarkers to predict the progression of thoracic aortic aneurysm (TAA) dilatation. Aside from hemodynamics, the roles of oxygen (O2) and nitric oxide (NO) in TAA pathogenesis are potentially significant. As such, it is imperative to comprehend the relationship between aneurysm presence and species distribution in both the lumen and aortic wall. Given the limitations of existing imaging methods, we propose the use of patient-specific computational fluid dynamics (CFD) to explore this relationship. We have performed CFD simulations of O2 and NO mass transfer in the lumen and aortic wall for two cases: a healthy control (HC) and a patient with TAA, both acquired using 4D-flow magnetic resonance imaging (MRI). The mass transfer of O2 was based on active transport by hemoglobin, while the local variations of the wall shear stress (WSS) drove NO production. Comparing hemodynamic properties, the time-averaged WSS was considerably lower for TAA, while the oscillatory shear index and endothelial cell activation potential were notably elevated. O2 and NO showed a non-uniform distribution within the lumen and an inverse correlation between the two species. We identified several locations of hypoxic regions for both cases due to lumen-side mass transfer limitations. In the wall, NO varied spatially, with a clear distinction between TAA and HC. In conclusion, the hemodynamics and mass transfer of NO in the aorta exhibit the potential to serve as a diagnostic biomarker for TAA. Furthermore, hypoxia may provide additional insights into the onset of other aortic pathologies.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma Aórtico , Humanos , Óxido Nítrico , Hidrodinâmica , Aneurisma Aórtico/patologia , Aorta/patologia , Hemodinâmica , Aneurisma da Aorta Torácica/patologia , Oxigênio , Estresse Mecânico , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo/fisiologia
18.
Rev Esp Enferm Dig ; 115(8): 472-473, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37073714

RESUMO

We present the case of a 78-year-old man with dyslipidemia with ongoing treatment with statins. He was admitted for a history of 3-month dysphagia and weight loss. The physical exam was unremarkable. Blood tests revealed anemia (hemoglobin 11,5 g/dL). Gastroscopy showed a partially stenotic bulging ulcer in the middle esophagus, with a fibrinous base and residual clot Histopathology ruled out any malignancy and confirmed the presence of transmural necrosis with infiltration of inflammatory cells. Computed tomography (CT) revealed a 11x11x12 cm thoracic aortic aneurysm, with an intramural 4 cm thrombus in the anterolateral wall. The patient was referred for urgent Vascular Surgery, but unfortunately, he presented massive hematemesis with cardiorespiratory arrest, and despite cardiopulmonary resuscitation, he died.


Assuntos
Aneurisma da Aorta Torácica , Dislipidemias , Fístula Esofágica , Inibidores de Hidroximetilglutaril-CoA Redutases , Trombose , Idoso , Humanos , Masculino , Aneurisma da Aorta Torácica/complicações , Aneurisma da Aorta Torácica/diagnóstico por imagem , Aneurisma da Aorta Torácica/patologia , Fístula Esofágica/complicações , Fístula Esofágica/patologia , Gastroscopia , Necrose/complicações , Trombose/complicações , Dislipidemias/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico
19.
JCI Insight ; 8(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37022786

RESUMO

To improve our limited understanding of the pathogenesis of thoracic aortic aneurysm (TAA) that leads to acute aortic dissection, single-cell RNA sequencing (scRNA-seq) was employed to profile disease-relevant transcriptomic changes of aortic cell populations in a well-characterized mouse model of the most commonly diagnosed form of Marfan syndrome (MFS). As result, 2 discrete subpopulations of aortic cells (SMC3 and EC4) were identified only in the aorta of Fbn1mgR/mgR mice. SMC3 cells highly express genes related to extracellular matrix formation and nitric oxide signaling, whereas the EC4 transcriptional profile is enriched in smooth muscle cell (SMC), fibroblast, and immune cell-related genes. Trajectory analysis predicted close phenotypic modulation between SMC3 and EC4, which were therefore analyzed together as a discrete MFS-modulated (MFSmod) subpopulation. In situ hybridization of diagnostic transcripts located MFSmod cells at the intima of Fbn1mgR/mgR aortas. Reference-based data set integration revealed transcriptomic similarity between MFSmod- and SMC-derived cell clusters modulated in human TAA. Consistent with the angiotensin II type I receptor (At1r) contribution to TAA development, MFSmod cells were absent in the aorta of Fbn1mgR/mgR mice treated with the At1r antagonist losartan. Altogether, our findings indicate that a discrete dynamic alteration of aortic cell identity is associated with dissecting TAA in MFS mice and increased risk of aortic dissection in MFS patients.


Assuntos
Aneurisma da Aorta Torácica , Aneurisma Aórtico , Dissecção Aórtica , Síndrome de Marfan , Humanos , Camundongos , Animais , Transcriptoma , Losartan/farmacologia , Síndrome de Marfan/complicações , Síndrome de Marfan/genética , Síndrome de Marfan/patologia , Aneurisma Aórtico/genética , Aneurisma da Aorta Torácica/genética , Aneurisma da Aorta Torácica/patologia , Aorta/patologia , Dissecção Aórtica/genética
20.
Acta Biomater ; 161: 170-183, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36849029

RESUMO

The effects of thoracic endovascular repair (TEVAR) on the biomechanical properties of aortic tissue have not been adequately studied. Understanding these features is important for the management of endograft-triggered complications of a biomechanical nature. This study aims to examine how stent-graft implantation affects the elastomechanical behavior of the aorta. Non-pathological human thoracic aortas (n=10) were subjected to long-standing perfusion (8h) within a mock circulation loop under physiological conditions. To quantify compliance and its mismatch in the test periods without and with a stent, the aortic pressure and the proximal cyclic circumferential displacement were measured. After perfusion, biaxial tension tests (stress-stretch) were carried out to examine the stiffness profiles between non-stented and stented tissue, followed by a histological assessment. Experimental evidence shows: (i) a significant reduction in aortic distensibility after TEVAR, indicating aortic stiffening and compliance mismatch, (ii) a stiffer behavior of the stented samples compared to the non-stented samples with an earlier entry into the nonlinear part of the stress-stretch curve and (iii) strut-induced histological remodeling of the aortic wall. The biomechanical and histological comparison of the non-stented and stented aortas provides new insights into the interaction between the stent-graft and the aortic wall. The knowledge gained could refine the stent-graft design to minimize the stent-induced impacts on the aortic wall and the resulting complications. STATEMENT OF SIGNIFICANCE: Stent-related cardiovascular complications occur the moment the stent-graft expands on the human aortic wall. Clinicians base their diagnosis on the anatomical morphology of CT scans while neglecting the endograft-triggered biomechanical events that compromise aortic compliance and wall mechanotransduction. Experimental replication of endovascular repair in cadaver aortas within a mock circulation loop may have a catalytic effect on biomechanical and histological findings without an ethical barrier. Demonstrating interactions between the stent and the wall can help clinicians make a broader diagnosis such as ECG-triggered oversizing and stent-graft characteristics based on patient-specific anatomical location and age. In addition, the results can be used to optimize towards more aortophilic stent grafts.


Assuntos
Aneurisma da Aorta Torácica , Implante de Prótese Vascular , Procedimentos Endovasculares , Humanos , Aorta Torácica/diagnóstico por imagem , Aorta Torácica/patologia , Prótese Vascular , Implante de Prótese Vascular/métodos , Mecanotransdução Celular , Procedimentos Endovasculares/métodos , Stents , Aneurisma da Aorta Torácica/patologia , Desenho de Prótese , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA