Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.247
Filtrar
1.
Sci Adv ; 10(19): eadj6990, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728404

RESUMO

Mosquito-borne diseases like malaria are rising globally, and improved mosquito vector surveillance is needed. Survival of Anopheles mosquitoes is key for epidemiological monitoring of malaria transmission and evaluation of vector control strategies targeting mosquito longevity, as the risk of pathogen transmission increases with mosquito age. However, the available tools to estimate field mosquito age are often approximate and time-consuming. Here, we show a rapid method that combines matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry with deep learning for mosquito age prediction. Using 2763 mass spectra from the head, legs, and thorax of 251 field-collected Anopheles arabiensis mosquitoes, we developed deep learning models that achieved a best mean absolute error of 1.74 days. We also demonstrate consistent performance at two ecological sites in Senegal, supported by age-related protein changes. Our approach is promising for malaria control and the field of vector biology, benefiting other disease vectors like Aedes mosquitoes.


Assuntos
Anopheles , Aprendizado Profundo , Mosquitos Vetores , Animais , Anopheles/fisiologia , Mosquitos Vetores/fisiologia , Malária/transmissão , Malária/prevenção & controle , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Senegal , Espectrometria de Massas/métodos , Envelhecimento/fisiologia
2.
Malar J ; 23(1): 135, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711028

RESUMO

BACKGROUND: The direct membrane feeding assay (DMFA), whereby gametocyte-infected blood is collected from human donors and from which mosquitoes feed through a membrane, is proving essential for assessing parameters influencing Plasmodium transmission potential in endemic countries. The success of DMFAs is closely tied to gametocyte density in the blood, with relatively high gametocytaemia ensuring optimal infection levels in mosquitoes. As transmission intensity declines with control efforts, the occurrence of asymptomatic individuals with low gametocyte densities, who can significantly contribute to the infectious reservoir, is increasing. This poses a limitation to studies relying on the experimental infection of large numbers of mosquitoes with natural isolates of Plasmodium. A simple, field-applicable method is presented for improving parasite infectivity by concentrating Plasmodium falciparum gametocytes. METHODS: Anopheles gambiae received one of the following 5 blood treatments through DMFA: (i) whole blood (WB) samples from naturally-infected donors; (ii) donor blood whose plasma was replaced with the same volume of Plasmodium-naive AB + serum (1:1 control); (iii) plasma replaced with a volume of malaria-naïve AB + serum equivalent to half (1:1/2), or to a quarter (1:1/4), of the initial plasma volume; and (v) donor blood whose plasma was fully removed (RBC). The experiment was repeated 4 times using 4 distinct wild parasite isolates. Seven days post-infection, a total of 1,095 midguts were examined for oocyst presence. RESULTS: Substituting plasma with reduced amounts (1:1/2 and 1:1/4) of Plasmodium-naive AB + serum led to a 31% and 17% increase of the mosquito infection rate and to a 85% and 308% increase in infection intensity compared to the 1:1 control, respectively. The full removal of plasma (RBC) reduced the infection rate by 58% and the intensity by 64% compared to the 1:1 control. Reducing serum volumes (1:1/2; 1:1/4 and RBC) had no impact on mosquito feeding rate and survival when compared to the 1:1 control. CONCLUSIONS: Concentrating gametocytic blood by replacing natural plasma by lower amount of naive serum can enhance the success of mosquito infection. In an area with low gametocyte density, this simple and practical method of parasite concentration can facilitate studies on human-to-mosquito transmission such as the evaluation of transmission-blocking interventions.


Assuntos
Anopheles , Mosquitos Vetores , Plasmodium falciparum , Plasmodium falciparum/fisiologia , Animais , Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Humanos , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Feminino , Comportamento Alimentar
3.
PLoS One ; 19(5): e0303473, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38743768

RESUMO

Urban malaria has become a challenge for most African countries due to urbanization, with increasing population sizes, overcrowding, and movement into cities from rural localities. The rapid expansion of cities with inappropriate water drainage systems, abundance of water storage habitats, coupled with recurrent flooding represents a concern for water-associated vector borne diseases, including malaria. This situation could threaten progress made towards malaria elimination in sub-Saharan countries, including Senegal, where urban malaria has presented as a threat to national elimination gains. To assess drivers of urban malaria in Senegal, a 5-month study was carried out from August to December 2019 in three major urban areas and hotspots for malaria incidence (Diourbel, Touba, and Kaolack) including the rainy season (August-October) and partly dry season (November-December). The aim was to characterize malaria vector larval habitats, vector dynamics across both seasons, and to identify the primary eco- environmental entomological factors contributing to observed urban malaria transmission. A total of 145 Anopheles larval habitats were found, mapped, and monitored monthly. This included 32 in Diourbel, 83 in Touba, and 30 in Kaolack. The number of larval habitats fluctuated seasonally, with a decrease during the dry season. In Diourbel, 22 of the 32 monitored larval habitats (68.75%) were dried out by December and considered temporary, while the remaining 10 (31.25%) were classified as permanent. In the city of Touba 28 (33.73%) were temporary habitats, and of those 57%, 71% and 100% dried up respectively by October, November, and December. However, 55 (66.27%) habitats were permanent water storage basins which persisted throughout the study. In Kaolack, 12 (40%) permanent and 18 (60%) temporary Anopheles larval habitats were found and monitored during the study. Three malaria vectors (An. arabiensis, An. pharoensis and An. funestus s.l.) were found across the surveyed larval habitats, and An. arabiensis was found in all three cities and was the only species found in the city of Diourbel, while An. arabiensis, An. pharoensis, and An. funestus s.l. were detected in the cities of Touba and Kaolack. The spatiotemporal observations of immature malaria vectors in Senegal provide evidence of permanent productive malaria vector larval habitats year-round in three major urban centers in Senegal, which may be driving high urban malaria incidence. This study aimed to assess the presence and type of anopheline larvae habitats in urban areas. The preliminary data will better inform subsequent detailed additional studies and seasonally appropriate, cost-effective, and sustainable larval source management (LSM) strategies by the National Malaria Control Programme (NMCP).


Assuntos
Anopheles , Cidades , Ecossistema , Larva , Malária , Mosquitos Vetores , Estações do Ano , Animais , Anopheles/parasitologia , Senegal/epidemiologia , Malária/epidemiologia , Malária/transmissão , Mosquitos Vetores/parasitologia , Incidência , Humanos
4.
Science ; 384(6696): 697-703, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38723080

RESUMO

Changes in climate shift the geographic locations that are suitable for malaria transmission because of the thermal constraints on vector Anopheles mosquitos and Plasmodium spp. malaria parasites and the lack of availability of surface water for vector breeding. Previous Africa-wide assessments have tended to solely represent surface water using precipitation, ignoring many important hydrological processes. Here, we applied a validated and weighted ensemble of global hydrological and climate models to estimate present and future areas of hydroclimatic suitability for malaria transmission. With explicit surface water representation, we predict a net decrease in areas suitable for malaria transmission from 2025 onward, greater sensitivity to future greenhouse gas emissions, and different, more complex, malaria transmission patterns. Areas of malaria transmission that are projected to change are smaller than those estimated by precipitation-based estimates but are associated with greater changes in transmission season lengths.


Assuntos
Anopheles , Hidrologia , Malária , Mosquitos Vetores , Animais , Malária/transmissão , África , Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Mudança Climática , Humanos , Estações do Ano , Chuva , Modelos Teóricos , Água , Gases de Efeito Estufa/análise
5.
PLoS One ; 19(5): e0302677, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38696463

RESUMO

The incorporation of phytoactive compounds in the management of malarial vectors holds promise for the development of innovative and efficient alternatives. Nevertheless, the molecular and physiological responses that these bioactive substances induce remain underexplored. This present study investigated the toxicity of different concentrations of aqueous and methanol extracts of Ocimum tenuiflorum against larvae of Anopheles gambiae (sensu stricto) and unraveled the possible underlying molecular pathways responsible for the observed physiological effects. FTIR and GCMS analyses of phytoactive compounds in aqueous and methanol crude extracts of O. tenuiflorum showed the presence of OH stretching vibration, C = C stretching modes of aromatics and methylene rocking vibration; ring deformation mode with high levels of trans-ß-ocimene, 3,7-dimethyl-1,3,6-octatriene in aqueous extract and 4-methoxy-benzaldehyde, 1,3,5-trimethyl-cyclohexane and o-cymene in methanol extract. The percentage mortality upon exposure to methanol and aqueous extracts of O. tenuiflorum were 21.1% and 26.1% at 24 h, 27.8% and 36.1% at 48 h and 36.1% and 45% at 72 h respectively. Using reverse transcription quantitative polymerase chain reaction (RT-qPCR), down-regulation of ABC transporter, overexpression of CYP6M2, Hsp70, and α-esterase, coupled with significantly increased levels of SOD, CAT, and GSH, were observed in An. gambiae (s.s.) exposed to aqueous and methanol extracts of O. tenuiflorum as compared to the control. Findings from this study have significant implications for our understanding of how An. gambiae (s.s.) larvae detoxify phytoactive compounds.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Anopheles , Antioxidantes , Proteínas de Choque Térmico HSP70 , Ocimum , Extratos Vegetais , Animais , Anopheles/efeitos dos fármacos , Anopheles/genética , Anopheles/metabolismo , Extratos Vegetais/farmacologia , Antioxidantes/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico HSP70/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Larva/efeitos dos fármacos , Larva/metabolismo , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Estresse Fisiológico/efeitos dos fármacos
6.
Parasit Vectors ; 17(1): 200, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704595

RESUMO

BACKGROUND: Mayaro virus (MAYV) is an emerging alphavirus, primarily transmitted by the mosquito Haemagogus janthinomys in Central and South America. However, recent studies have shown that Aedes aegypti, Aedes albopictus and various Anopheles mosquitoes can also transmit the virus under laboratory conditions. MAYV causes sporadic outbreaks across the South American region, particularly in areas near forests. Recently, cases have been reported in European and North American travelers returning from endemic areas, raising concerns about potential introductions into new regions. This study aims to assess the vector competence of three potential vectors for MAYV present in Europe. METHODS: Aedes albopictus from Italy, Anopheles atroparvus from Spain and Culex pipiens biotype molestus from Belgium were exposed to MAYV and maintained under controlled environmental conditions. Saliva was collected through a salivation assay at 7 and 14 days post-infection (dpi), followed by vector dissection. Viral titers were determined using focus forming assays, and infection rates, dissemination rates, and transmission efficiency were calculated. RESULTS: Results indicate that Ae. albopictus and An. atroparvus from Italy and Spain, respectively, are competent vectors for MAYV, with transmission possible starting from 7 dpi under laboratory conditions. In contrast, Cx. pipiens bioform molestus was unable to support MAYV infection, indicating its inability to contribute to the transmission cycle. CONCLUSIONS: In the event of accidental MAYV introduction in European territories, autochthonous outbreaks could potentially be sustained by two European species: Ae. albopictus and An. atroparvus. Entomological surveillance should also consider certain Anopheles species when monitoring MAYV transmission.


Assuntos
Aedes , Infecções por Alphavirus , Alphavirus , Culex , Mosquitos Vetores , Animais , Aedes/virologia , Mosquitos Vetores/virologia , Alphavirus/fisiologia , Alphavirus/isolamento & purificação , Culex/virologia , Europa (Continente) , Infecções por Alphavirus/transmissão , Infecções por Alphavirus/virologia , Saliva/virologia , Anopheles/virologia , Espanha , Itália , Feminino , Bélgica
7.
Malar J ; 23(1): 133, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702775

RESUMO

BACKGROUND: Malaria is a potentially life-threatening disease caused by Plasmodium protozoa transmitted by infected Anopheles mosquitoes. Controlled human malaria infection (CHMI) trials are used to assess the efficacy of interventions for malaria elimination. The operating characteristics of statistical methods for assessing the ability of interventions to protect individuals from malaria is uncertain in small CHMI studies. This paper presents simulation studies comparing the performance of a variety of statistical methods for assessing efficacy of intervention in CHMI trials. METHODS: Two types of CHMI designs were investigated: the commonly used single high-dose design (SHD) and the repeated low-dose design (RLD), motivated by simian immunodeficiency virus (SIV) challenge studies. In the context of SHD, the primary efficacy endpoint is typically time to infection. Using a continuous time survival model, five statistical tests for assessing the extent to which an intervention confers partial or full protection under single dose CHMI designs were evaluated. For RLD, the primary efficacy endpoint is typically the binary infection status after a specific number of challenges. A discrete time survival model was used to study the characteristics of RLD versus SHD challenge studies. RESULTS: In a SHD study with the continuous time survival model, log-rank test and t-test are the most powerful and provide more interpretable results than Wilcoxon rank-sum tests and Lachenbruch tests, while the likelihood ratio test is uniformly most powerful but requires knowledge of the underlying probability model. In the discrete time survival model setting, SHDs are more powerful for assessing the efficacy of an intervention to prevent infection than RLDs. However, additional information can be inferred from RLD challenge designs, particularly using a likelihood ratio test. CONCLUSIONS: Different statistical methods can be used to analyze controlled human malaria infection (CHMI) experiments, and the choice of method depends on the specific characteristics of the experiment, such as the sample size allocation between the control and intervention groups, and the nature of the intervention. The simulation results provide guidance for the trade off in statistical power when choosing between different statistical methods and study designs.


Assuntos
Malária , Humanos , Malária/prevenção & controle , Animais , Projetos de Pesquisa , Ensaios Clínicos Controlados como Assunto , Modelos Estatísticos , Anopheles/parasitologia
8.
Parasit Vectors ; 17(1): 216, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38734639

RESUMO

BACKGROUND: Mosquitoes pose a risk to human health worldwide, and correct species identification and detection of cryptic species are the most important keys for surveillance and control of mosquito vectors. In addition to traditional identification based on morphology, DNA barcoding has recently been widely used as a complementary tool for reliable identification of mosquito species. The main objective of this study was to create a reference DNA barcode library for the Croatian mosquito fauna, which should contribute to more accurate and faster identification of species, including cryptic species, and recognition of relevant vector species. METHODS: Sampling was carried out in three biogeographical regions of Croatia over six years (2017-2022). The mosquitoes were morphologically identified; molecular identification was based on the standard barcoding region of the mitochondrial COI gene and the nuclear ITS2 region, the latter to identify species within the Anopheles maculipennis complex. The BIN-RESL algorithm assigned the COI sequences to the corresponding BINs (Barcode Index Number clusters) in BOLD, i.e. to putative MOTUs (Molecular Operational Taxonomic Units). The bPTP and ASAP species delimitation methods were applied to the genus datasets in order to verify/confirm the assignment of specimens to specific MOTUs. RESULTS: A total of 405 mosquito specimens belonging to six genera and 30 morphospecies were collected and processed. Species delimitation methods assigned the samples to 31 (BIN-RESL), 30 (bPTP) and 28 (ASAP) MOTUs, with most delimited MOTUs matching the morphological identification. Some species of the genera Culex, Aedes and Anopheles were assigned to the same MOTUs, especially species that are difficult to distinguish morphologically and/or represent species complexes. In total, COI barcode sequences for 34 mosquito species and ITS2 sequences for three species of the genus Anopheles were added to the mosquito sequence database for Croatia, including one individual from the Intrudens Group, which represents a new record for the Croatian mosquito fauna. CONCLUSION: We present the results of the first comprehensive study combining morphological and molecular identification of most mosquito species present in Croatia, including several invasive and vector species. With the exception of some closely related species, this study confirmed that DNA barcoding based on COI provides a reliable basis for the identification of mosquito species in Croatia.


Assuntos
Culicidae , Código de Barras de DNA Taxonômico , Complexo IV da Cadeia de Transporte de Elétrons , Mosquitos Vetores , Animais , Croácia , Mosquitos Vetores/genética , Mosquitos Vetores/classificação , Mosquitos Vetores/anatomia & histologia , Culicidae/classificação , Culicidae/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Anopheles/genética , Anopheles/classificação , Filogenia , Biblioteca Gênica
9.
J Vet Med Sci ; 86(5): 485-492, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38569883

RESUMO

Plasmodium parasites within mosquitoes are exposed to various physiological processes, such as blood meal digestion activity, the gonotrophic cycle, and host responses preventing the entry of parasites into the midgut wall. However, when in vitro-cultured ookinetes are injected into the hemocoel of mosquitoes, Plasmodium parasites are not affected by the vertebrate host's blood contents and do not pass through the midgut epithelial cells. This infection method might aid in identifying mosquito-derived factors affecting Plasmodium development within mosquitoes. This study investigated novel mosquito-derived molecules related to parasite development in Anopheles mosquitoes. We injected in vitro-cultured Plasmodium berghei (ANKA strain) ookinetes into female and male Anopheles stephensi (STE2 strain) mosquitoes and found that the oocyst number was significantly higher in males than in females, suggesting that male mosquitoes better support the development of parasites. Next, RNA-seq analysis was performed on the injected female and male mosquitoes to identify genes exhibiting changes in expression. Five genes with different expression patterns between sexes and greatest expression changes were identified as being potentially associated with Plasmodium infection. Two of the five genes also showed expression changes with infection by blood-feeding, indicating that these genes could affect the development of Plasmodium parasites in mosquitoes.


Assuntos
Anopheles , Plasmodium berghei , Animais , Anopheles/parasitologia , Feminino , Masculino , Plasmodium berghei/fisiologia , Malária/parasitologia , Mosquitos Vetores/parasitologia , Camundongos , Interações Hospedeiro-Parasita
10.
J Vector Borne Dis ; 61(1): 1-4, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648401

RESUMO

Malaria remains a major health problem in Kenya despite the huge efforts put in place to control it. The non-relenting malaria threat has partly been attributed to residual malaria transmission driven by vectors that cannot effectively be controlled by the two popularly applied control methods: long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS). Reports indicate that residual transmission is widely spread in areas where malaria is endemic. This could mean that the World Health Organization's vision of a world free of malaria remains a mirage as elimination and prevention of re-establishment of malaria are rendered unachievable. Amongst the major contributors to residual malaria transmission are cryptic rare species, species of mosquitoes that are morphologically indistinguishable, but isolated genetically, that have not been the focus of malaria control programs. Recent studies have reported extensive new Anopheles cryptic species believed to be involved in malaria transmission in Kenya. This underscores the need to understand these malaria vector species, their distribution and bionomics and their impact on malaria transmission. This article discusses reports of these cryptic species, their importance to malaria transmission, especially in the arid and semi-arid areas, and what can be done to mitigate the situation.


Assuntos
Anopheles , Malária , Controle de Mosquitos , Mosquitos Vetores , Animais , Quênia/epidemiologia , Anopheles/classificação , Anopheles/parasitologia , Anopheles/fisiologia , Malária/transmissão , Malária/prevenção & controle , Mosquitos Vetores/parasitologia , Mosquitos Vetores/classificação , Controle de Mosquitos/métodos , Humanos , Inseticidas/farmacologia , Mosquiteiros Tratados com Inseticida
11.
Malar J ; 23(1): 112, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38641572

RESUMO

BACKGROUND: In malaria endemic regions of the Peruvian Amazon, rainfall together with river level and breeding site availability drive fluctuating vector mosquito abundance and human malaria cases, leading to temporal heterogeneity. The main variables influencing spatial transmission include location of communities, mosquito behaviour, land use/land cover, and human ecology/behaviour. The main objective was to evaluate seasonal and microgeographic biting behaviour of the malaria vector Nyssorhynchus (or Anopheles) darlingi in Amazonian Peru and to investigate effects of seasonality on malaria transmission. METHODS: We captured mosquitoes from 18:00 to 06:00 h using Human Landing Catch in two riverine (Lupuna, Santa Emilia) and two highway (El Triunfo, Nuevo Horizonte) communities indoors and outdoors from 8 houses per community, during the dry and rainy seasons from February 2016 to January 2017. We then estimated parity rate, daily survival and age of a portion of each collection of Ny. darlingi. All collected specimens of Ny. darlingi were tested for the presence of Plasmodium vivax or Plasmodium falciparum sporozoites using real-time PCR targeting the small subunit of the 18S rRNA. RESULTS: Abundance of Ny. darlingi varied across village, season, and biting behaviour (indoor vs outdoor), and was highly significant between rainy and dry seasons (p < 0.0001). Biting patterns differed, although not significantly, and persisted regardless of season, with peaks in highway communities at ~ 20:00 h in contrast to biting throughout the night (i.e., 18:00-06:00) in riverine communities. Of 3721 Ny. darlingi tested for Plasmodium, 23 (0.62%) were infected. We detected Plasmodium-infected Ny. darlingi in both community types and most (20/23) were captured outdoors during the rainy season; 17/23 before midnight. Seventeen Ny. darlingi were infected with P. vivax, and 6 with P. falciparum. No infected Ny. darlingi were captured during the dry season. Significantly higher rates of parity were detected in Ny. darlingi during the rainy season (average 64.69%) versus the dry season (average 36.91%) and by community, Lupuna, a riverine village, had the highest proportion of parous to nulliparous females during the rainy season. CONCLUSIONS: These data add a seasonal dimension to malaria transmission in peri-Iquitos, providing more evidence that, at least locally, the greatest risk of malaria transmission is outdoors during the rainy season mainly before midnight, irrespective of whether the community was located adjacent to the highway or along the river.


Assuntos
Anopheles , Mordeduras e Picadas , Malária Falciparum , Malária Vivax , Malária , Plasmodium , Animais , Feminino , Humanos , Anopheles/genética , Malária/epidemiologia , Peru/epidemiologia , Mosquitos Vetores , Malária Vivax/epidemiologia , Estações do Ano
12.
PLoS Pathog ; 20(4): e1012145, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38598552

RESUMO

Wolbachia, a maternally transmitted symbiotic bacterium of insects, can suppress a variety of human pathogens in mosquitoes, including malaria-causing Plasmodium in the Anopheles vector. However, the mechanistic basis of Wolbachia-mediated Plasmodium suppression in mosquitoes is not well understood. In this study, we compared the midgut and carcass transcriptomes of stably infected Anopheles stephensi with Wolbachia wAlbB to uninfected mosquitoes in order to discover Wolbachia infection-responsive immune genes that may play a role in Wolbachia-mediated anti-Plasmodium activity. We show that wAlbB infection upregulates 10 putative immune genes and downregulates 14 in midguts, while it upregulates 31 putative immune genes and downregulates 15 in carcasses at 24 h after blood-fed feeding, the time at which the Plasmodium ookinetes are traversing the midgut tissue. Only a few of these regulated immune genes were also significantly differentially expressed between Wolbachia-infected and non-infected midguts and carcasses of sugar-fed mosquitoes. Silencing of the Wolbachia infection-responsive immune genes TEP 4, TEP 15, lysozyme C2, CLIPB2, CLIPB4, PGRP-LD and two novel genes (a peritrophin-44-like gene and a macro domain-encoding gene) resulted in a significantly greater permissiveness to P. falciparum infection. These results indicate that Wolbachia infection modulates mosquito immunity and other processes that are likely to decrease Anopheles permissiveness to Plasmodium infection.


Assuntos
Anopheles , Malária Falciparum , Plasmodium falciparum , Wolbachia , Animais , Anopheles/parasitologia , Anopheles/microbiologia , Anopheles/imunologia , Wolbachia/imunologia , Plasmodium falciparum/imunologia , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Mosquitos Vetores/parasitologia , Mosquitos Vetores/microbiologia , Mosquitos Vetores/imunologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/imunologia , Transcriptoma , Feminino
13.
Malar J ; 23(1): 119, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664703

RESUMO

BACKGROUND: The residual activity of a clothianidin + deltamethrin mixture and clothianidin alone in IRS covered more than the period of malaria transmission in northern Benin. The aim of this study was to show whether the prolonged residual efficacy of clothianidin-based products resulted in a greater reduction in vector populations and subsequent malaria transmission compared with the shorter residual efficacy of pirimiphos-methyl. METHODS: Human bait mosquito collections by local volunteers and pyrethrum spray collections were used in 6 communes under IRS monitoring and evaluation from 2019 to 2021. ELISA/CSP and species PCR tests were performed on Anopheles gambiae sensu lato (s.l.) to determine the infectivity rate and subspecies by commune and year. The decrease in biting rate, entomological inoculation rate, incidence, inhibition of blood feeding, resting density of An. gambiae s.l. were studied and compared between insecticides per commune. RESULTS: The An. gambiae complex was the major vector throughout the study area, acounting for 98.71% (19,660/19,917) of all Anopheles mosquitoes collected. Anopheles gambiae s.l. collected was lower inside treated houses (45.19%: 4,630/10,245) than outside (54.73%: 5,607/10,245) after IRS (p < 0.001). A significant decrease (p < 0.001) in the biting rate was observed after IRS in all departments except Donga in 2021 after IRS with clothianidin 50 WG. The impact of insecticides on EIR reduction was most noticeable with pirimiphos-methyl 300 CS, followed by the clothianidin + deltamethrin mixture and finally clothianidin 50 WG. A reduction in new cases of malaria was observed in 2020, the year of mass distribution of LLINs and IRS, as well as individual and collective protection measures linked to COVID-19. Anopheles gambiae s.l. blood-feeding rates and parous were high and similar for all insecticides in treated houses. CONCLUSION: To achieve the goal of zero malaria, the optimal choice of vector control tools plays an important role. Compared with pirimiphos-methyl, clothianidin-based insecticides induced a lower reductions in entomological indicators of malaria transmission.


Assuntos
Anopheles , Guanidinas , Inseticidas , Malária , Controle de Mosquitos , Mosquitos Vetores , Neonicotinoides , Compostos Organotiofosforados , Piretrinas , Tiazóis , Animais , Anopheles/efeitos dos fármacos , Inseticidas/farmacologia , Guanidinas/farmacologia , Mosquitos Vetores/efeitos dos fármacos , Neonicotinoides/farmacologia , Tiazóis/farmacologia , Controle de Mosquitos/métodos , Compostos Organotiofosforados/farmacologia , Malária/prevenção & controle , Malária/transmissão , Benin , Nitrilas/farmacologia , Humanos
14.
Sci Rep ; 14(1): 8650, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622230

RESUMO

Resistance to insecticides and adaptation to a diverse range of environments present challenges to Anopheles gambiae s.l. mosquito control efforts in sub-Saharan Africa. Whole-genome-sequencing is often employed for identifying the genomic basis underlying adaptation in Anopheles, but remains expensive for large-scale surveys. Reduced coverage whole-genome-sequencing can identify regions of the genome involved in adaptation at a lower cost, but is currently untested in Anopheles mosquitoes. Here, we use reduced coverage WGS to investigate population genetic structure and identify signatures of local adaptation in Anopheles mosquitoes across southern Ghana. In contrast to previous analyses, we find no structuring by ecoregion, with Anopheles coluzzii and Anopheles gambiae populations largely displaying the hallmarks of large, unstructured populations. However, we find signatures of selection at insecticide resistance loci that appear ubiquitous across ecoregions in An. coluzzii, and strongest in forest ecoregions in An. gambiae. Our study highlights resistance candidate genes in this region, and validates reduced coverage WGS, potentially to very low coverage levels, for population genomics and exploratory surveys for adaptation in Anopheles taxa.


Assuntos
Anopheles , Inseticidas , Piretrinas , Animais , Resistência a Inseticidas/genética , Gana/epidemiologia , Inseticidas/farmacologia , Controle de Mosquitos
15.
Parasit Vectors ; 17(1): 183, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600549

RESUMO

BACKGROUND: Clothianidin-based indoor residual spraying (IRS) formulations have become available for malaria control as either solo formulations of clothianidin or a mixture of clothianidin with the pyrethroid deltamethrin. While both formulations have been successfully used for malaria control, studies investigating the effect of the pyrethroid in IRS mixtures may help improve our understanding for development of future IRS products. It has been speculated that the irritant effect of the pyrethroid in the mixture formulation may result in shorter mosquito contact times with the treated walls potentially leading to a lower impact. METHODS: We compared contact irritancy expressed as the number of mosquito take-offs from cement surfaces treated with an IRS formulation containing clothianidin alone (SumiShield® 50WG) to clothianidin-deltamethrin mixture IRS formulations against pyrethroid-resistant Anopheles gambiae sensu lato under controlled laboratory conditions using a modified version of the World Health Organisation cone bioassay. To control for the pyrethroid, comparison was made with a deltamethrin-only formulation. Both commercial and generic non-commercial mixture formulations of clothianidin and deltamethrin were tested. RESULTS: The clothianidin solo formulation did not show significant contact irritancy relative to the untreated control (3.5 take-offs vs. 3.1 take-offs, p = 0.614) while all deltamethrin-containing IRS induced significant irritant effects. The number of take-offs compared to the clothianidin solo formulation (3.5) was significantly higher with the commercial clothianidin-deltamethrin mixture (6.1, p = 0.001), generic clothianidin-deltamethrin mixture (7.0, p < 0.001), and deltamethrin-only (8.2, p < 0.001) formulations. The commercial clothianidin-deltamethrin mixture induced similar contact irritancy as the generic clothianidin-deltamethrin mixture (6.1 take-offs vs. 7.0 take-offs, p = 0.263) and deltamethrin-only IRS (6.1 take-offs vs. 8.2, p = 0.071), showing that the irritant effect in the mixture was attributable to its deltamethrin component. CONCLUSIONS: This study provides evidence that the enhanced contact irritancy of the pyrethroid in clothianidin-deltamethrin IRS mixtures can shorten mosquito contact times with treated walls compared to the clothianidin solo formulation. Further trials are needed to directly compare the efficacy of these formulation types under field conditions and establish the impact of this enhanced contact irritancy on the performance of IRS mixture formulations containing pyrethroids.


Assuntos
Anopheles , Guanidinas , Inseticidas , Malária , Neonicotinoides , Nitrilas , Piretrinas , Tiazóis , Animais , Inseticidas/farmacologia , Irritantes/farmacologia , Controle de Mosquitos , Piretrinas/farmacologia , Malária/prevenção & controle , Resistência a Inseticidas , Mosquitos Vetores
16.
Parasit Vectors ; 17(1): 182, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600589

RESUMO

BACKGROUND: Anopheles sacharovi, a member of the Anopheles maculipennis complex, was a historical malaria vector in Italy, no longer found since the last report at the end of 1960s. In September 2022, within the Surveillance Project for the residual anophelism, a single specimen of An. maculipennis sensu lato collected in Lecce municipality (Apulia region) was molecularly identified as An. sacharovi. This record led to implement a targeted entomological survey in September 2023. METHODS: Investigation was conducted in the areas around the first discovery, focusing on animal farms, riding stables and potential breeding sites. Adult and immature mosquitoes were collected, using active search or traps, in several natural and rural sites. Mosquitoes belonging to An. maculipennis complex were identified morphologically and molecularly by a home-made routine quantitative polymerase chain reaction (qPCR) assay, developed specifically for the rapid identification of An. labranchiae, and, when necessary, by amplification and sequencing of the ITS-2 molecular marker. RESULTS: Out of the 11 sites investigated, 6 were positive for Anopheles presence. All 20 An. maculipennis s.l. (7 adults, 10 larvae and 3 pupae) collected in the areas were identified as An. sacharovi by ITS-2 sequencing. CONCLUSIONS: The discovery of An. sacharovi, considered to have disappeared from Italy for over 50 years, has a strong health relevance and impact, highlighting an increase in the receptivity of the southern areas. As imported malaria cases in European countries are reported every year, the risk of Plasmodium introduction by gametocyte carriers among travellers from endemic countries should be taken into greater consideration. Our findings allow rethinking and building new models for the prediction and expansion of introduced malaria. Furthermore, to prevent the risk of reintroduction of the disease, the need to strengthen the surveillance of residual anophelism throughout the South should be considered.


Assuntos
Anopheles , Malária , Animais , Malária/epidemiologia , Anopheles/genética , Mosquitos Vetores , Itália/epidemiologia , Europa (Continente)
17.
Malar J ; 23(1): 107, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632650

RESUMO

BACKGROUND: Achieving effective control and elimination of malaria in endemic regions necessitates a comprehensive understanding of local mosquito species responsible for malaria transmission and their susceptibility to insecticides. METHODS: The study was conducted in the highly malaria prone Ujina Primary Health Center of Nuh (Mewat) district of Haryana state of India. Monthly entomological surveys were carried out for adult mosquito collections via indoor resting collections, light trap collections, and pyrethrum spray collections. Larvae were also collected from different breeding sites prevalent in the region. Insecticide resistance bioassay, vector incrimination, blood meal analysis was done with the collected vector mosquitoes. RESULTS: A total of 34,974 adult Anopheles mosquitoes were caught during the survey period, out of which Anopheles subpictus was predominant (54.7%). Among vectors, Anopheles stephensi was predominant (15.5%) followed by Anopheles culicifacies (10.1%). The Human Blood Index (HBI) in the case of An. culicifacies and An. stephensi was 6.66 and 9.09, respectively. Vector incrimination results revealed Plasmodium vivax positivity rate of 1.6% for An. culicifacies. Both the vector species were found resistant to DDT, malathion and deltamethrin. CONCLUSION: The emergence of insecticide resistance in both vector species, compromises the effectiveness of commonly used public health insecticides. Consequently, the implementation of robust insecticide resistance management strategies becomes imperative. To effectively tackle the malaria transmission, a significant shift in vector control strategies is warranted, with careful consideration and adaptation to address specific challenges encountered in malaria elimination efforts.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Animais , Humanos , Inseticidas/farmacologia , Resistência a Inseticidas , Malária/prevenção & controle , DDT , Controle de Mosquitos/métodos , Mosquitos Vetores , Nitrilas , Índia/epidemiologia
18.
BMC Public Health ; 24(1): 951, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566043

RESUMO

BACKGROUND: Despite significant success in the fight against malaria over the past two decades, malaria control programmes rely on only two insecticidal methods: indoor residual spraying and insecticidal-treated nets. House improvement (HI) can complement these interventions by reducing human-mosquito contact, thereby reinforcing the gains in disease reduction. This study assessed the implementation fidelity, which is the assessment of how closely an intervention aligns with its intended design, feasibility, and sustainability of community-led HI in southern Malawi. METHODS: The study, conducted in 22 villages (2730 households), employed a mixed-methods approach. Implementation fidelity was assessed using a modified framework, with longitudinal surveys collecting data on HI coverage indicators. Quantitative analysis, employing descriptive statistics, evaluated the adherence to HI implementation. Qualitative data came from in-depth interviews, key informant interviews, and focus groups involving project beneficiaries and implementers. Qualitative data were analysed using content analysis guided by the implementation fidelity model to explore facilitators, challenges, and factors affecting intervention feasibility. RESULTS: The results show that HI was implemented as planned. There was good adherence to the intended community-led HI design; however, the adherence could have been higher but gradually declined over time. In terms of intervention implementation, 74% of houses had attempted to have eaves closed in 2016-17 and 2017-18, compared to 70% in 2018-19. In 2016-17, 42% of houses had all four sides of the eaves closed, compared to 33% in 2018-19. Approximately 72% of houses were screened with gauze wire in 2016-17, compared to 57% in 2018-19. High costs, supply shortages, labour demands, volunteers' poor living conditions and adverse weather were reported to hinder the ideal HI implementation. Overall, the community described community-led HI as feasible and could be sustained by addressing these socioeconomic and contextual challenges. CONCLUSION: Our study found that although HI was initially implemented as planned, its fidelity declined over time. Using trained volunteers facilitated the fidelity and feasibility of implementing the intervention. A combination of rigorous community education, consistent training, information, education and communication, and intervention modifications may be necessary to address the challenges and enhance the intervention's fidelity, feasibility, and sustainability.


Assuntos
Anopheles , Malária , Animais , Humanos , Malaui , Estudos de Viabilidade , Grupos Focais , Malária/prevenção & controle
19.
Pestic Biochem Physiol ; 201: 105883, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685249

RESUMO

Trypsin is one of the most diverse and widely studied protease hydrolases. However, the diversity and characteristics of the Trypsin superfamily of genes have not been well understood, and their role in insecticide resistance is yet to be investigated. In this study, a total of 342 Trypsin genes were identified and classified into seven families based on homology, characteristic domains and phylogenetics in Anopheles sinensis, and the LY-Domain and CLECT-Domain families are specific to the species. Four Trypsin genes, (Astry2b, Astry43a, Astry90, Astry113c) were identified to be associated with pyrethroid resistance based on transcriptome analyses of three field resistant populations and qRT-PCR validation, and the knock-down of these genes significantly decrease the pyrethroid resistance of Anopheles sinensis based on RNAi. The activity of Astry43a can be reduced by five selected insecticides (indoxacarb, DDT, temephos, imidacloprid and deltamethrin); and however, the Astry43a could not directly metabolize these five insecticides, like the trypsin NYD-Tr did in earlier reports. This study provides the overall information frame of Trypsin genes, and proposes the role of Trypsin genes to insecticide resistance. Further researches are necessary to investigate the metabolism function of these trypsins to insecticides.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Piretrinas , Tripsina , Animais , Anopheles/genética , Anopheles/efeitos dos fármacos , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Tripsina/genética , Tripsina/metabolismo , Piretrinas/farmacologia , Filogenia , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Malária/transmissão , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
20.
J Vector Borne Dis ; 61(1): 29-42, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38648404

RESUMO

BACKGROUND OBJECTIVES: In urban areas, upsurge in population has resulted in more breeding sites for malaria vectors, and hence this scenario potentially undermine malaria elimination and control programs. The change in land use due to urbanization may result in the presence and distribution of malaria vectors. Understanding potential malaria vectors is essential for current and future malaria transmission control strategies. This study investigated the effects of rapid urbanization on malaria vectors An. culicifacies s.l. and An. stephensi L. in Ghaziabad district. METHODS: Ghaziabad district which presents several levels of urbanization was selected for this study. Entomological investigations were conducted seasonally from 2014-2016 in the rural, urban, and peri-urban regions. Vector incrimination study was done using ELISA (confirmation by PCR) on suspected Anopheles vectors viz. An. culicifacies, An. stephensi, An. annularis and An. subpictus. RESULTS: An. culicifacies showed alteration in distribution influenced by rural and agricultural land whereas An. stephensi was found to be influenced by artificial habitats and population growth. INTERPRETATION CONCLUSION: The study also confirms the association between the abundance of malaria vectors and land use change.


Assuntos
Anopheles , Malária , Mosquitos Vetores , Urbanização , Anopheles/fisiologia , Anopheles/crescimento & desenvolvimento , Índia/epidemiologia , Animais , Mosquitos Vetores/fisiologia , Mosquitos Vetores/crescimento & desenvolvimento , Malária/transmissão , Malária/epidemiologia , Estações do Ano , Ecossistema , Humanos , População Rural , Distribuição Animal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA