RESUMO
Initiatives to protect 30% of Earth by 2030 prompt evaluation of how to efficiently target shortcomings in the global protected area (PA) network. Focusing on amphibians, the most vulnerable vertebrate class, we illustrate the conservation value of microreserves, a term we employ here to refer to reserves of <10 km2. We report that the network continues to under-represent threatened amphibians and that, despite this clear shortcoming in land-based conservation, the creation of PAs protecting amphibians slowed after 2010. By proving something previously assumed-that amphibians generally have smaller ranges than other terrestrial vertebrates-we demonstrate that microreserves could protect a substantial portion of many amphibian ranges, particularly threatened species. We find existing microreserves are capable of hosting an amphibian species richness similar to PAs 1000-10,00X larger, and we show that amphibians' high beta diversity means that microreserves added to a growing PA network cover amphibian species 1.5-6x faster than larger size categories. We propose that stemming global biodiversity loss requires that we seriously consider the conservation potential of microreserves, using them to capture small-range endemics that may otherwise be omitted from the PA network entirely.
Assuntos
Anfíbios , Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Anfíbios/crescimento & desenvolvimento , Anfíbios/fisiologia , Conservação dos Recursos Naturais/métodosRESUMO
Among human actions threatening biodiversity, the release of anthropogenic chemical pollutants which have become ubiquitous in the environment, is a major concern. Chemical pollution can induce damage to macromolecules by causing the overproduction of reactive oxygen species, affecting the redox balance of animals. In species undergoing metamorphosis (i.e. the vast majority of the extant animal species), antioxidant responses to chemical pollution may differ between pre- and post-metamorphic stages. Here, we meta-analysed (N = 104 studies, k = 2283 estimates) the impact of chemical pollution on redox balance across the three major amphibian life stages (embryo, tadpole, adult). Before metamorphosis, embryos did not experience any redox change while tadpoles activate their antioxidant pathways and do not show increased oxidative damage from pollutants. Tadpoles may have evolved stronger defences against pollutants to reach post-metamorphic life stages. In contrast, post-metamorphic individuals show only weak antioxidant responses and marked oxidative damage in lipids. The type of pollutant (i.e. organic versus inorganic) has contrasting effects across amphibian life stages. Our findings show a divergent evolution of the redox balance in response to pollutants across life transitions of metamorphosing amphibians, most probably a consequence of differences in the ecological and developmental processes of each life stage.
Assuntos
Anfíbios , Metamorfose Biológica , Estresse Oxidativo , Animais , Anfíbios/crescimento & desenvolvimento , Anfíbios/metabolismo , Antioxidantes/metabolismo , Poluentes Ambientais/toxicidade , Poluição Ambiental/efeitos adversos , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Metamorfose Biológica/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacosRESUMO
This study presents a comprehensive analysis of a two-patch, two-life stage SI model without recovery from infection, focusing on the dynamics of disease spread and host population viability in natural populations. The model, inspired by real-world ecological crises like the decline of amphibian populations due to chytridiomycosis and sea star populations due to Sea Star Wasting Disease, aims to understand the conditions under which a sink host population can present ecological rescue from a healthier, source population. Mathematical and numerical analyses reveal the critical roles of the basic reproductive numbers of the source and sink populations, the maturation rate, and the dispersal rate of juveniles in determining population outcomes. The study identifies basic reproduction numbers R 0 for each of the patches, and conditions for the basic reproduction numbers to produce a receiving patch under which its population. These findings provide insights into managing natural populations affected by disease, with implications for conservation strategies, such as the importance of maintaining reproductively viable refuge populations and considering the effects of dispersal and maturation rates on population recovery. The research underscores the complexity of host-pathogen dynamics in spatially structured environments and highlights the need for multi-faceted approaches to biodiversity conservation in the face of emerging diseases.
Assuntos
Anfíbios , Número Básico de Reprodução , Epidemias , Interações Hospedeiro-Patógeno , Conceitos Matemáticos , Modelos Biológicos , Dinâmica Populacional , Animais , Número Básico de Reprodução/estatística & dados numéricos , Epidemias/estatística & dados numéricos , Anfíbios/microbiologia , Anfíbios/crescimento & desenvolvimento , Dinâmica Populacional/estatística & dados numéricos , Estrelas-do-Mar/crescimento & desenvolvimento , Estrelas-do-Mar/microbiologia , Estágios do Ciclo de Vida , Quitridiomicetos/fisiologia , Quitridiomicetos/patogenicidade , Modelos Epidemiológicos , Simulação por ComputadorRESUMO
Amphibians and fishes play a central role in shaping the structure and function of freshwater environments. These organisms have a limited capacity to disperse across different habitats and the thermal buffer offered by freshwater systems is small. Understanding determinants and patterns of their physiological sensitivity across life history is, therefore, imperative to predicting the impacts of climate change in freshwater systems. Based on a systematic literature review including 345 experiments with 998 estimates on 96 amphibian (Anura/Caudata) and 93 freshwater fish species (Teleostei), we conducted a quantitative synthesis to explore phylogenetic, ontogenetic, and biogeographic (thermal adaptation) patterns in upper thermal tolerance (CTmax) and thermal acclimation capacity (acclimation response ratio, ARR) as well as the influence of the methodology used to assess these thermal traits using a conditional inference tree analysis. We found globally consistent patterns in CTmax and ARR, with phylogeny (taxa/order), experimental methodology, climatic origin, and life stage as significant determinants of thermal traits. The analysis demonstrated that CTmax does not primarily depend on the climatic origin but on experimental acclimation temperature and duration, and life stage. Higher acclimation temperatures and longer acclimation times led to higher CTmax values, whereby Anuran larvae revealed a higher CTmax than older life stages. The ARR of freshwater fishes was more than twice that of amphibians. Differences in ARR between life stages were not significant. In addition to phylogenetic differences, we found that ARR also depended on acclimation duration, ramping rate, and adaptation to local temperature variability. However, the amount of data on early life stages is too small, methodologically inconsistent, and phylogenetically unbalanced to identify potential life cycle bottlenecks in thermal traits. We, therefore, propose methods to improve the robustness and comparability of CTmax/ARR data across species and life stages, which is crucial for the conservation of freshwater biodiversity under climate change.
Assuntos
Aclimatação , Anfíbios , Peixes , Água Doce , Aquecimento Global , Animais , Aclimatação/fisiologia , Peixes/fisiologia , Anfíbios/fisiologia , Anfíbios/crescimento & desenvolvimento , Filogenia , Mudança Climática , TemperaturaRESUMO
Temperature affects the rate of biochemical and physiological processes in amphibians, influencing metamorphic traits. Temperature patterns, as those observed in latitudinal and altitudinal clines, may impose different challenges on amphibians depending on how species are geographically distributed. Moreover, species' response to environmental temperatures may also be phylogenetically constrained. Here, we explore the effects of acclimation to higher temperatures on tadpole survival, development, and growth, using a meta-analytical approach. We also evaluate whether the latitude and climatic variables at each collection site can explain differences in species' response to increasing temperature and whether these responses are phylogenetically conserved. Our results show that species that develop at relatively higher temperatures reach metamorphosis faster. Furthermore, absolute latitude at each collection site may partially explain heterogeneity in larval growth rate. Phylogenetic signal of traits in response to temperature indicates a non-random process in which related species resemble each other less than expected under Brownian motion evolution (BM) in all traits, except survival. The integration of studies in a meta-analytic framework allowed us to explore macroecological and macroevolutionary patterns and provided a better understanding of the effects of climate change on amphibians.
Assuntos
Anfíbios , Evolução Biológica , Larva , Temperatura , Animais , Larva/crescimento & desenvolvimento , Larva/fisiologia , Anfíbios/crescimento & desenvolvimento , Anfíbios/fisiologia , Anfíbios/classificação , Mudança Climática , Filogenia , Metamorfose Biológica/fisiologia , Aclimatação/fisiologiaRESUMO
The question of what the ancient life cycle of tetrapods was like forms a key component in understanding the origin of land vertebrates. The existence of distinct larval forms, as exemplified by many lissamphibians, and their transformation into adults is an important aspect in this field. The temnospondyls, the largest clade of Palaeozoic-Mesozoic non-amniote tetrapods, covered a wide ecomorphological range from fully aquatic to terrestrial taxa. In various species, rich ontogenetic data have accumulated over the past 130 years, permitting the study of early phases of temnospondyl development. In temnospondyls, eight ontogenetic phases have been identified in which the skeleton formed. In branchiosaurids and the eryopiform Sclerocephalus, large parts of the ossification sequence are now known. Most taxa in which small specimens are preserved had aquatic larvae with external gills that superficially resemble larval salamanders. In the edopoids, dvinosaurs, and eryopiforms, the larvae developed slowly, with incompletely ossified axial and appendicular skeletons, but possessed a fast-developing dermal skull with strong teeth. Irrespective of adult terrestriality or a fully aquatic life, there was no drastic transformation during later ontogeny, but a slow and steady acquisition of adult features. In dissorophoids, the limbs developed at a much faster pace, whereas skull formation was slowed down, especially in the amphibamiforms, and culminating in the neotenic Branchiosauridae. In the zatracheid Acanthostomatops, slow but profound transformation led to a fully terrestrial adult. The basal dissorophoid Stegops retained rapid development of dermal skull bones and established a fully dentigerous, strongly ossified palate early. In Micromelerpeton, formation of the last skull bones was slightly delayed and metamorphosis remained a long and steady phase of morphological transformations. In amphibamiforms, metamorphosis became more drastic, with an increasing number of events packed into a short phase of ontogeny. This is exemplified by Apateon, Platyrhinops, and Amphibamus in which this condensation was maximised. We distinguish three different types of metamorphosis (morphological, ecological and drastic) that evolved cumulatively in early tetrapods and within temnospondyls.
Assuntos
Anfíbios , Evolução Biológica , Larva , Metamorfose Biológica , Animais , Larva/anatomia & histologia , Larva/crescimento & desenvolvimento , Anfíbios/anatomia & histologia , Anfíbios/crescimento & desenvolvimento , Anfíbios/classificação , Fósseis/anatomia & histologiaRESUMO
The trade-off between offspring size and number is central to life history strategies. Both the evolutionary gain of parental care or more favorable habitats for offspring development are predicted to result in fewer, larger offspring. However, despite much research, it remains unclear whether and how different forms of care and habitats drive the evolution of the trade-off. Using data for over 800 amphibian species, we demonstrate that, after controlling for allometry, amphibians with direct development and those that lay eggs in terrestrial environments have larger eggs and smaller clutches, while different care behaviors and adaptations vary in their effects on the trade-off. Specifically, among the 11 care forms we considered at the egg, tadpole and juvenile stage, egg brooding, male egg attendance, and female egg attendance increase egg size; female tadpole attendance and tadpole feeding decrease egg size, while egg brooding, tadpole feeding, male tadpole attendance, and male tadpole transport decrease clutch size. Unlike egg size that shows exceptionally high rates of phenotypic change in just 19 branches of the amphibian phylogeny, clutch size has evolved at exceptionally high rates in 135 branches, indicating episodes of strong selection; egg and tadpole environment, direct development, egg brooding, tadpole feeding, male tadpole attendance, and tadpole transport explain 80% of these events. By explicitly considering diversity in parental care and offspring habitat by stage of offspring development, this study demonstrates that more favorable conditions for offspring development promote the evolution of larger offspring in smaller broods and reveals that the diversity of parental care forms influences the trade-off in more nuanced ways than previously appreciated.
Assuntos
Anfíbios/crescimento & desenvolvimento , Ecossistema , Comportamento Materno , Comportamento Paterno , Anfíbios/fisiologia , Animais , Evolução Biológica , Tamanho Corporal , Tamanho da Ninhada , Feminino , Características de História de Vida , Masculino , Óvulo , Reprodução/fisiologiaRESUMO
The chytrid fungal pathogens Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans cause the skin disease chytridiomycosis in amphibians, which is driving a substantial proportion of an entire vertebrate class to extinction. Mitigation of its impact is largely unsuccessful and requires a thorough understanding of the mechanisms underpinning the disease ecology. By identifying skin factors that mediate key events during the early interaction with B. salamandrivorans zoospores, we discovered a marker for host colonization. Amphibian skin associated beta-galactose mediated fungal chemotaxis and adhesion to the skin and initiated a virulent fungal response. Fungal colonization correlated with the skin glycosylation pattern, with cutaneous galactose content effectively predicting variation in host susceptibility to fungal colonization between amphibian species. Ontogenetic galactose patterns correlated with low level and asymptomatic infections in salamander larvae that were carried over through metamorphosis, resulting in juvenile mortality. Pronounced variation of galactose content within some, but not all species, may promote the selection for more colonization resistant host lineages, opening new avenues for disease mitigation.
Assuntos
Anfíbios/microbiologia , Batrachochytrium/patogenicidade , Dermatomicoses/veterinária , Galactose/metabolismo , Pele/metabolismo , Anfíbios/classificação , Anfíbios/crescimento & desenvolvimento , Animais , Batrachochytrium/fisiologia , Biomarcadores/química , Biomarcadores/metabolismo , Carboidratos/química , Quimiotaxia , Dermatomicoses/microbiologia , Resistência à Doença , Galactose/química , Estágios do Ciclo de Vida , Pele/microbiologia , Esporos Fúngicos/patogenicidade , Esporos Fúngicos/fisiologia , Taxa de Sobrevida , VirulênciaRESUMO
Sex is determined genetically in amphibians; however, little is known about the sex chromosomes, testis-determining genes, and the genes involved in testis differentiation in this class. Certain inherent characteristics of the species of this group, like the homomorphic sex chromosomes, the high diversity of the sex-determining mechanisms, or the existence of polyploids, may hinder the design of experiments when studying how the gonads can differentiate. Even so, other features, like their external development or the possibility of inducing sex reversal by external treatments, can be helpful. This review summarizes the current knowledge on amphibian sex determination, gonadal development, and testis differentiation. The analysis of this information, compared with the information available for other vertebrate groups, allows us to identify the evolutionarily conserved and divergent pathways involved in testis differentiation. Overall, the data confirm the previous observations in other vertebrates-the morphology of the adult testis is similar across different groups; however, the male-determining signal and the genetic networks involved in testis differentiation are not evolutionarily conserved.
Assuntos
Anfíbios/genética , Processos de Determinação Sexual , Testículo/crescimento & desenvolvimento , Anfíbios/crescimento & desenvolvimento , Animais , Diferenciação Celular , Masculino , Poliploidia , Testículo/químicaRESUMO
Amphibians display very diverse life cycles and development can be direct, where it occurs in ovo and a juvenile hatches directly, or biphasic, where an aquatic larva hatches and later undergoes metamorphosis followed by sexual maturation. In both cases, metamorphosis, corresponds to the post embryonic transition (PETr). A third strategy, only found in Urodeles, is more complex as larvae reach sexual maturity before metamorphosis, which can become accessory. The resulting paedomorphs retain their larval characters and keep their aquatic habitat. Does it mean that paedomorphs do not undergo PETr? Recent work using high throughput technologies coupled to system biology and developmental endocrinology revisited this question and provided novel datasets indicating that a paedomorph's "larval" tissue undergoes a proper developmental transition. Together with historical data, we propose that this transition is a marker of the PETr, which would be distinct from metamorphosis. This implies that (a) complex life cycles would result from the uncoupling of PETr and metamorphosis, and (b) biphasic life cycles would be a special cases where they occur simultaneously.
Assuntos
Anfíbios/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Metamorfose Biológica/fisiologia , AnimaisRESUMO
In this review article, topics of the embryonic origin of the adenohypophysis and hypothalamus and the development of the hypothalamo-hypophyseal system for the completion of metamorphosis in amphibians are included. The primordium of the adenohypophysis as well as the primordium of the hypothalamus in amphibians is of neural origin as shown in other vertebrates, and both are closely associated with each other at the earliest stage of development. Metamorphosis progresses via the interaction of thyroid hormone and adrenal corticosteroids, of which secretion is enhanced by thyrotropin and corticotropin, respectively. However, unlike in mammals, the hypothalamic releasing factor for thyrotropin is not thyrotropin-releasing hormone (TRH), but corticotropin-releasing factor (CRF) and the major releasing factor for corticotropin is arginine vasotocin (AVT). Prolactin, the release of which is profoundly enhanced by TRH at the metamorphic climax, is another pituitary hormone involved in metamorphosis. Prolactin has a dual role: modulation of the metamorphic speed and the development of organs for adult life. The secretory activities of the pituitary cells containing the three above-mentioned pituitary hormones are elevated toward the metamorphic climax in parallel with the activities of the CRF, AVT, and TRH neurons.
Assuntos
Anfíbios/crescimento & desenvolvimento , Sistema Hipotálamo-Hipofisário/crescimento & desenvolvimento , Metamorfose Biológica , Animais , Diferenciação Celular , Sistema Endócrino/metabolismo , Larva/crescimento & desenvolvimentoRESUMO
Alternative splicing is widespread throughout eukaryotic genomes and greatly increases transcriptomic diversity. Many alternative isoforms have functional roles in developmental processes and are precisely temporally regulated. To facilitate the study of alternative splicing in a developmental context, we created MeDAS, a Metazoan Developmental Alternative Splicing database. MeDAS is an added-value resource that re-analyses publicly archived RNA-seq libraries to provide quantitative data on alternative splicing events as they vary across the time course of development. It has broad temporal and taxonomic scope and is intended to assist the user in identifying trends in alternative splicing throughout development. To create MeDAS, we re-analysed a curated set of 2232 Illumina polyA+ RNA-seq libraries that chart detailed time courses of embryonic and post-natal development across 18 species with a taxonomic range spanning the major metazoan lineages from Caenorhabditis elegans to human. MeDAS is freely available at https://das.chenlulab.com both as raw data tables and as an interactive browser allowing searches by species, tissue, or genomic feature (gene, transcript or exon ID and sequence). Results will provide details on alternative splicing events identified for the queried feature and can be visualised at the gene-, transcript- and exon-level as time courses of expression and inclusion levels, respectively.
Assuntos
Processamento Alternativo , Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Genoma , RNA Mensageiro/genética , Transcriptoma , Anfíbios/genética , Anfíbios/crescimento & desenvolvimento , Anfíbios/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Cefalocordados/genética , Cefalocordados/crescimento & desenvolvimento , Cefalocordados/metabolismo , Éxons , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Íntrons , Mamíferos/genética , Mamíferos/crescimento & desenvolvimento , Mamíferos/metabolismo , RNA Mensageiro/metabolismo , Répteis/genética , Répteis/crescimento & desenvolvimento , Répteis/metabolismo , Software , Urocordados/genética , Urocordados/crescimento & desenvolvimento , Urocordados/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismoRESUMO
Research on the thermal ecology and physiology of free-living organisms is accelerating as scientists and managers recognize the urgency of the global biodiversity crisis brought on by climate change. As ectotherms, temperature fundamentally affects most aspects of the lives of amphibians and reptiles, making them excellent models for studying how animals are impacted by changing temperatures. As research on this group of organisms accelerates, it is essential to maintain consistent and optimal methodology so that results can be compared across groups and over time. This review addresses the utility of reptiles and amphibians as model organisms for thermal studies by reviewing the best practices for research on their thermal ecology and physiology, and by highlighting key studies that have advanced the field with new and improved methods. We end by presenting several areas where reptiles and amphibians show great promise for further advancing our understanding of how temperature relations between organisms and their environments are impacted by global climate change.
Assuntos
Anfíbios/fisiologia , Temperatura Corporal/fisiologia , Ecossistema , Répteis/fisiologia , Anfíbios/embriologia , Anfíbios/crescimento & desenvolvimento , Animais , Embrião não Mamífero/fisiologia , Monitorização Fisiológica , Répteis/embriologia , Répteis/crescimento & desenvolvimentoRESUMO
Infectious diseases are considered major threats to biodiversity, however strategies to mitigate their impacts in the natural world are scarce and largely unsuccessful. Chytridiomycosis is responsible for the decline of hundreds of amphibian species worldwide, but an effective disease management strategy that could be applied across natural habitats is still lacking. In general amphibian larvae can be easily captured, offering opportunities to ascertain the impact of altering the abundance of hosts, considered to be a key parameter affecting the severity of the disease. Here, we report the results of two experiments to investigate how altering host abundance affects infection intensity in amphibian populations of a montane area of Central Spain suffering from lethal amphibian chytridiomycosis. Our laboratory-based experiment supported the conclusion that varying density had a significant effect on infection intensity when salamander larvae were housed at low densities. Our field experiment showed that reducing the abundance of salamander larvae in the field also had a significant, but weak, impact on infection the following year, but only when removals were extreme. While this suggests adjusting host abundance as a mitigation strategy to reduce infection intensity could be useful, our evidence suggests only heavy culling efforts will succeed, which may run contrary to objectives for conservation.
Assuntos
Anfíbios/genética , Batrachochytrium/genética , Micoses/microbiologia , Urodelos/genética , Anfíbios/crescimento & desenvolvimento , Anfíbios/microbiologia , Animais , Batrachochytrium/patogenicidade , Biodiversidade , Quitridiomicetos/genética , Ecossistema , Larva , Micoses/genética , Dinâmica Populacional , Espanha/epidemiologia , Urodelos/crescimento & desenvolvimento , Urodelos/microbiologiaRESUMO
Landscape heterogeneity and fragmentation are key challenges for biodiversity conservation. As Earth's landscape is increasingly dominated by anthropogenic land use, it is clear that broad-scale systems of nature reserves connected by corridors are needed to enable the dispersal of flora and fauna. The European Union currently supports a continent-wide network of protected areas, the Natura 2000 program, but this program lacks the necessary connectivity component. To examine whether a comprehensive network could be built in order to protect amphibians and reptiles, two taxonomic groups sensitive to environmental changes due to their physiological constrains and low dispersal capacity, we used species' distribution maps, the sites of community interest (SCIs) in Romania, and landscape resistance rasters. Except Vipera ursinii rakosiensis, all amphibians and reptiles had corridors mapped that, when assembled, provided linkages for up to 27 species. Natura 2000 species were not good candidates for umbrella species as these linkages covered only 17% of the corridors for all species. Important Areas for Connectivity were identified in the Carpathian Mountains and along the Danube River, further confirming these regions as hot spots for biodiversity in Europe, where successful linkages are most likely. In the end, while such corridors may not be created just for amphibians and reptiles, they can easily be incorporated into more complex linkages with corridors for more charismatic species, therefore enhancing the corridors' value in terms of quality and structure.
Assuntos
Anfíbios/crescimento & desenvolvimento , Conservação dos Recursos Naturais/métodos , Ecossistema , Répteis/crescimento & desenvolvimento , Anfíbios/classificação , Animais , Biodiversidade , Europa (Continente) , União Europeia , Geografia , Dinâmica Populacional , Répteis/classificação , Romênia , Especificidade da EspécieRESUMO
Two species of parasitic fungi from the phylum Chytridiomycota (chytrids) are annihilating global amphibian populations. These chytrid species-Batrachochytrium dendrobatidis and B. salamandrivorans-have high rates of mortality and transmission. Upon establishing infection in amphibians, chytrids rapidly multiply within the skin and disrupt their hosts' vital homeostasis mechanisms. Current disease models suggest that chytrid fungi locate and infect their hosts during a motile, unicellular 'zoospore' life stage. Moreover, other chytrid species parasitize organisms from across the tree of life, making future epidemics in new hosts a likely possibility. Efforts to mitigate the damage and spread of chytrid disease have been stymied by the lack of knowledge about basic chytrid biology and tools with which to test molecular hypotheses about disease mechanisms. To overcome this bottleneck, we have developed high-efficiency delivery of molecular payloads into chytrid zoospores using electroporation. Our electroporation protocols result in payload delivery to between 75 and 97% of living cells of three species: B. dendrobatidis, B. salamandrivorans, and a non-pathogenic relative, Spizellomyces punctatus. This method lays the foundation for molecular genetic tools needed to establish ecological mitigation strategies and answer broader questions in evolutionary and cell biology.
Assuntos
Anfíbios/crescimento & desenvolvimento , Doenças dos Animais/epidemiologia , Quitridiomicetos/patogenicidade , Eletroporação/métodos , Micoses/veterinária , Esporos Fúngicos/isolamento & purificação , Anfíbios/microbiologia , Animais , Interações Hospedeiro-Patógeno , Micoses/microbiologia , Esporos Fúngicos/fisiologiaRESUMO
Although metamorphosis is widespread in the animal kingdom, several species have evolved life-cycle modifications to avoid complete metamorphosis. Some species, for example, many salamanders and newts, have deleted the adult stage via a process called paedomorphosis. Others, for example, some frog species and marine invertebrates, no longer have a distinct larval stage and reach maturation via direct development. Here we study which ecological conditions can lead to the loss of metamorphosis via the evolution of direct development. To do so, we use size-structured consumer-resource models in conjunction with the adaptive-dynamics approach. In case the larval habitat deteriorates, individuals will produce larger offspring and in concert accelerate metamorphosis. Although this leads to the evolutionary transition from metamorphosis to direct development when the adult habitat is highly favorable, the population will go extinct in case the adult habitat does not provide sufficient food to escape metamorphosis. With a phylogenetic approach we furthermore show that among amphibians the transition of metamorphosis to direct development is indeed, in line with model predictions, conditional on and preceded by the evolution of larger egg sizes.
Assuntos
Anfíbios/genética , Evolução Biológica , Ecossistema , Metamorfose Biológica , Modelos Biológicos , Seleção Genética , Anfíbios/crescimento & desenvolvimento , Animais , Tamanho Corporal , Extinção Biológica , Óvulo/citologiaRESUMO
Most predictions of how populations and species of ectotherms will respond to global warming are based on estimates of the temperature at which organisms lose motor control (i.e., CTmax - the Critical Thermal Maximum). Here, we describe a non-lethal protocol and ethograms to estimate the relative tolerance of amphibians to increasing temperatures. These methods-suitable for field or laboratory conditions-are replicable, inexpensive and applicable to both post-metamorphic stages and organisms with direct development. We illustrate the use of this standardized protocol for four amphibians from a tropical cloud forest in Veracruz, Mexico with contrasting life histories: a lungless salamander (Aquiloeurycea cafetalera: Plethodontidae), a leaf-litter frog (Craugastor rhodopis: Craugastoridae), a semiaquatic frog (Lithobates berlandieri: Ranidae), and a tree frog (Rheohyla miotympanum: Hylidae). We identified four behavioral responses preceding CTmax for all amphibians included in this study: 1) Optimal Activity Range, 2) Supra-optimal Activity Range, 3) Heat Stress Range, and 4) Involuntary Movements Range. Additionally, we identified a fifth parameter associated with resilience to heat shock: 5) Recovery Stage after reaching CTmax. We conclude that the behavioral responses preceding the Critical Thermal Maximum are as informative as CTmax. Using behavioral responses to estimate thermal tolerance has the additional advantage of reducing the risk of injury or death of amphibians during physiological experiments.
Assuntos
Anfíbios/fisiologia , Comportamento Animal , Termotolerância , Anfíbios/crescimento & desenvolvimento , Animais , Temperatura Corporal , Mudança Climática , Etologia/instrumentação , Etologia/métodos , MovimentoRESUMO
Size is a fundamental feature of biology that affects physiology at all levels, from the organism to organs and tissues to cells and subcellular structures. How size is determined at these different levels, and how biological structures scale to fit together and function properly are important open questions. Historically, amphibian systems have been extremely valuable to describe scaling phenomena, as they occupy some of the extremes in biological size and are amenable to manipulations that alter genome and cell size. More recently, the application of biochemical, biophysical, and embryological techniques to amphibians has provided insight into the molecular mechanisms underlying scaling of subcellular structures to cell size, as well as how perturbation of normal size scaling impacts other aspects of cell and organism physiology.