Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 718
Filtrar
1.
Sci Transl Med ; 16(760): eadl0715, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141698

RESUMO

Extracellular acyl-coenzyme A binding protein [ACBP encoded by diazepam binding inhibitor (DBI)] is a phylogenetically ancient appetite stimulator that is secreted in a nonconventional, autophagy-dependent fashion. Here, we show that low ACBP/DBI plasma concentrations are associated with poor prognosis in patients with anorexia nervosa, a frequent and often intractable eating disorder. In mice, anorexia induced by chronic restraint stress (CRS) is accompanied by a reduction in circulating ACBP/DBI concentrations. We engineered a chemical-genetic system for the secretion of ACBP/DBI through a biotin-activatable, autophagy-independent pathway. In transgenic mice expressing this system in hepatocytes, biotin-induced elevations in plasma ACBP/DBI concentrations prevented anorexia induced by CRS or chemotherapeutic agents including cisplatin, doxorubicin, and paclitaxel. ACBP/DBI reversed the CRS or cisplatin-induced increase in plasma lipocalin-2 concentrations and the hypothalamic activation of anorexigenic melanocortin 4 receptors, for which lipocalin-2 is an agonist. Daily intravenous injections of recombinant ACBP/DBI protein or subcutaneous implantation of osmotic pumps releasing recombinant ACBP/DBI mimicked the orexigenic effects of the chemical-genetic system. In conclusion, the supplementation of extracellular and peripheral ACBP/DBI might constitute a viable strategy for treating anorexia.


Assuntos
Anorexia , Inibidor da Ligação a Diazepam , Animais , Inibidor da Ligação a Diazepam/metabolismo , Anorexia/tratamento farmacológico , Anorexia/metabolismo , Humanos , Camundongos Transgênicos , Camundongos , Anorexia Nervosa/metabolismo , Anorexia Nervosa/tratamento farmacológico , Lipocalina-2/metabolismo , Lipocalina-2/sangue , Hipotálamo/metabolismo , Masculino , Feminino , Camundongos Endogâmicos C57BL , Restrição Física , Hepatócitos/metabolismo , Hepatócitos/efeitos dos fármacos
2.
Brain Behav ; 14(6): e3573, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898625

RESUMO

INTRODUCTION: Anorexia nervosa (AN) is a debilitating and potentially chronic eating disorder, characterized by low hedonic drive toward food, which has been linked with perturbations in both reward processing and dopaminergic activity. Neuromelanin-sensitive magnetic resonance imaging (MRI) is an emerging method to index midbrain neuromelanin-a by-product of dopaminergic synthesis. The assessment of midbrain neuromelanin, and its association with AN psychopathology and reward-related processes, may provide critical insights into reward circuit function in AN. METHODS: This study will incorporate neuromelanin-sensitive MRI into an existing study of appetitive conditioning in those with AN. Specifically, those with acute and underweight AN (N = 30), those with weight-restored AN (N = 30), and age-matched healthy controls (N = 30) will undergo clinical assessment of current and previous psychopathology, in addition to structural neuromelanin-sensitive MRI, diffusion MRI, and functional MRI (fMRI) during appetitive conditioning. CONCLUSION: This study will be among the first to interrogate midbrain neuromelanin in AN-a disorder characterized by altered dopaminergic activity. Results will help establish whether abnormalities in the midbrain synthesis of dopamine are evident in those with AN and are associated with symptomatic behavior and reduced ability to experience pleasure and reward.


Assuntos
Anorexia Nervosa , Imageamento por Ressonância Magnética , Melaninas , Mesencéfalo , Recompensa , Humanos , Melaninas/metabolismo , Anorexia Nervosa/diagnóstico por imagem , Anorexia Nervosa/metabolismo , Anorexia Nervosa/fisiopatologia , Mesencéfalo/diagnóstico por imagem , Mesencéfalo/metabolismo , Imageamento por Ressonância Magnética/métodos , Feminino , Adulto , Adulto Jovem , Adolescente , Masculino , Publicação Pré-Registro
3.
Neurobiol Dis ; 199: 106580, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38942323

RESUMO

Anorexia nervosa (AN) is an eating disorder (ED) that has seen an increase in its incidence in the last thirty years. Compared to other psychosomatic disorders, ED can be responsible for many major medical complications, moreover, in addition to the various systemic impairments, patients with AN undergo morphological and physiological changes affecting the cerebral cortex. Through immunohistochemical studies on portions of postmortem human brain of people affected by AN and healthy individuals, and western blot studies on leucocytes of young patients and healthy controls, this study investigated the role in the afore-mentioned processes of altered redox state. The results showed that the brain volume reduction in AN could be due to an increase in the rate of cell death, mainly by apoptosis, in which mitochondria, main cellular organelles affected by a decreased dietary intake, and a highly compromised intracellular redox balance, may play a pivotal role.


Assuntos
Anorexia Nervosa , Encéfalo , Estresse Oxidativo , Humanos , Anorexia Nervosa/metabolismo , Anorexia Nervosa/patologia , Estresse Oxidativo/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Feminino , Adulto , Adulto Jovem , Adolescente , Apoptose/fisiologia
4.
Artigo em Inglês | MEDLINE | ID: mdl-38901757

RESUMO

OBJECTIVE: Anorexia nervosa (AN) is characterized by hyperactivation of the hypothalamic-pituitary-adrenal axis and cognitive deficits. However, little is known about the rapid non-genomic stress response involvement. This study investigates the molecular, structural and behavioral signatures of the anorexic phenotype induction in female rats on stress-related mechanisms in the hippocampus. METHOD: Female adolescent rats, exposed to the combination of food restriction and wheel access, i.e., the activity-based anorexia (ABA) protocol, were sacrificed in the acute phase of the pathology (postnatal day [P]42) or following a 7-day recovery period (P49). RESULTS: ABA rats, in addition to body weight loss and increased wheel activity, alter their pattern of activity over days, showing increased food anticipatory activity, a readout of their motivation to engage in intense physical activity. Corticosterone plasma levels were enhanced at P42 while reduced at P49 in ABA rats. In the membrane fraction of the hippocampus, we found reduced glucocorticoid receptor levels together with reduced expression of caldesmon, n-cadherin and neuroligin-1, molecular markers of cytoskeletal stability and glutamatergic homeostasis. Accordingly, structural analyses revealed reduced dendritic spine density, a reduced number of mushroom-shaped spines, together with an increased number of thin-shaped spines. These events are paralleled by impairment in spatial memory measured in the spatial order object recognition test. These effects persisted even when body weight of ABA rats was restored. DISCUSSION: Our findings indicate that ABA induction orchestrates hippocampal maladaptive structural and functional plasticity, contributing to cognitive deficits, providing a putative mechanism that could be targeted in AN patients.


Assuntos
Hipocampo , Animais , Feminino , Hipocampo/metabolismo , Ratos , Memória Espacial/fisiologia , Anorexia/metabolismo , Anorexia/fisiopatologia , Anorexia/patologia , Corticosterona/sangue , Estresse Psicológico/fisiopatologia , Estresse Psicológico/metabolismo , Transtornos da Memória/fisiopatologia , Transtornos da Memória/patologia , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Anorexia Nervosa/metabolismo , Anorexia Nervosa/fisiopatologia , Anorexia Nervosa/patologia , Modelos Animais de Doenças
5.
Eur Rev Med Pharmacol Sci ; 28(9): 3289, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38766780

RESUMO

The article "Metabolomic profiling of amino acid alterations in anorexia nervosa: implications for appetite regulation and therapeutic strategies", by K. Donato, K. Dhuli, A. Macchia, M.C. Medori, C. Micheletti, G. Bonetti, M.R. Ceccarini, T. Beccari, P. Chiurazzi, S. Cristoni, V. Benfatti, L. Dalla Ragione, M. Bertelli, published in Eur Rev Med Pharmacol Sci 2023; 27 (6 Suppl): 64-76-DOI: 10.26355/eurrev_202312_34691-PMID: 38112949 has been retracted by the Editor in Chief for the following reasons. Following some concerns raised on PubPeer, the Editor in Chief has started an investigation to assess the validity of the results. The outcome of the investigation revealed that the manuscript presented major flaws in the following: -       Issues with ethical approval -       Undeclared conflict of interest Consequently, the Editor in Chief mistrusts the results presented and has decided to retract the article. The authors disagree with this retraction. This article has been retracted. The Publisher apologizes for any inconvenience this may cause. https://www.europeanreview.org/article/34691.


Assuntos
Aminoácidos , Anorexia Nervosa , Metabolômica , Humanos , Anorexia Nervosa/metabolismo , Aminoácidos/metabolismo , Regulação do Apetite
6.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38732001

RESUMO

Lipodystrophies (LDs) are rare, complex disorders of the adipose tissue characterized by selective fat loss, altered adipokine profile and metabolic impairment. Sirtuins (SIRTs) are class III NAD+-dependent histone deacetylases linked to fat metabolism. SIRT1 plays a critical role in metabolic health by deacetylating target proteins in tissue types including liver, muscle, and adipose. Circulating SIRT1 levels have been found to be reduced in obesity and increased in anorexia nervosa and patients experiencing weight loss. We evaluated circulating SIRT1 levels in relation to fat levels in 32 lipodystrophic patients affected by congenital or acquired LDs compared to non-LD subjects (24 with anorexia nervosa, 22 normal weight, and 24 with obesity). SIRT1 serum levels were higher in LDs than normal weight subjects (mean ± SEM 4.18 ± 0.48 vs. 2.59 ± 0.20 ng/mL) and subjects with obesity (1.7 ± 0.39 ng/mL), whereas they were close to those measured in anorexia nervosa (3.44 ± 0.46 ng/mL). Our findings show that within the LD group, there was no relationship between SIRT1 levels and the amount of body fat. The mechanisms responsible for secretion and regulation of SIRT1 in LD deserve further investigation.


Assuntos
Lipodistrofia , Sirtuína 1 , Humanos , Sirtuína 1/sangue , Sirtuína 1/metabolismo , Feminino , Adulto , Masculino , Lipodistrofia/sangue , Lipodistrofia/metabolismo , Tecido Adiposo/metabolismo , Obesidade/sangue , Obesidade/metabolismo , Adulto Jovem , Adolescente , Pessoa de Meia-Idade , Anorexia Nervosa/sangue , Anorexia Nervosa/metabolismo
7.
Int J Mol Sci ; 25(10)2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38791555

RESUMO

Disordered eating behavior differs between the restricting subtype (AN-R) and the binging and purging subtype (AN-BP) of anorexia nervosa (AN). Yet, little is known about how these differences impact fatty acid (FA) dysregulation in AN. To address this question, we analyzed 26 FAs and 7 FA lipogenic enzymes (4 desaturases and 3 elongases) in 96 women: 25 AN-R, 25 AN-BP, and 46 healthy control women. Our goal was to assess subtype-specific patterns. Lauric acid was significantly higher in AN-BP than in AN-R at the fasting timepoint (p = 0.038) and displayed significantly different postprandial changes 2 h after eating. AN-R displayed significantly higher levels of n-3 alpha-linolenic acid, stearidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid, and n-6 linoleic acid and gamma-linolenic acid compared to controls. AN-BP showed elevated EPA and saturated lauric acid compared to controls. Higher EPA was associated with elevated anxiety in AN-R (p = 0.035) but was linked to lower anxiety in AN-BP (p = 0.043). These findings suggest distinct disordered eating behaviors in AN subtypes contribute to lipid dysregulation and eating disorder comorbidities. A personalized dietary intervention may improve lipid dysregulation and enhance treatment effectiveness for AN.


Assuntos
Anorexia Nervosa , Ácidos Graxos , Humanos , Feminino , Anorexia Nervosa/metabolismo , Adulto , Ácidos Graxos/metabolismo , Adulto Jovem , Lipogênese , Ácido Eicosapentaenoico/metabolismo , Ácidos Láuricos/metabolismo , Elongases de Ácidos Graxos/metabolismo , Adolescente , Ácidos Graxos Dessaturases/metabolismo , Estudos de Casos e Controles , Ácidos Graxos Insaturados
8.
Nutrients ; 16(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38674862

RESUMO

Leptin is an appetite-regulating adipokine that is reduced in patients with anorexia nervosa (AN), a psychiatric disorder characterized by self-imposed starvation, and has been linked to hyperactivity, a hallmark of AN. However, it remains unknown how leptin receptor (LepR) and its JAK2-STAT3 downstream pathway in extrahypothalamic brain areas, such as the dorsal (dHip) and ventral (vHip) hippocampus, crucial for spatial memory and emotion regulation, may contribute to the maintenance of AN behaviors. Taking advantage of the activity-based anorexia (ABA) model (i.e., the combination of food restriction and physical activity), we observed reduced leptin plasma levels in adolescent female ABA rats at the acute phase of the disorder [post-natal day (PND) 42], while the levels increased over control levels following a 7-day recovery period (PND49). The analysis of the intracellular leptin pathway revealed that ABA rats showed an overall decrease of the LepR/JAK2/STAT3 signaling in dHip at both time points, while in vHip we observed a transition from hypo- (PND42) to hyperactivation (PND49) of the pathway. These changes might add knowledge on starvation-induced fluctuations in leptin levels and in hippocampal leptin signaling as initial drivers of the transition from adaptative mechanisms to starvation toward the maintenance of aberrant behaviors typical of AN patients, such as perpetuating restraint over eating.


Assuntos
Anorexia , Hipocampo , Janus Quinase 2 , Leptina , Receptores para Leptina , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Feminino , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Hipocampo/metabolismo , Leptina/sangue , Anorexia/etiologia , Anorexia/metabolismo , Ratos , Receptores para Leptina/metabolismo , Anorexia Nervosa/metabolismo , Anorexia Nervosa/sangue , Modelos Animais de Doenças , Adaptação Fisiológica
9.
Behav Brain Res ; 466: 115001, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38642861

RESUMO

INTRODUCTION: Anorexia Nervosa (AN) is a psycho-socio-biological disease characterized by severe weight loss as result of dieting and hyperactivity. Effective treatments are scarce, despite its significant prevalence and mortality. AN patients show lower basal insulin levels and increased metabolic clearance, leading to weight loss, cognitive deficits, and hormonal imbalances. Low-dose polymer insulin could potentially reverse these effects by restoring brain function, reducing fear of weight gain, encouraging food intake, and restoring fat depots. This study evaluates an insulin delivery system designed for sustained release and AN treatment. METHODS: AN-like model was established through dietary restriction (DR). On days 1-25, mice were on DR, and on days 26-31 they were on ad libitum regimen. An insulin-loaded delivery system was administered subcutaneously (1% w/w insulin). The impact of insulin treatment on gene expression in the hippocampus (cognition, regulation of stress, neurogenesis) and hypothalamus (eating behavior, mood) was assessed. Behavioral assays were conducted to evaluate motor activity and cognitive function. RESULTS: The delivery system demonstrated sustained insulin release, maintaining therapeutic plasma levels. Diet restriction mice treated with the insulin delivery system showed body weight restoration. Gene expression analysis revealed enhanced expression of CB1 and CB2 genes associated with improved eating behavior and cognition, while POMC expression was reduced. Insulin-polymer treatment restored cognitive function and decreased hyperactivity in the AN-like model. CONCLUSION: The PSA-RA-based insulin delivery system effectively restores metabolic balance, body weight, and cognitive function in the AN model. Its ability to steadily release insulin makes it a promising candidate for AN treatment."


Assuntos
Anorexia Nervosa , Peso Corporal , Modelos Animais de Doenças , Insulina , Animais , Insulina/administração & dosagem , Insulina/farmacologia , Camundongos , Anorexia Nervosa/tratamento farmacológico , Anorexia Nervosa/metabolismo , Peso Corporal/efeitos dos fármacos , Cognição/efeitos dos fármacos , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Feminino , Hipotálamo/metabolismo , Hipotálamo/efeitos dos fármacos , Camundongos Endogâmicos C57BL
10.
Neurobiol Dis ; 193: 106460, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432539

RESUMO

Recent research highlights the profound impact of the gut microbiome on neuropsychiatric disorders, shedding light on its potential role in shaping human behavior. In this study, we investigate the role of the gut microbiome in appetite regulation using activity-based anorexia (ABA) mouse model of anorexia nervosa (AN) - a severe eating disorder with significant health consequences. ABA was induced in conventional, antibiotic-treated, and germ-free mice. Our results show the clear influence of the gut microbiome on the expression of four orexigenic (neuropeptide Y, agouti-related peptide, melanin-concentrating hormone, and orexin) and four anorexigenic peptides (cocaine- and amphetamine-regulated transcript, corticotropin-releasing hormone, thyrotropin-releasing hormone, and pro-opiomelanocortin) in the hypothalamus. Additionally, we assessed alterations in gut barrier permeability. While variations were noted in germ-free mice based on feeding and activity, they were not directly attributable to the gut microbiome. This research emphasizes that the gut microbiome is a pivotal factor in AN's appetite regulation beyond just dietary habits or physical activity.


Assuntos
Anorexia Nervosa , Microbioma Gastrointestinal , Neuropeptídeos , Humanos , Camundongos , Animais , Apetite/fisiologia , Anorexia Nervosa/metabolismo , Neuropeptídeos/metabolismo , Hipotálamo/metabolismo
11.
Trends Mol Med ; 30(4): 339-349, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38472034

RESUMO

Anorexia nervosa (AN) is a complex neuropsychiatric disorder with genetic and epigenetic components that results in reduced food intake combined with alterations in the reward-processing network. While studies of patient cohorts and mouse models have uncovered genes and epigenetic changes associated with the disease, neuronal networks and brain areas preferentially activated and metabolic changes associated with reduced food intake, the underlying molecular and cellular mechanisms remain unknown. The use of both 2D in vitro cultures and 3D models, namely organoids and spheroids, derived from either human embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs), would allow identification of cell type-specific changes associated with AN and comorbid diseases, to study preferential connections between brain areas and organs, and the development of therapeutic strategies.


Assuntos
Anorexia Nervosa , Células-Tronco Pluripotentes Induzidas , Camundongos , Animais , Humanos , Anorexia Nervosa/metabolismo , Encéfalo , Neurônios/metabolismo , Modelos Animais de Doenças , Organoides
12.
Brain Struct Funct ; 229(1): 195-205, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062204

RESUMO

Patients with Anorexia Nervosa (AN) and athletes share intense physical activity and pituitary hormonal disturbances related to absolute (AN) or relative (athletes) undernutrition. Pituitary gland (PG) structure evaluations in those conditions are scarce, and did not differentiate anterior from posterior lobe. We evaluated the structure-function relationship of anterior and posterior PG in AN and athletes, and potential reversibility of this alteration in a group of weight-recovered patients (AN_Rec). Manual delineation of anterior (AP) and posterior (PP) PG was performed on T1-weighted MR images in 17 women with AN, 15 women with AN_Rec, 18 athletes women and 25 female controls. Anthropometric, hormonal, and psychometric parameters were explored and correlated with PG volumes. AP volume (APV) was lower in AN (448 ± 82 mm3), AN_Rec (505 ± 59 mm3), and athletes (540 ± 101 mm3) vs. Controls (615 ± 61 mm3, p < 0.00001, p < 0.00001 and p = 0.02, respectively); and smaller in AN vs. AN_Rec (p = 0.007). PP volume did not show any differences between the groups. APV was positively correlated with weight (R = 0.36, p = 0.011) in AN, and luteinizing hormone (R = 0.35, p = 0.014) in total group. In AN, mean growth hormone (GH) was negatively correlated with global pituitary volume (R = 0.31, p = 0.031) and APV (R = 0.29, p = 0.037). Absolute and relative undernutrition led to a decreased anterior pituitary gland volume, which was reversible with weight gain, correlated with low bodyweight, and blockade of gonadal hypothalamic-pituitary axis. Intriguing inverse correlation between anterior pituitary gland volume and GH plasma level could suggests a low storage capacity of anterior pituitary gland and increased reactivity to low insulin-like growth factor type 1.


Assuntos
Anorexia Nervosa , Desnutrição , Adeno-Hipófise , Feminino , Humanos , Anorexia Nervosa/metabolismo , Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Relação Estrutura-Atividade , Fator de Crescimento Insulin-Like I/metabolismo
13.
BMC Pediatr ; 23(1): 547, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907890

RESUMO

BACKGROUND: Anorexia nervosa (AN) is frequently associated with liver dysfunction, but the precise mechanism remains undefined. Since the nutritional marker albumin has a low correlation with changes in body weight in AN, and patients with AN often have dehydration as a complication, we also examined whether haematocrit (HCT)-adjusted serum albumin could be a better nutritional marker in AN. CASE PRESENTATION: We describe a 15-year-old girl with severe weight loss and liver damage whose liver enzymes normalized after 1.5 months of hospitalization and weight gain. We found a significant correlation between body weight (BW) and HCT-adjusted serum albumin (Spearman's rank correlation coefficient (rs) = 0.66, P = 5.28 × 10-3) and between BW and alanine aminotransferase (ALT) (rs = -0.825, P = 8.45 × 10-5). After division by HCT, correlations between serum albumin and ALT (rs = -0.835, P = 5.24 × 10-5) and between the iron-storage protein ferritin and the liver enzyme gamma-glutamyl transferase (rs = 1.0, P = 0.017) were also statistically significant. CONCLUSION: These results suggest that improvement of the nutritional status in AN could relieve liver dysfunction and facilitate iron transport. Since a decrease in the iron-transport protein transferrin presumably increases labile non-transferrin-bound iron, resulting in excess reactive oxygen species production, a defect in iron transport due to malnutrition could be one of the causes of liver injury in AN. In addition, HCT-adjusted albumin could be a better marker than its raw data to assess changes in nutritional status in AN.


Assuntos
Anorexia Nervosa , Sobrecarga de Ferro , Hepatopatias , Feminino , Humanos , Adolescente , Estado Nutricional , Anorexia Nervosa/complicações , Anorexia Nervosa/metabolismo , Hematócrito , Ferro , Fígado/metabolismo , Albumina Sérica/metabolismo , Peso Corporal
14.
Neurosci Biobehav Rev ; 152: 105279, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37307945

RESUMO

The dysregulation of excitatory and inhibitory neurotransmission is considered a pathological marker of Anorexia Nervosa (AN), however, no systematic evaluation of the proton Magnetic Resonance Spectroscopy (1H-MRS) literature has been conducted to date. Accordingly, we conducted a systematic review of neurometabolite differences between individuals with AN and healthy controls (HC). A comprehensive database search (until June 2023) identified seven studies meeting inclusion criteria. Samples included adolescents and adults with similar mean age (AN: 22.20 HC: 22.60), and female percentages (AN: 98%; HC: 94%). The review found a considerable need for improving study design and the reporting of MRS sequence parameters and analysis. Reduced glutamate concentrations in the ACC and OCC, and reduced Glx concentrations in the ACC were reported by one and two studies, respectively. Lastly, only one study to date has quantified GABA concentrations, with no significant differences found. In conclusion, there is currently insufficient evidence of excitatory and inhibitory neurometabolites changes in AN. As the 1H-MRS literature in AN increases, the key questions herein proposed must be revisited.


Assuntos
Anorexia Nervosa , Espectroscopia de Prótons por Ressonância Magnética , Anorexia Nervosa/metabolismo , Anorexia Nervosa/psicologia , Giro do Cíngulo/metabolismo , Lobo Occipital/metabolismo , Humanos , Ácido Glutâmico/metabolismo
15.
Proc Natl Acad Sci U S A ; 120(16): e2300015120, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37036983

RESUMO

Anorexia nervosa (AN) is a psychiatric illness with the highest mortality. Current treatment options have been limited to psychotherapy and nutritional support, with low efficacy and high relapse rates. Hypothalamic AgRP (agouti-related peptide) neurons that coexpress AGRP and neuropeptide Y (NPY) play a critical role in driving feeding while also modulating other complex behaviors. We have previously reported that genetic ablation of Tet3, which encodes a member of the TET family dioxygenases, specifically in AgRP neurons in mice, activates these neurons and increases the expression of AGRP, NPY, and the vesicular GABA transporter (VGAT), leading to hyperphagia and anxiolytic effects. Bobcat339 is a synthetic small molecule predicted to bind to the catalytic pockets of TET proteins. Here, we report that Bobcat339 is effective in mitigating AN and anxiety/depressive-like behaviors using a well-established mouse model of activity-based anorexia (ABA). We show that treating mice with Bobcat339 decreases TET3 expression in AgRP neurons and activates these neurons leading to increased feeding, decreased compulsive running, and diminished lethality in the ABA model. Mechanistically, Bobcat339 induces TET3 protein degradation while simultaneously stimulating the expression of AGRP, NPY, and VGAT in a TET3-dependent manner both in mouse and human neuronal cells, demonstrating a conserved, previously unsuspected mode of action of Bobcat339. Our findings suggest that Bobcat339 may potentially be a therapeutic for anorexia nervosa and stress-related disorders.


Assuntos
Anorexia Nervosa , Dioxigenases , Camundongos , Humanos , Animais , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Anorexia Nervosa/tratamento farmacológico , Anorexia Nervosa/metabolismo , Neurônios/metabolismo , Hipotálamo/metabolismo , Modelos Animais , Dioxigenases/metabolismo
16.
Nutrients ; 15(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36839388

RESUMO

Anorexia nervosa (AN), affecting up to 4% of all females and 0.3% of all males globally, remains the neuropsychiatric disorder with the highest mortality rate. However, the response to the current therapeutic options is rarely satisfactory. Considering the devastating prognosis of survival among patients with AN, further research aimed at developing novel, more effective therapies for AN is essential. Brain and serum tryptophan is mostly converted along the kynurenine pathway into multiple neuroactive derivatives, whereas only 1-2% is used for the synthesis of serotonin. This narrative review provides an update on the experimental and clinical research data concerning the metabolism of tryptophan along the kynurenine pathway in anorexia nervosa based on the available literature. We propose that in AN, lower levels of L-kynurenine and kynurenic acid result in diminished stimulation of the aryl hydrocarbon receptor, which could contribute to abnormally low body weight. The impact of L-kynurenine supplementation on anorexia in animal models and the effects of changes in tryptophan and downstream kynurenines on the clinical progression of AN require further investigation. Moreover, prospective clinical studies on larger cohorts of restrictive and binge-eating/purging AN patients and assessing the potential benefit of L-kynurenine as an add-on therapeutic agent, should follow.


Assuntos
Anorexia Nervosa , Triptofano , Animais , Anorexia Nervosa/metabolismo , Encéfalo/metabolismo , Cinurenina/metabolismo , Triptofano/metabolismo , Humanos
17.
Mol Psychiatry ; 28(4): 1622-1635, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36577844

RESUMO

Anorexia nervosa (AN) is a debilitating and deadly disease characterized by low body mass index due to diminished food intake, and oftentimes concurrent hyperactivity. A high percentage of AN behavioral and metabolic phenotypes can be replicated in rodents given access to a voluntary running wheel and subject to food restriction, termed activity-based anorexia (ABA). Despite the well-documented bodyweight loss observed in AN human patients and ABA rodents, much less is understood regarding the neurobiological underpinnings of these maladaptive behaviors. Hunger-promoting hypothalamic agouti-related peptide (AgRP) neurons have been well characterized in their ability to regulate appetite, yet much less is known regarding their activity and function in the mediation of food intake during ABA. Here, feeding microstructure analysis revealed ABA mice decreased food intake due to increased interpellet interval retrieval and diminished meal number. Longitudinal activity recordings of AgRP neurons in ABA animals exhibited a maladaptive inhibitory response to food, independent of basal activity changes. We then demonstrated that ABA development or progression can be mitigated by chemogenetic AgRP activation through the reprioritization of food intake (increased meal number) over hyperactivity, but only during periods of food availability. These results elucidate a potential neural target for the amelioration of behavioral maladaptations present in AN patients.


Assuntos
Anorexia Nervosa , Anorexia , Camundongos , Humanos , Animais , Anorexia/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Hipotálamo/metabolismo , Anorexia Nervosa/metabolismo , Neurônios/metabolismo , Ingestão de Alimentos
18.
Synapse ; 77(1): e22253, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36121749

RESUMO

Anorexia nervosa (AN) is a mental illness with the highest rates of mortality and relapse, and no approved pharmacological treatment. Using an animal model of AN, called activity-based anorexia (ABA), we showed earlier that a single intraperitoneal injection of ketamine at a dose of 30 mg/kg (30mgKET), but not 3 mg/kg (3mgKET), has a long-lasting effect upon adolescent females of ameliorating anorexia-like symptoms through the following changes: enhanced food consumption and body weight; reduced running and anxiety-like behavior. However, there were also individual differences in the drug's efficacy. We hypothesized that individual differences in ketamine's ameliorative effects involve drebrin A, an F-actin-binding protein known to be required for the activity-dependent trafficking of NMDA receptors (NMDARs). We tested this hypothesis by electron microscopic quantifications of drebrin A immunoreactivity at excitatory synapses of pyramidal neurons (PN) and GABAergic interneurons (GABA-IN) in deep layer 1 of prefrontal cortex (PFC) of these mice. Results reveal that (1) the areal density of excitatory synapses on GABA-IN is greater for the 30mgKET group than the 3mgKET group; (2) the proportion of drebrin A+ excitatory synapses is greater for both PN and GABA-IN of 30mgKET than 3mgKET group. Correlation analyses with behavioral measurements revealed that (3) 30mgKET's protection is associated with reduced levels of drebrin A in the cytoplasm of GABA-IN and higher levels at extrasynaptic membranous sites of PN and GABA-IN; (5) altogether pointing to 30mgKET-induced homeostatic plasticity that engages drebrin A at excitatory synapses of both PN and GABA-IN.


Assuntos
Anorexia Nervosa , Ketamina , Camundongos , Feminino , Animais , Ketamina/farmacologia , Anorexia Nervosa/tratamento farmacológico , Anorexia Nervosa/metabolismo , Anorexia/tratamento farmacológico , Anorexia/metabolismo , Individualidade , Sinapses/metabolismo , Modelos Animais de Doenças , Córtex Pré-Frontal/metabolismo , Citoplasma/metabolismo , Ácido gama-Aminobutírico/metabolismo
19.
Neuropharmacology ; 224: 109315, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356938

RESUMO

Anorexia nervosa (AN) is a psychiatric disorder characterised by malnutrition, fear of weight gain, and body image disturbances. The aetiology of AN is complex, and may involve environmental factors, genetic factors, and biochemical factors, with the latter meaning that AN may be closely associated with neurons, neurotransmitters, and hormones related to appetite and emotional regulation. In addition, an increasing number of studies have shown there is a link between the intestinal microbiota and psychiatric disorders, such as depression. However, few studies and reviews have focused on AN and gut microbes. Accordingly, in this review, we examine the potential pathogenesis of AN in terms of changes in the gut microbiota and its metabolites, and their effects on AN. The neurobiological function of the nervous system in relation to AN are also been mentioned. Furthermore, we suggest future research directions for this field, and note that probiotics may be developed for use as dietary supplements to help alleviate AN in patients.


Assuntos
Anorexia Nervosa , Microbioma Gastrointestinal , Probióticos , Humanos , Microbioma Gastrointestinal/fisiologia , Anorexia Nervosa/metabolismo , Encéfalo/metabolismo , Apetite/fisiologia , Probióticos/uso terapêutico
20.
Kurume Med J ; 67(2.3): 121-129, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36130885

RESUMO

Anorexia nervosa (AN) can cause severe protein energy malnutrition and the consequent development of various organ disorders. AN is known to cause hepatic complications. We report two cases of starvation and refeeding-induced liver injury in patients with AN, and review the literature on the hepatic complications of AN. Acute liver injury can be induced by both starvation and refeeding, although the underlying pathomechanisms and management of liver injury differ between these two conditions. Clinicians should carefully identify the clinical features to ensure an accurate diagnosis and appropriate management of these conditions.


Assuntos
Anorexia Nervosa , Humanos , Anorexia Nervosa/complicações , Anorexia Nervosa/diagnóstico , Anorexia Nervosa/metabolismo , Fígado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA