Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(27): e2119297119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776546

RESUMO

Regenerating animals have the ability to reproduce body parts that were originally made in the embryo and subsequently lost due to injury. Understanding whether regeneration mirrors development is an open question in most regenerative species. Here, we take a transcriptomics approach to examine whether leg regeneration shows similar temporal patterns of gene expression as leg development in the embryo, in the crustacean Parhyale hawaiensis. We find that leg development in the embryo shows stereotypic temporal patterns of gene expression. In contrast, the dynamics of gene expression during leg regeneration show a higher degree of variation related to the physiology of individual animals. A major driver of this variation is the molting cycle. We dissect the transcriptional signals of individual physiology and regeneration to obtain clearer temporal signals marking distinct phases of leg regeneration. Comparing the transcriptional dynamics of development and regeneration we find that, although the two processes use similar sets of genes, the temporal patterns in which these genes are deployed are different and cannot be systematically aligned.


Assuntos
Anfípodes , Extremidades , Regeneração , Anfípodes/embriologia , Anfípodes/genética , Animais , Embrião não Mamífero , Extremidades/embriologia , Expressão Gênica , Regeneração/genética
2.
Sci Rep ; 12(1): 174, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996916

RESUMO

Parhyale hawaiensis has emerged as the crustacean model of choice due to its tractability, ease of imaging, sequenced genome, and development of CRISPR/Cas9 genome editing tools. However, transcriptomic datasets spanning embryonic development are lacking, and there is almost no annotation of non-protein-coding RNAs, including microRNAs. We have sequenced microRNAs, together with mRNAs and long non-coding RNAs, in Parhyale using paired size-selected RNA-seq libraries at seven time-points covering important transitions in embryonic development. Focussing on microRNAs, we annotate 175 loci in Parhyale, 88 of which have no known homologs. We use these data to annotate the microRNAome of 37 crustacean genomes, and suggest a core crustacean microRNA set of around 61 sequence families. We examine the dynamic expression of microRNAs and mRNAs during the maternal-zygotic transition. Our data suggest that zygotic genome activation occurs in two waves in Parhyale with microRNAs transcribed almost exclusively in the second wave. Contrary to findings in other arthropods, we do not predict a general role for microRNAs in clearing maternal transcripts. These data significantly expand the available transcriptomics resources for Parhyale, and facilitate its use as a model organism for the study of small RNAs in processes ranging from embryonic development to regeneration.


Assuntos
Anfípodes/genética , MicroRNAs/genética , RNA Mensageiro/genética , Transcriptoma , Zigoto/fisiologia , Anfípodes/embriologia , Anfípodes/metabolismo , Animais , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Fatores de Tempo , Zigoto/metabolismo
3.
Sci Rep ; 10(1): 655, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959811

RESUMO

Linking exposure to environmental stress factors with diseases is crucial for proposing preventive and regulatory actions. Upon exposure to anthropogenic chemicals, covalent modifications on the genome can drive developmental and reproductive disorders in wild populations, with subsequent effects on the population persistence. Hence, screening of chemical modifications on DNA can be used to provide information on the probability of such disorders in populations of concern. Using a high-resolution mass spectrometry methodology, we identified DNA nucleoside adducts in gravid females of the Baltic amphipods Monoporeia affinis, and linked the adduct profiles to the frequency of embryo malformations in the broods. Twenty-three putative nucleoside adducts were detected in the females and their embryos, and eight modifications were structurally identified using high-resolution accurate mass data. To identify which adducts were significantly associated with embryo malformations, partial least squares regression (PLSR) modelling was applied. The PLSR model yielded three adducts as the key predictors: methylation at two different positions of the DNA (5-methyl-2'-deoxycytidine and N6-methyl-2'-deoxyadenosine) representing epigenetic marks, and a structurally unidentified nucleoside adduct. These adducts predicted the elevated frequency of the malformations with a high classification accuracy (84%). To the best of our knowledge, this is the first application of DNA adductomics for identification of contaminant-induced malformations in field-collected animals. The method can be adapted for a broad range of species and evolve as a new omics tool in environmental health assessment.


Assuntos
Anfípodes/embriologia , Anfípodes/genética , Adutos de DNA/genética , Embrião não Mamífero/anormalidades , Epigênese Genética , Animais , Metilação de DNA , Exposição Ambiental/efeitos adversos , Feminino , Água do Mar , Poluentes Químicos da Água/efeitos adversos
4.
Environ Toxicol Chem ; 39(3): 678-691, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31881551

RESUMO

Active biomonitoring approaches are now recognized as relevant for monitoring water contamination and toxicity. Nevertheless, due to the confounding influence of variable and uncontrolled environmental conditions such as temperature, biological markers measured on transplanted individuals to assess water quality are difficult to interpret. The purpose of the present study is to propose a methodology for adapting a laboratory test of chronic sublethal toxicity based on the molting cycle of Gammarus fossarum to in situ assays. To this end, we 1) adapted the molt cycle temperature-dependent model developed in Part 1 (Chaumot et al. 2020, this issue) to the fluctuating temperatures measured in the field; 2) assessed the predictive power of our approach as a "reference value" from gammarids caged in 9 nonimpacted sites at different seasons; and 3) tested the relevance of our tool to interpret in situ reproductive bioassays from 5 upstream/downstream studies and a large-scale deployment in 12 sites. Our approach based on modeling the progress of gammarid molting cycle as a function of temperature appeared to be a relevant and robust tool for interpreting in situ observations in different environmental contexts in time and space. By avoiding using a "reference" or upstream situation as a baseline from which water quality could be assessed, this approach provides a real added value to water quality diagnosis in biomonitoring programs. Environ Toxicol Chem 2020;39:678-691. © 2019 SETAC.


Assuntos
Anfípodes/efeitos dos fármacos , Bioensaio/métodos , Temperatura , Água/química , Anfípodes/embriologia , Anfípodes/crescimento & desenvolvimento , Animais , Feminino , Muda/efeitos dos fármacos , Reprodução/efeitos dos fármacos
5.
Environ Toxicol Chem ; 39(3): 667-677, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31877584

RESUMO

Monitoring the adverse effects of environmental contaminants on the reproduction of invertebrate species in the field remains a challenge in aquatic ecotoxicology. To meet the need for reliable tools for in situ toxicity assessment, we present the first part of a methodological study of the in situ implementation of a reproductive bioassay in Gammarus previously developed for screening the toxicity of chemical compounds during laboratory exposure. To ensure the correct interpretation of the modulation of reproductive markers (molting, fecundity, follicle growth, and embryonic development) in uncontrolled environmental conditions, we experimentally assessed and statistically modeled the variability in the female reproductive cycle during laboratory exposure under several temperature and water hardness conditions. Whereas water hardness did not influence the reproductive cycle, the significant accelerating effect of temperature on the dynamics of molting and marsupial development was finely modeled, by detailing the influence of temperature on the probability of transition between all molt and embryonic stages along the female cycle. In addition, no effect of temperature or water hardness was detected on the number of oocytes and embryos carried by females. Furthermore, the finding that the relative durations of the first 4 molt and embryonic stages are constant whatever the temperature makes it possible to predict the molting dynamics in fluctuating temperature conditions. Because this could allow us to take into account the confounding influence of temperature on the measurement of reproductive markers, the implications of these findings for an optimal in situ implementation of the reproductive bioassay with G. fossarum are discussed. The relevance of this modeling approach during in situ implementation is tested in a companion study. Environ Toxicol Chem 2020;39:667-677. © 2019 SETAC.


Assuntos
Anfípodes/efeitos dos fármacos , Bioensaio/métodos , Temperatura , Água/química , Anfípodes/embriologia , Anfípodes/crescimento & desenvolvimento , Animais , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Fertilidade/efeitos dos fármacos , Muda/efeitos dos fármacos , Folículo Ovariano/efeitos dos fármacos , Folículo Ovariano/crescimento & desenvolvimento , Reprodução/efeitos dos fármacos
6.
Wiley Interdiscip Rev Dev Biol ; 8(5): e355, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31183976

RESUMO

Recent advances in genetic manipulation and genome sequencing have paved the way for a new generation of research organisms. The amphipod crustacean Parhyale hawaiensis is one such system. Parhyale are easy to rear and offer large broods of embryos amenable to injection, dissection, and live imaging. Foundational work has described Parhyale embryonic development, while advancements in genetic manipulation using CRISPR-Cas9 and other techniques, combined with genome and transcriptome sequencing, have enabled its use in studies of arthropod development, evolution, and regeneration. This study introduces Parhyale development and life history, a catalog of techniques and resources for Parhyale research, and two case studies illustrating its power as a comparative research system. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution.


Assuntos
Anfípodes/embriologia , Evolução Biológica , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Regeneração , Anfípodes/genética , Animais , Genoma
7.
Sci Rep ; 9(1): 7862, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-31133674

RESUMO

Next generation sequencing and mass spectrometry technologies have recently expanded the availability of whole transcriptomes and proteomes beyond classical model organisms in molecular biology, even in absence of an annotated genome. However, the fragmented nature of transcriptomic and proteomic data reduces the ability to interpret the data, notably in non-model organisms. Network-based approaches may help extracting important biological information from -omics datasets. The reproductive cycle of the freshwater crustacean Gammarus fossarum.provides an excellent case study to test the relevance of a network analysis in non-model organisms. Here, we illustrated how the use of a co-expression network analysis (based on Weighted Gene Co-expression Network Analysis algorithm, WGCNA) allowed identifying protein modules whose expression profiles described germ cell maturation and embryonic development in the freshwater crustacean Gammarus fossarum. Proteome datasets included testes, ovaries or embryos samples at different maturation or developmental stages, respectively. We identified an embryonic module correlated with mid-developmental stages corresponding to the organogenesis and it was characterized by enrichment in proteins involved in RNA editing and splicing. An ovarian module was enriched in vitellogenin-like proteins and clottable proteins, confirming the diversity of proteins belonging to the large lipid transfer family involved in oocytes maturations in this freshwater amphipod. Moreover, our results found evidence of a fine-tuned regulation between energy production by glycolysis and actin-myosin-dependent events in G. fossarum spermatogenesis. This study illustrates the importance of applying systems biology approaches to emergent animal models to improve the understanding of the molecular mechanisms regulating important physiological events with ecological relevance.


Assuntos
Anfípodes/embriologia , Anfípodes/fisiologia , Mapas de Interação de Proteínas , Anfípodes/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gônadas/fisiologia , Masculino , Proteômica/métodos , Splicing de RNA , Reprodução , Espécies Sentinelas/embriologia , Espécies Sentinelas/genética , Espécies Sentinelas/fisiologia
8.
Elife ; 72018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29595475

RESUMO

During development, coordinated cell behaviors orchestrate tissue and organ morphogenesis. Detailed descriptions of cell lineages and behaviors provide a powerful framework to elucidate the mechanisms of morphogenesis. To study the cellular basis of limb development, we imaged transgenic fluorescently-labeled embryos from the crustacean Parhyale hawaiensis with multi-view light-sheet microscopy at high spatiotemporal resolution over several days of embryogenesis. The cell lineage of outgrowing thoracic limbs was reconstructed at single-cell resolution with new software called Massive Multi-view Tracker (MaMuT). In silico clonal analyses suggested that the early limb primordium becomes subdivided into anterior-posterior and dorsal-ventral compartments whose boundaries intersect at the distal tip of the growing limb. Limb-bud formation is associated with spatial modulation of cell proliferation, while limb elongation is also driven by preferential orientation of cell divisions along the proximal-distal growth axis. Cellular reconstructions were predictive of the expression patterns of limb development genes including the BMP morphogen Decapentaplegic.


Assuntos
Anfípodes/embriologia , Linhagem da Célula , Biologia Computacional/métodos , Extremidades/embriologia , Processamento de Imagem Assistida por Computador/métodos , Morfogênese , Imagem Óptica/métodos , Animais , Fluorescência , Genes Reporter , Software , Análise Espaço-Temporal , Coloração e Rotulagem
9.
Ecotoxicol Environ Saf ; 144: 193-199, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28623797

RESUMO

During morphogenesis numerous morphogenetic factors ensure the production of a target phenotype. By disrupting these processes, a toxic exposure during this period could cause an increase of phenotypic defects. In the present study, embryos of the freshwater amphipod Gammarus fossarum were exposed throughout the embryogenesis to increasing concentrations of fenoxycarb (0, 0.5µgL-1, 5µgL-1 and 50µgL-1), a growth regulator insecticide analog of the insect juvenile hormone. In addition, to identify morphogenesis' sensitive period, embryos were exposed during either early or late embryonic development to 5µgL-1 of fenoxycarb. In newborn individuals from exposed embryos, three phenotypes were investigated: i) eye pigmentation, ii) length of the antenna and gnathopod of both left and right sides and iii) midgut tissue state. Developmental homeostasis was assessed by measuring fluctuating asymmetry and inter-individual variance of both the antenna and gnathopod. Exposure to 5µgL-1 and 50µgL-1 fenoxycarb throughout the embryonic development induced a delayed hatching and altered appendages size. Moreover, exposure to 5µgL-1 throughout the embryogenesis and during the gastrulation phase impaired eye pigmentation, while exposure to 50µgL-1 resulted in increased tissue damages of the midgut. No significant increase of fluctuating asymmetry was observed in exposed individuals, neither for the antenna nor for the gnathopod. These results demonstrate that fenoxycarb can alter embryonic development of G. fossarum without disrupting developmental homeostasis.


Assuntos
Anfípodes/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Inseticidas/toxicidade , Fenilcarbamatos/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/embriologia , Animais , Água Doce/química , Fenótipo
10.
Environ Toxicol Chem ; 36(9): 2436-2443, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28252216

RESUMO

The effects of environmental contaminants on arthropod embryo stages have been poorly investigated in ecotoxicology. Moreover, many of these tests used hatching success as the sole metric, although it is possible to detect many more subtle effects. After a detailed description of embryogenesis in Gammarus fossarum, the present study reports on the sublethal effects of cadmium (Cd) exposure during embryonic development in G. fossarum. Embryos were first directly exposed in multiwell plates throughout the entire embryonic cycle (23 d) to increasing Cd concentrations (0, 1.5, and 3.0 µg/L; 120 embryos/concentration). Then, to assess the representativeness of the gammarid embryo assay performed in multiwell plates, embryos were exposed to similar Cd concentrations through the maternal open brood pouch. Next, to pinpoint sensitive periods of development, embryos were directly exposed to 3.0 µg/L of Cd for shorter periods of time: during gastrulation, organogenesis, and hatching. After hatching, the following parameters were measured in the newborn individuals: 1) body mass; 2) activity of the enzyme phenoloxidase, a key enzyme of the arthropod immune system; and 3) locomotor activity. Phenoloxidase activity was strongly inhibited in newborn individuals of embryos exposed (either in multiwell plates or in the maternal brood pouch) to 3.0 µg/L Cd throughout embryonic development. Furthermore, strong detrimental locomotor effects were observed in newborn individuals of embryos directly exposed to 3.0 µg/L. Exposures for shorter periods of time were not sufficient to induce such effects; no sensitive period could be determined. By bringing new insights into a critical time window of exposure, the gammarid embryo assay could provide a novel and interesting addition to existing bioassays in gammarids. Environ Toxicol Chem 2017;36:2436-2443. © 2017 SETAC.


Assuntos
Anfípodes/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/embriologia , Animais , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Testes de Toxicidade/métodos
11.
Curr Biol ; 26(12): 1609-1615, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27212406

RESUMO

One of the key morphogenetic processes used during development is the controlled intercalation of cells between their neighbors. This process has been co-opted into a range of developmental events, and it also underlies an event that occurs in each major group of bilaterians: elongation of the embryo along the anterior-posterior axis [1]. In Drosophila, a novel component of this process was recently discovered by Paré et al., who showed that three Toll genes function together to drive cell intercalation during germband extension [2]. This finding raises the question of whether this role of Toll genes is an evolutionary novelty of flies or a general mechanism of embryonic morphogenesis. Here we show that the Toll gene function in axis elongation is, in fact, widely conserved among arthropods. First, we functionally demonstrate that two Toll genes are required for cell intercalation in the beetle Tribolium castaneum. We then show that these genes belong to a previously undescribed Toll subfamily and that members of this subfamily exhibit striped expression (as seen in Tribolium and previously reported in Drosophila [3-5]) in embryos of six other arthropod species spanning the entire phylum. Last, we show that two of these Toll genes are required for normal morphogenesis during anterior-posterior embryo elongation in the spider Parasteatoda tepidariorum, a member of the most basally branching arthropod lineage. From our findings, we hypothesize that Toll genes had a morphogenetic function in embryo elongation in the last common ancestor of all arthropods, which existed over 550 million years ago.


Assuntos
Proteínas de Insetos/genética , Morfogênese , Aranhas/genética , Receptores Toll-Like/genética , Tribolium/genética , Anfípodes/embriologia , Anfípodes/genética , Animais , Drosophila , Aranhas/embriologia , Tribolium/embriologia
12.
Mar Genomics ; 28: 5-6, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26896099

RESUMO

Environmental change can dramatically alter the development of aquatic organisms. While the effect of such change on physiological and morphological ontogenies is becoming clearer, the molecular mechanisms underpinning them are largely unexplored. Characterizing these mechanisms is often limited by the lack of molecular resources. We have applied Illumina HiSeq sequencing to RNA isolated from different developmental stages of the brackishwater amphipod Gammarus chevreuxi. Over 52.6M paired-end reads were assembled de novo into 172,081 contigs, representing 118,812 potential genes. The assembly generated constitutes a reference embryonic transcriptome for an ecologically-important aquatic shredder species. This resource will contribute to our understanding of the mechanisms underpinning the development of physiological function through functional, comparative and quantitative expression studies. It will also allow the identification of candidate biomarkers for assessing the impact of environmental stressors in estuarine systems.


Assuntos
Anfípodes/genética , Transcriptoma , Anfípodes/embriologia , Animais , Inglaterra , Águas Salinas , Análise de Sequência de RNA
13.
Aquat Toxicol ; 173: 36-42, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26836507

RESUMO

To adequately assess and monitor environmental status in the aquatic environment a broad approach is needed that integrates physical variables, chemical analyses and biological effects at different levels of the biological organization. Embryo aberrations in the Baltic Sea key species Monoporeia affinis can be induced by both metals and organic substances as well as by hypoxia, increasing temperatures and malnutrition. This amphipod has therefore been used for more than three decades as a biological effect indicator in monitoring and assessment of chemical pollution and environmental stress. However, little is known about the sub-cellular mechanisms underlying embryo aberrations. An improved mechanistic understanding may open up the possibility of including sub-cellular alterations as sensitive warning signals of stress-induced embryo aberrations. In the present study, M. affinis was exposed in microcosms to 4 different sediments from the Baltic Sea. After 88-95 days of exposure, survival and fecundity were determined as well as the frequency and type of embryo aberrations. Moreover, oxygen radical absorption capacity (ORAC) was assayed as a proxy for antioxidant defense, thiobarbituric acid reactive substances (TBARS) level as a measure of lipid peroxidation and acetylcholinesterase (AChE) activity as an indicator of neurotoxicity. The results show that AChE and ORAC can be linked to the frequency of malformed embryos and arrested embryo development. The occurrence of dead broods was significantly associated with elevated TBARS levels. It can be concluded that these sub-cellular biomarkers are indicative of effects that could affect Darwinian fitness and that oxidative stress is a likely mechanism in the development of aberrant embryos in M. affinis.


Assuntos
Anfípodes/efeitos dos fármacos , Biomarcadores/análise , Exposição Ambiental , Poluentes Químicos da Água/toxicidade , Acetilcolinesterase/análise , Anfípodes/embriologia , Animais , Embrião não Mamífero/efeitos dos fármacos , Fertilidade/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Análise de Sobrevida , Substâncias Reativas com Ácido Tiobarbitúrico/análise
14.
Dev Biol ; 409(1): 297-309, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26569556

RESUMO

Hox genes play crucial roles in establishing regional identity along the anterior-posterior axis in bilaterian animals, and have been implicated in generating morphological diversity throughout evolution. Here we report the identification, expression, and initial genomic characterization of the complete set of Hox genes from the amphipod crustacean Parhyale hawaiensis. Parhyale is an emerging model system that is amenable to experimental manipulations and evolutionary comparisons among the arthropods. Our analyses indicate that the Parhyale genome contains a single copy of each canonical Hox gene with the exception of fushi tarazu, and preliminary mapping suggests that at least some of these genes are clustered together in the genome. With few exceptions, Parhyale Hox genes exhibit both temporal and spatial colinearity, and expression boundaries correlate with morphological differences between segments and their associated appendages. This work represents the most comprehensive analysis of Hox gene expression in a crustacean to date, and provides a foundation for functional studies aimed at elucidating the role of Hox genes in arthropod development and evolution.


Assuntos
Anfípodes/embriologia , Anfípodes/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Animais , Sistemas CRISPR-Cas/genética , Mapeamento Cromossômico , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário/genética , Genes Reporter , Genoma , Proteínas de Fluorescência Verde/metabolismo , Cabeça/embriologia , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Modelos Biológicos , Especificidade de Órgãos/genética , Tórax/embriologia , Tórax/metabolismo
15.
Curr Biol ; 26(1): 14-26, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26687626

RESUMO

Crustaceans possess a diverse array of specialized limbs. Although shifts in Hox gene expression domains have been postulated to play a role in generating this limb diversity, little functional data have been provided to understand the precise roles of Hox genes during crustacean development. We used a combination of CRISPR/Cas9-targeted mutagenesis and RNAi knockdown to decipher the function of the six Hox genes expressed in the developing mouth and trunk of the amphipod Parhyale hawaiensis. These experimentally manipulated animals display specific and striking homeotic transformations. We found that abdominal-A (abd-A) and Abdominal-B (Abd-B) are required for proper posterior patterning, with knockout of Abd-B resulting in an animal with thoracic type legs along what would have been an abdomen, and abd-A disruption generating a simplified body plan characterized by a loss of specialization in both abdominal and thoracic appendages. In the thorax, Ubx is necessary for gill development and for repression of gnathal fate, and Antp dictates claw morphology. In the mouth, Scr and Antp confer the part-gnathal, part-thoracic hybrid identity of the maxilliped, and Scr and Dfd prevent antennal identity in posterior head segments. Our results allow us to define the role Hox genes play in specifying each appendage type in Parhyale, including the modular nature by which some appendages are patterned by Hox gene inputs. In addition, we define how changes in Hox gene expression have generated morphological differences between crustacean species. Finally, we also highlight the utility of CRISPR/Cas9-based somatic mutagenesis in emerging model organisms.


Assuntos
Anfípodes/genética , Proteínas Associadas a CRISPR/genética , Sistemas CRISPR-Cas , Crustáceos/embriologia , Genes Homeobox , Anfípodes/embriologia , Animais , Proteínas de Artrópodes/genética , Evolução Biológica , Diferenciação Celular/genética , Clonagem Molecular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Crustáceos/genética , Embrião não Mamífero , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Masculino , Mutagênese , Interferência de RNA
16.
J Comp Physiol B ; 185(3): 303-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25588676

RESUMO

Temperature is one of the main abiotic factors influencing the distribution and abundance of organisms. In the Rhône River Valley, populations of the crustacean Gammarus pulex are distributed along a 5 °C thermal gradient from the North to the South of the valley. In this present work, we investigated the heat shock response of G. pulex according to latitudinal distribution (northern vs. southern populations) and ontogeny (adults vs. embryos from early stages). We isolated two isoforms (one constitutive hsc70 and one inducible hsp70) of heat shock proteins 70 (HSP70) and quantitatively compared their amounts of mRNA after heat shocks, using real-time PCR. Whereas the hsc70 (constitutive) gene did not vary between the two populations, a significant effect of the population was observed on the expression of the hsp70 (inducible) gene in adult specimens. The northern population of amphipods showed a greater magnitude of induction and a 2 °C lower onset temperature when compared to the southern population, suggesting that the northern population is more affected by elevated temperature than the southern one. We demonstrated that the expression of hsp70 may play a crucial role in the persistence of biogeographical patterns of G. pulex, since it reflects the natural distribution of this species along the latitudinal thermal gradient. A differential regulation of hsc70 gene was also observed according to the ontogenetic stage, with a switch from heat inducible in early life stages to constitutively and highly expressed in adults. These findings demonstrate the importance of considering the entire life cycle to better understand the adaptive response to thermal stress.


Assuntos
Anfípodes/fisiologia , Distribuição Animal/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Estresse Fisiológico/fisiologia , Temperatura , Fatores Etários , Anfípodes/embriologia , Anfípodes/metabolismo , Análise de Variância , Animais , Sequência de Bases , Primers do DNA/genética , DNA Complementar/genética , França , Geografia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
17.
J Vis Exp ; (85)2014 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-24686416

RESUMO

The amphipod Parhyale hawaiensis is a small crustacean found in intertidal marine habitats worldwide. Over the past decade, Parhyale has emerged as a promising model organism for laboratory studies of development, providing a useful outgroup comparison to the well studied arthropod model organism Drosophila melanogaster. In contrast to the syncytial cleavages of Drosophila, the early cleavages of Parhyale are holoblastic. Fate mapping using tracer dyes injected into early blastomeres have shown that all three germ layers and the germ line are established by the eight-cell stage. At this stage, three blastomeres are fated to give rise to the ectoderm, three are fated to give rise to the mesoderm, and the remaining two blastomeres are the precursors of the endoderm and germ line respectively. However, blastomere ablation experiments have shown that Parhyale embryos also possess significant regulatory capabilities, such that the fates of blastomeres ablated at the eight-cell stage can be taken over by the descendants of some of the remaining blastomeres. Blastomere ablation has previously been described by one of two methods: injection and subsequent activation of phototoxic dyes or manual ablation. However, photoablation kills blastomeres but does not remove the dead cell body from the embryo. Complete physical removal of specific blastomeres may therefore be a preferred method of ablation for some applications. Here we present a protocol for manual removal of single blastomeres from the eight-cell stage of Parhyale embryos, illustrating the instruments and manual procedures necessary for complete removal of the cell body while keeping the remaining blastomeres alive and intact. This protocol can be applied to any Parhyale cell at the eight-cell stage, or to blastomeres of other early cleavage stages. In addition, in principle this protocol could be applicable to early cleavage stage embryos of other holoblastically cleaving marine invertebrates.


Assuntos
Anfípodes/citologia , Anfípodes/embriologia , Blastômeros/citologia , Análise de Célula Única/métodos , Animais , Feminino , Masculino
18.
PLoS One ; 8(2): e56049, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23418507

RESUMO

BACKGROUND: The embryo of the crustacean Parhyale hawaiensis has a total, unequal and invariant early cleavage pattern. It specifies cell fates earlier than other arthropods, including Drosophila, as individual blastomeres of the 8-cell stage are allocated to the germ layers and the germline. Furthermore, the 8-cell stage is amenable to embryological manipulations. These unique features make Parhyale a suitable system for elucidating germ layer specification in arthropods. Since asymmetric localization of maternally provided RNA is a widespread mechanism to specify early cell fates, we asked whether this is also true for Parhyale. A candidate gene approach did not find RNAs that are asymmetrically distributed at the 8-cell stage. Therefore, we designed a high-density microarray from 9400 recently sequenced ESTs (1) to identify maternally provided RNAs and (2) to find RNAs that are differentially distributed among cells of the 8-cell stage. RESULTS: Maternal-zygotic transition takes place around the 32-cell stage, i.e. after the specification of germ layers. By comparing a pool of RNAs from early embryos without zygotic transcription to zygotic RNAs of the germband, we found that more than 10% of the targets on the array were enriched in the maternal transcript pool. A screen for asymmetrically distributed RNAs at the 8-cell stage revealed 129 transcripts, from which 50% are predominantly expressed in the early embryonic stages. Finally, we performed knockdown experiments for two of these genes and observed cell-fate-related defects of embryonic development. CONCLUSIONS: In contrast to Drosophila, the four primary germ layer cell lineages in Parhyale are specified during the maternal control phase of the embryo. A key step in this process is the asymmetric distribution of a large number of maternal RNAs to the germ layer progenitor cells.


Assuntos
Anfípodes/genética , Linhagem da Célula/genética , Ectoderma/metabolismo , Mesoderma/metabolismo , Transcriptoma/genética , Anfípodes/embriologia , Anfípodes/metabolismo , Animais , Ectoderma/citologia , Ectoderma/embriologia , Feminino , Mesoderma/citologia , Mesoderma/embriologia , Gravidez
19.
Dev Biol ; 371(1): 94-109, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23046627

RESUMO

Cells are the principal component of tissues and can drive morphogenesis through dynamic changes in structure and interaction. During gastrulation, the primary morphogenetic event of early development, cells change shape, exchange neighbors, and migrate long distances to establish cell layers that will form the tissues of the adult animal. Outside of Drosophila, little is known about how changes in cell behavior might drive gastrulation among arthropods. Here, we focus on three cell populations that form two aggregations during early gastrulation in the crustacean Parhyale hawaiensis. Using cytoskeletal markers and lineage tracing we observe bottle cells in anterior and visceral mesoderm precursors as gastrulation commences, and find that both Cytochalasin D, an inhibitor of actin polymerization, and ROCKOUT, an inhibitor of Rho-kinase activity, prevent gastrulation. Furthermore, by ablating specific cells, we show that each of the three populations acts independently during gastrulation, confirming previous hypotheses that cell behavior during Parhyale gastrulation relies on intrinsic signals instead of an inductive mechanism.


Assuntos
Anfípodes/embriologia , Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Gastrulação/fisiologia , Morfogênese/fisiologia , Animais , Forma Celular , Citocalasina D/farmacologia , Técnicas Histológicas , Microinjeções , Faloidina , Imagem com Lapso de Tempo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/farmacologia
20.
Dev Genes Evol ; 222(3): 139-51, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22466422

RESUMO

The transcriptional repressor snail was first discovered in Drosophila melanogaster, where it initially plays a role in gastrulation and mesoderm formation, and later plays a role in neurogenesis. Among arthropods, this role of snail appears to be conserved in the insects Tribolium and Anopheles gambiae, but not in the chelicerates Cupiennius salei and Achaearanea tepidariorum, the myriapod Glomeris marginata, or the Branchiopod crustacean Daphnia magna. These data imply that within arthropoda, snail acquired its role in gastrulation and mesoderm formation in the insect lineage. However, crustaceans are a diverse group with several major taxa, making analysis of more crustaceans necessary to potentially understand the ancestral role of snail in Pancrustacea (crustaceans + insects) and thus in the ancestor of insects as well. To address these questions, we examined the snail family in the Malacostracan crustacean Parhyale hawaiensis. We found three snail homologs, Ph-snail1, Ph-snail2 and Ph-snail3, and one scratch homolog, Ph-scratch. Parhyale snail genes are expressed after gastrulation, during germband formation and elongation. Ph-snail1, Ph-snail2, and Ph-snail3 are expressed in distinct patterns in the neuroectoderm. Ph-snail1 is the only Parhyale snail gene expressed in the mesoderm, where its expression cycles in the mesodermal stem cells, called mesoteloblasts. The mesoteloblasts go through a series of cycles, where each cycle is composed of a migration phase and a division phase. Ph-snail1 is expressed during the migration phase, but not during the division phase. We found that as each mesoteloblast division produces one segment's worth of mesoderm, Ph-snail1 expression is linked to both the cell cycle and the segmental production of mesoderm.


Assuntos
Anfípodes/genética , Proteínas de Artrópodes/genética , Fatores de Transcrição/genética , Anfípodes/embriologia , Animais , Proteínas de Artrópodes/análise , Evolução Molecular , Perfilação da Expressão Gênica , Mesoderma/metabolismo , Placa Neural/metabolismo , Filogenia , Fatores de Transcrição da Família Snail , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA