Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 679
Filtrar
1.
BMC Psychiatry ; 24(1): 335, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702695

RESUMO

OBJECTIVE: Alcohol withdrawal syndrome (AWS) is a complex condition associated with alcohol use disorder (AUD), characterized by significant variations in symptom severity among patients. The psychological and emotional symptoms accompanying AWS significantly contribute to withdrawal distress and relapse risk. Despite the importance of neural adaptation processes in AWS, limited genetic investigations have been conducted. This study primarily focuses on exploring the single and interaction effects of single-nucleotide polymorphisms in the ANK3 and ZNF804A genes on anxiety and aggression severity manifested in AWS. By examining genetic associations with withdrawal-related psychopathology, we ultimately aim to advance understanding the genetic underpinnings that modulate AWS severity. METHODS: The study involved 449 male patients diagnosed with alcohol use disorder. The Self-Rating Anxiety Scale (SAS) and Buss-Perry Aggression Questionnaire (BPAQ) were used to assess emotional and behavioral symptoms related to AWS. Genomic DNA was extracted from peripheral blood, and genotyping was performed using PCR. RESULTS: Single-gene analysis revealed that naturally occurring allelic variants in ANK3 rs10994336 (CC homozygous vs. T allele carriers) were associated with mood and behavioral symptoms related to AWS. Furthermore, the interaction between ANK3 and ZNF804A was significantly associated with the severity of psychiatric symptoms related to AWS, as indicated by MANOVA. Two-way ANOVA further demonstrated a significant interaction effect between ANK3 rs10994336 and ZNF804A rs7597593 on anxiety, physical aggression, verbal aggression, anger, and hostility. Hierarchical regression analyses confirmed these findings. Additionally, simple effects analysis and multiple comparisons revealed that carriers of the ANK3 rs10994336 T allele experienced more severe AWS, while the ZNF804A rs7597593 T allele appeared to provide protection against the risk associated with the ANK3 rs10994336 mutation. CONCLUSION: This study highlights the gene-gene interaction between ANK3 and ZNF804A, which plays a crucial role in modulating emotional and behavioral symptoms related to AWS. The ANK3 rs10994336 T allele is identified as a risk allele, while the ZNF804A rs7597593 T allele offers protection against the risk associated with the ANK3 rs10994336 mutation. These findings provide initial support for gene-gene interactions as an explanation for psychiatric risk, offering valuable insights into the pathophysiological mechanisms involved in AWS.


Assuntos
Anquirinas , Fatores de Transcrição Kruppel-Like , Polimorfismo de Nucleotídeo Único , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Anquirinas/genética , Adulto , Fatores de Transcrição Kruppel-Like/genética , Pessoa de Meia-Idade , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/psicologia , Alcoolismo/genética , Alcoolismo/psicologia , Agressão/psicologia , Agressão/fisiologia , Ansiedade/genética , Ansiedade/psicologia , Epistasia Genética , Sintomas Comportamentais/genética , Predisposição Genética para Doença/genética , Alelos
2.
J Plant Physiol ; 296: 154240, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38603993

RESUMO

Vesicle transport plays important roles in plant tolerance against abiotic stresses. However, the contribution of a vesicle formation related protein CaSec16 (COPII coat assembly protein Sec16-like) in pepper tolerance to salt stress remains unclear. In this study, we report that the expression of CaSec16 was upregulated by salt stress. Compared to the control, the salt tolerance of pepper with CaSec16-silenced was compromised, which was shown by the corresponding phenotypes and physiological indexes, such as the death of growing point, the aggravated leaf wilting, the higher increment of relative electric leakage (REL), the lower content of total chlorophyll, the higher accumulation of dead cells, H2O2, malonaldehyde (MDA), and proline (Pro), and the inhibited induction of marker genes for salt-tolerance and vesicle transport. In contrast, the salt tolerance of pepper was enhanced by the transient overexpression of CaSec16. In addition, heterogeneously induced CaSec16 protein did not enhance the salt tolerance of Escherichia coli, an organism lacking the vesicle transport system. By yeast two-hybrid method, an ankyrin protein, CaANK2B, was identified as the interacting protein of CaSec16. The expression of CaANK2B showed a downward trend during the process of salt stress. Compared with the control, pepper plants with transient-overexpression of CaANK2B displayed increased salt tolerance, whereas those with CaANK2B-silenced exhibited reduced salt tolerance. Taken together, both the vesicle formation related protein CaSec16 and its interaction partner CaANK2B can improve the pepper tolerance to salt stress.


Assuntos
Anquirinas , Tolerância ao Sal , Tolerância ao Sal/genética , Anquirinas/genética , Anquirinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Plantas Geneticamente Modificadas/genética , Regulação da Expressão Gênica de Plantas
3.
Sci Rep ; 14(1): 218, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168761

RESUMO

Notch signaling is universally conserved in metazoans where it is important for a wide variety of both normal and abnormal physiology. All four mammalian Notch receptors are activated by a conserved mechanism that releases Notch intracellular domains (NICDs) from the plasma membrane to translocate to the nucleus. Once there, NICDs interact through highly conserved ankyrin domains to form head-to-head homodimers on Notch sensitive promoters and stimulate transcription. Due to the highly conserved nature of these Notch ankyrin domains in all four mammalian Notch proteins, we hypothesized that NICDs may also engage in heterodimerization. Our results reveal the presence of two NICD dimerization states that can both engage in homo and heterodimerization. Using a Co-IP approach, we show that all NICD's can form non-transcriptionally active dimers and that the N4ICD appears to perform this function better than the other NICDs. Using a combination of ChIP analysis and transcriptional reporter assays, we also demonstrate the formation of transcriptionally active heterodimers that form on DNA. In particular, we demonstrate heterodimerization between the N2ICD and N4ICD and show that this heterodimer pair appears to exhibit differential activity on various Notch sensitive promoters. These results illustrate a new diversification of Notch signaling mechanisms which will help us better understand basic Notch function.


Assuntos
Anquirinas , Receptores Notch , Animais , Anquirinas/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Regiões Promotoras Genéticas , Mamíferos/metabolismo
4.
Neuron ; 112(7): 1133-1149.e6, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38290518

RESUMO

Dysfunction in sodium channels and their ankyrin scaffolding partners have both been implicated in neurodevelopmental disorders, including autism spectrum disorder (ASD). In particular, the genes SCN2A, which encodes the sodium channel NaV1.2, and ANK2, which encodes ankyrin-B, have strong ASD association. Recent studies indicate that ASD-associated haploinsufficiency in Scn2a impairs dendritic excitability and synaptic function in neocortical pyramidal cells, but how NaV1.2 is anchored within dendritic regions is unknown. Here, we show that ankyrin-B is essential for scaffolding NaV1.2 to the dendritic membrane of mouse neocortical neurons and that haploinsufficiency of Ank2 phenocopies intrinsic dendritic excitability and synaptic deficits observed in Scn2a+/- conditions. These results establish a direct, convergent link between two major ASD risk genes and reinforce an emerging framework suggesting that neocortical pyramidal cell dendritic dysfunction can contribute to neurodevelopmental disorder pathophysiology.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Neocórtex , Animais , Camundongos , Anquirinas/genética , Anquirinas/metabolismo , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/metabolismo , Dendritos/fisiologia , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Neocórtex/metabolismo , Células Piramidais/fisiologia
5.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069343

RESUMO

Congenital defects of the erythrocyte membrane are common in northern Europe and all over the world. The resulting diseases, for example, hereditary spherocytosis (HS), are often underdiagnosed, partly due to their sometimes mild and asymptomatic courses. In addition to a broad clinical spectrum, this is also due to the occasionally complex diagnostics that are not available to every patient. To test whether next-generation sequencing (NGS) could replace time-consuming spherocytosis-specific functional tests, 22 consecutive patients with suspected red cell membranopathy underwent functional blood tests. We were able to identify the causative genetic defect in all patients with suspected HS who underwent genetic testing (n = 17). The sensitivity of the NGS approach, which tests five genes (ANK1 (gene product: ankyrin1), EPB42 (erythrocyte membrane protein band4.2), SLC4A1 (band3), SPTA1 (α-spectrin), and SPTB (ß-spectrin)), was 100% (95% confidence interval: 81.5-100.0%). The major advantage of genetic testing in the paediatric setting is the small amount of blood required (<200 µL), and compared to functional assays, sample stability is not an issue. The combination of medical history, basic laboratory parameters, and an NGS panel with five genes is sufficient for diagnosis in most cases. Only in rare cases, a more comprehensive functional screening is required.


Assuntos
Anquirinas , Esferocitose Hereditária , Humanos , Criança , Anquirinas/genética , Anquirinas/metabolismo , Mutação , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/genética , Espectrina/genética , Espectrina/metabolismo , Proteínas do Citoesqueleto/genética , Sequenciamento de Nucleotídeos em Larga Escala
6.
DNA Cell Biol ; 42(10): 617-637, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37610843

RESUMO

Recent studies have shown that several members of the G-protein-coupled receptors (GPCR) superfamily play crucial roles in the maintenance of ion-water homeostasis of the sperm and Sertoli cells, development of the germ cells, formation of the blood barrier, and maturation of sperm. The GPCR, guanyl-nucleotide exchange factor, membrane traffic protein, and small GTPase genes were analyzed by microarray and bioinformatics (3513 sperm and Sertoli cell genes). In the microarray analyses of three human cases with different nonobstructive azoospermia sperm, the expression of GOLGA8IP, OR2AT4, PHKA1, A2M, OR56A1, SEMA3G, LRRC17, APP, ARHGAP33, RABGEF1, NPY2R, GHRHR, LTB4R2, GRIK5, OR6K6, NAPG, OR6C65, VPS35, FPR3, and ARL4A was upregulated, while expression of MARS, SIRPG, OGFR, GPR150, LRRK1, and NGEF was downregulated. There was an increase in GBP3, GBP3, TNF, TGFB3, and CLTC expression in the Sertoli cells of three human cases with NOA, whereas expression of PAQR4, RRAGD, RAC2, SERPINB8, IRPB1, MRGPRF, RASA2, SIRPG, RGS2, RAP2A, RAB2B, ARL17, SERINC4, XIAP, DENND4C, ANKRA2, CSTA, STX18, and SNAP23 were downregulated. A combined analysis of Enrich Shiny Gene Ontology (GO), STRING, and Cytoscape was used to predict proteins' molecular interactions and then to recognize master pathways. Functional enrichment analysis showed that the biological process (BP), regulation of protein metabolic process, regulation of small GTPase-mediated signal transduction were significantly expressed in up-/downregulated differentially expressed genes (DEGs) in sperm. In molecular function (MF) experiments of DEGs that were up-/downregulated, it was found that GPCR activity, guanyl ribonucleotide binding, GTPase activity and nucleoside-triphosphatase activity were overexpressed. An analysis of GO enrichment findings of Sertoli cells showed BP and MF to be common DEGs. When these gene mutations have been validated, they can be used to create new GPCR antagonists or agonists that are receptor-selective.


Assuntos
Azoospermia , Proteínas Monoméricas de Ligação ao GTP , Humanos , Masculino , Testículo/metabolismo , Azoospermia/genética , Azoospermia/metabolismo , Sêmen/metabolismo , Expressão Gênica , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de ras GTPase/genética , Anquirinas/genética , Anquirinas/metabolismo , Fatores de Ribosilação do ADP/genética , Fatores de Ribosilação do ADP/metabolismo , Proteínas rap de Ligação ao GTP/genética , Proteínas rap de Ligação ao GTP/metabolismo
7.
Sci Rep ; 13(1): 13845, 2023 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620394

RESUMO

Exposure to early life trauma increases the risk of psychopathology later in life. Here we investigated if ANK3 mRNA levels influence the relationship between childhood trauma experiences and clinical characteristics in mental disorders. A sample of 174 patients with bipolar disorder and 291 patients with schizophrenia spectrum disorder were included. Patients were diagnosed using the Structured Clinical Interview for DSM-IV, and childhood trauma was assessed using the childhood trauma questionnaire. Age at illness onset and number of psychotic and affective episodes were assessed from interview and medical records. Current depressive symptoms were measured using the calgary depression scale for schizophrenia and the inventory for depressive symptomatology. ANK3 expression was analyzed in whole blood using the Illumina HumanHT-12 v4 Expression BeadChip. Analyses were carried out with the Process adjusted for confounders. Within the total sample, patients with both high ANK3 expression and with the most severe childhood sexual abuse had more manic/hypomanic episodes and an earlier age at onset of the first episode. ANK3 mRNA levels also moderated the relationship between emotional neglect and manic/hypomanic episodes. Our results suggest that ANK3 expression levels moderate the association between specific types of childhood trauma and affective traits in mental disorders.


Assuntos
Experiências Adversas da Infância , Transtorno Bipolar , Transtornos Mentais , Humanos , Mania , Transtornos Mentais/genética , Transtorno Bipolar/genética , RNA Mensageiro/genética , Anquirinas/genética
8.
Cereb Cortex ; 33(20): 10634-10648, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37642601

RESUMO

Postnatal regulation of dendritic spine formation and refinement in cortical pyramidal neurons is critical for excitatory/inhibitory balance in neocortical networks. Recent studies have identified a selective spine pruning mechanism in the mouse prefrontal cortex mediated by class 3 Semaphorins and the L1 cell adhesion molecules, neuron-glia related cell adhesion molecule, Close Homolog of L1, and L1. L1 cell adhesion molecules bind Ankyrin B, an actin-spectrin adaptor encoded by Ankyrin2, a high-confidence gene for autism spectrum disorder. In a new inducible mouse model (Nex1Cre-ERT2: Ank2flox: RCE), Ankyrin2 deletion in early postnatal pyramidal neurons increased spine density on apical dendrites in prefrontal cortex layer 2/3 of homozygous and heterozygous Ankyrin2-deficient mice. In contrast, Ankyrin2 deletion in adulthood had no effect on spine density. Sema3F-induced spine pruning was impaired in cortical neuron cultures from Ankyrin B-null mice and was rescued by re-expression of the 220 kDa Ankyrin B isoform but not 440 kDa Ankyrin B. Ankyrin B bound to neuron-glia related CAM at a cytoplasmic domain motif (FIGQY1231), and mutation to FIGQH inhibited binding, impairing Sema3F-induced spine pruning in neuronal cultures. Identification of a novel function for Ankyrin B in dendritic spine regulation provides insight into cortical circuit development, as well as potential molecular deficiencies in autism spectrum disorder.


Assuntos
Transtorno do Espectro Autista , Espinhas Dendríticas , Camundongos , Animais , Espinhas Dendríticas/fisiologia , Anquirinas/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Células Piramidais/fisiologia , Córtex Pré-Frontal/metabolismo , Camundongos Knockout
9.
Cell Rep ; 42(7): 112784, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37428632

RESUMO

Rare genetic variants in ANK2, which encodes ankyrin-B, are associated with neurodevelopmental disorders (NDDs); however, their pathogenesis is poorly understood. We find that mice with prenatal deletion in cortical excitatory neurons and oligodendrocytes (Ank2-/-:Emx1-Cre), but not with adolescent deletion in forebrain excitatory neurons (Ank2-/-:CaMKIIα-Cre), display severe spontaneous seizures, increased mortality, hyperactivity, and social deficits. Calcium imaging of cortical slices from Ank2-/-:Emx1-Cre mice shows increased neuronal calcium event amplitude and frequency, along with network hyperexcitability and hypersynchrony. Quantitative proteomic analysis of cortical synaptic membranes reveals upregulation of dendritic spine plasticity-regulatory proteins and downregulation of intermediate filaments. Characterization of the ankyrin-B interactome identifies interactors associated with autism and epilepsy risk factors and synaptic proteins. The AMPA receptor antagonist, perampanel, restores cortical neuronal activity and partially rescues survival in Ank2-/-:Emx1-Cre mice. Our findings suggest that synaptic proteome alterations resulting from Ank2 deletion impair neuronal activity and synchrony, leading to NDDs-related behavioral impairments.


Assuntos
Anquirinas , Prosencéfalo , Proteoma , Convulsões , Animais , Camundongos , Anquirinas/genética , Cálcio , Fenótipo , Prosencéfalo/fisiopatologia , Proteoma/genética , Proteômica , Convulsões/genética , Camundongos Knockout
10.
BMC Genomics ; 24(1): 304, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280519

RESUMO

BACKGROUND: Hereditary spherocytosis (HS) is a common inherited hemolytic anemia, caused by mutations in five genes that encode erythrocyte membrane skeleton proteins. The red blood cell (RBC) lifespan could directly reflect the degree of hemolysis. In the present cohort of 23 patients with HS, we performed next-generation sequencing (NGS) and Levitt's carbon monoxide (CO) breath test to investigate the potential genotype-degree of hemolysis correlation. RESULTS: In the present cohort, we identified 8 ANK1,9 SPTB,5 SLC4A1 and 1 SPTA1 mutations in 23 patients with HS, and the median RBC lifespan was 14(8-48) days. The median RBC lifespan of patients with ANK1, SPTB and SLC4A1 mutations was 13 (8-23), 13 (8-48) and 14 (12-39) days, respectively, with no statistically significant difference (P = 0.618). The median RBC lifespan of patients with missense, splice and nonsense/insertion/deletion mutations was 16.5 (8-48), 14 (11-40) and 13 (8-20) days, respectively, with no significant difference (P = 0.514). Similarly, we found no significant difference in the RBC lifespan of patients with mutations located in the spectrin-binding domain and the nonspectrin-binding domain [14 (8-18) vs. 12.5 (8-48) days, P = 0.959]. In terms of the composition of mutated genes, 25% of patients with mild hemolysis carried ANK1 or SPTA1 mutations, while 75% of patients with mild hemolysis carried SPTB or SLC4A1 mutations. In contrast, 46.7% of patients with severe hemolysis had ANK1 or SPTA1 mutations and 53.3% of patients with severe hemolysis had SPTB or SLC4A1 mutations. However, there was no statistically significant difference in the distribution of mutated genes between the two groups (P = 0.400). CONCLUSION: The present study is the first to investigate the potential association between genotype and degree of hemolysis in HS. The present findings indicated that there is no significant correlation between genotype and degree of hemolysis in HS.


Assuntos
Hemólise , Esferocitose Hereditária , Humanos , Anquirinas/genética , Anquirinas/metabolismo , Espectrina/genética , Espectrina/metabolismo , Esferocitose Hereditária/genética , Esferocitose Hereditária/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas de Membrana/genética , Mutação , Genótipo
11.
Artigo em Inglês | MEDLINE | ID: mdl-37263801

RESUMO

Ankyrins are a family of proteins that link integral membrane proteins to the underlying spectrin-actin cytoskeleton and play a key role in activities such as cell motility, activation, proliferation, cell-cell contact, and the maintenance of specialized membrane domains. Ankyrin 3 (ANK3) is one of the three major subtypes of the ankyrin protein family. Ankryin genes are ubiquitously expressed, but their expression is highest in the brain. In the central nervous system, ankyrins have critical roles at the axonal initial segment, the nodes of Ranvier, and at synapses. To date, pathogenic variants in ANK3 have been reported in individuals with neuropsychiatric, cognitive, and neurodevelopmental disorders. The clinical severity is variable in these individuals with both autosomal recessive and autosomal dominant patterns of inheritance observed. These findings have suggested genotype-phenotype correlations and even isoform-specific implications for individuals with ANK3 pathogenic variants. Here, we report a patient with speech delay, autism spectrum disorder, and a language disorder in which a de novo nonsense ANK3 alteration was discovered by exome sequencing. Interestingly, the next-generation sequencing data suggested the change was mosaic in the affected child, and it was confirmed by digital polymerase chain reaction (dPCR) at 22% allelic fraction. To our knowledge, this is the first case of an individual with a pathogenic mosaic ANK3 variant. This finding expands upon the existing genotype-phenotype information available for the ANK3 gene while also highlighting potential gene expression correlations with phenotype.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Humanos , Transtorno do Espectro Autista/genética , Anquirinas/genética , Isoformas de Proteínas/genética , Encéfalo/metabolismo , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia
12.
Comp Immunol Microbiol Infect Dis ; 98: 102002, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37329681

RESUMO

This study is an attempt to extract and analyse the microsatellites or simple sequence repeats (SSRs) from the genomes of eight species of the genus Orthopoxvirus. The average size of genomes included in the study was 205 kb while the GC% was 33% for all but one. A total of 10,584 SSRs and 854 cSSRs were observed. POX2 with the largest genome of 224.499 kb had maximum of 1493 SSRs and 121 cSSRs (compound SSR) while POX7 with the smallest genome of 185.578 kb had minimum incident SSRs and cSSRs at 1181 and 96, respectively. There was significant correlation between genome size and SSR incidence. Di-nucleotide repeats were the most prevalent (57.47%) followed by mono- at 33% and tri- at 8.6%. Mono-nucleotide SSRs were predominantly T (51%) and A (48.4%). A majority of 80.32% SSRs were in the coding region. The three most similar genomes as per heat map POX1, POX7 and POX5 (93% similarity) are adjacent to one another in the phylogenetic tree. Ankyrin/Ankyrin like protein and Kelch protein which are associated with host determination and divergence have the highest SSR density in almost all studied viruses. Thus, SSRs are involved in genome evolution and host determination of viruses.


Assuntos
Orthopoxvirus , Vírus , Animais , Monkeypox virus/genética , Orthopoxvirus/genética , Filogenia , Biologia de Sistemas , Anquirinas/genética , Repetições de Microssatélites/genética
13.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37195288

RESUMO

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Assuntos
Segmento Inicial do Axônio , Epilepsia , Células-Tronco Pluripotentes Induzidas , Humanos , Segmento Inicial do Axônio/metabolismo , Anquirinas/genética , Anquirinas/metabolismo , Neurônios/metabolismo , Epilepsia/genética , Epilepsia/metabolismo
14.
BMC Pediatr ; 23(1): 267, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37246216

RESUMO

BACKGROUND: Due to the heterogeneity of the phenotype of Hereditary spherocytosis (HS) patients, some patients may have rare clinical complications such as biliary obstruction and ultra-high bilirubinemia. CASE PRESENTATION: A 8-y-old boy presented to the emergency with complaints of anemia for 6 years and worsened abdominal pain and scleral yellowing of the skin for 2 days. Physical examination showed tenderness in the middle and upper abdomen and splenomegaly. Abdominal CT revealed biliary obstruction. Genetic analysis revealed a de novo mutation in the gene ANK1, HS with biliary obstruction was diagnosed. The surgery of bile duct exploration and T-tube drainage, and splenectomy were performed successively. This patient was followed up for 13 months after splenectomy, and his condition was stable. CONCLUSION: The diagnosis of HS is not clinically difficult, and once a patient with HS is diagnosed, regular follow-up management and standardized treatment are required. Genetic testing is also needed to screen for other genetic disorders that may co-exist in patients with HS who do not have a good efficacy or who have a long-term chronic onset of jaundice.


Assuntos
Colestase , Esferocitose Hereditária , Humanos , Criança , Mutação , Anquirinas/genética , Esferocitose Hereditária/complicações , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/genética , Fenótipo
15.
Clin Genet ; 104(3): 384-386, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37088467

RESUMO

Interestingly, disease-causing mutations in the ANK2 gene have been identified in patients with autism since 2012, though with no full clinical description. In this Research Letter, for the first time, we describe the detailed characteristics of a patient with autism caused by a new mutation in this gene. Our report is a first step to better understanding ANK2-related autism and will contribute to facilitating its further diagnosis.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Humanos , Transtorno Autístico/genética , Mutação , Fenótipo , Transtorno do Espectro Autista/genética , Anquirinas/genética
17.
Blood Adv ; 7(17): 4705-4720, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36753606

RESUMO

Splenectomy improves the clinical parameters of patients with hereditary spherocytosis, but its potential benefit to red blood cell (RBC) functionality and the mechanism behind this benefit remain largely overlooked. Here, we compared 7 nonsplenectomized and 13 splenectomized patients with mutations in the ß-spectrin or the ankyrin gene. We showed that hematological parameters, spherocyte abundance, osmotic fragility, intracellular calcium, and extracellular vesicle release were largely but not completely restored by splenectomy, whereas cryohemolysis was not. Affected RBCs exhibited decreases in ß-spectrin and/or ankyrin contents and slight alterations in spectrin membrane distribution, depending on the mutation. These modifications were found in both splenectomized and nonsplenectomized patients and poorly correlated with RBC functionality alteration, suggesting additional impairments. Accordingly, we found an increased abundance of septins, small guanosine triphosphate-binding cytoskeletal proteins. Septins-2, -7, and -8 but not -11 were less abundant upon splenectomy and correlated with the disease severity. Septin-2 membrane association was confirmed by immunolabeling. Except for cryohemolysis, all parameters of RBC morphology and functionality correlated with septin abundance. The increased septin content might result from RBC maturation defects, as evidenced by (1) the decreased protein 4.2 and Rh-associated glycoprotein content in all patient RBCs, (2) increased endoplasmic reticulum remnants and endocytosis proteins in nonsplenectomized patients, and (3) increased lysosomal and mitochondrial remnants in splenectomized patients. Our study paves the way for a better understanding of the involvement of septins in RBC membrane biophysical properties. In addition, the lack of restoration of septin-independent cryohemolysis by splenectomy may call into question its recommendation in specific cases.


Assuntos
Espectrina , Esferocitose Hereditária , Humanos , Espectrina/genética , Espectrina/metabolismo , Septinas/genética , Septinas/metabolismo , Esplenectomia , Anquirinas/genética , Anquirinas/metabolismo , Esferocitose Hereditária/cirurgia , Esferocitose Hereditária/genética , Eritrócitos/metabolismo
18.
Genes (Basel) ; 14(2)2023 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-36833338

RESUMO

BACKGROUND AND OBJECTIVE: Chronic pain represents a major global health issue in terms of psycho-physiological, therapeutic, and economic burden, not limited to adults but also to the pediatric age. Despite its great impact, its molecular mechanisms have still not been completely unraveled. Focusing on the impact of epigenetics in the pain complex trait, we assessed the association between chronic pain and the methylation pattern of TRPA1, a key gene related to pain sensitivity. METHODS: We conducted a systematic review retrieving articles from three different databases. After deduplication, 431 items were subjected to manual screening, and then 61 articles were selected and screened again. Of these, only six were maintained for meta-analysis and analyzed using specific R packages. RESULTS: Six articles were divided into two groups (group 1: comparison of mean methylation levels between healthy subjects and patients with chronic pain; group 2: correlation between mean methylation levels and pain sensation). A non-significant mean difference was obtained from the analysis of group 1 with a value of 3.97 (95% C.I. -7.79; 15.73). Analysis of group 2 showed a high level of variability between studies (correlation = 0.35, 95% C.I. -0.12; 0.82) due to their heterogeneity (I2 = 97%, p < 0.01). CONCLUSIONS: Despite the high variability observed in the different studies analyzed, our results suggest that hypermethylation and increased pain sensitivity could be connected, possibly due to the variation of TRPA1 expression.


Assuntos
Dor Crônica , Canal de Cátion TRPA1 , Adulto , Criança , Humanos , Anquirinas/genética , Dor Crônica/genética , Metilação de DNA , Epigênese Genética , Canal de Cátion TRPA1/genética
19.
BMC Pediatr ; 23(1): 23, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36647015

RESUMO

BACKGROUND AND AIMS: Hereditary spherocytosis (HS) is one of the most common hereditary haemolytic disorders. Here, two unrelated families with the probands displaying typical manifestations of HS were enrolled. Our study aimed to characterize the effect of two novel variants in HS patients on gene splicing to help minimize the rate of misdiagnosis of HS and enhance clinicians' understanding of the disease. PARTICIPANTS AND METHODS: A retrospective review was conducted. Peripheral blood samples were collected from all the family members, and genomic DNA was extracted for genetic diagnostics. First, high-throughput sequencing technology was used for the preliminary screening of candidate causative variants. Thereafter, the variants were verified via Sanger sequencing. Furthermore, a pathogenicity analysis of the detected variants was performed including in silico prediction and in vitro experiments. We constructed matched wild-type and mutant-type minigene plasmid of ANK1 based on HEK293T cells to address the effects of variants on mRNA splicing. RESULTS: The c.1305 + 2 T > A (family1) and c.1305 + 2del (family2) variants were detected in the ANK1 gene. These two de novo mutations described by us which have not been reported prior to this study. Moreover, the validation results of splicing reporter systems revealed that the intronic mutations resulted in abnormal pre-mRNA splicing. Specifically, the minigene plasmid expressing the c.1305 + 2 T > A variant transcribed the two aberrant transcripts: r.1305_1306ins1305 + 1_1305 + 229 and r.1305_1306ins1305 + 1_1305 + 552. The minigene plasmid expressing c.1305 + 2del transcribed the two aberrant transcripts: r.1305_1306ins1305 + 1_1305 + 228 and r.1305_1306ins1305 + 1_1305 + 551. CONCLUSION: The two de novo variants identified in the ANK1 gene were the genetic etiology of the probands with HS in our study. Our findings further enrich the HS genotype database and provide a basis for genetic counselling and molecular diagnosis.


Assuntos
Precursores de RNA , Esferocitose Hereditária , Criança , Humanos , Anquirinas/genética , População do Leste Asiático , Células HEK293 , Mutação , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/genética
20.
Mol Genet Genomics ; 298(2): 427-439, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36598564

RESUMO

Hereditary Spherocytosis (HS) is a common cause of hemolytic anemia varying from mild to severe hemolysis due to defects in red cell membrane protein genes, namely ANK1, SPTB, SPTA1, SLC4A1, and EPB42. These genes are considerably very large spaning 40-50 exons making gene-by-gene analysis costly and laborious by conventional methods. In this study, we explored 26 HS patients harboring 21 ANK1 variants identified by next-generation sequencing (NGS), characteristics and spectrum of the detected ANK1variants were analyzed in this study. Clinically, all the HS patients showed moderate to severe transfusion-dependent hemolytic anemia, some requiring splenectomy. We identified 13 novel and 8 reported variants, mainly 9 frameshifts, 2 missense, 6 nonsense, and 4 splice site ANK1 variants, using NGS technology. Frameshifts were remarkably the most common variant type seen in Indian HS patients with ANK1 gene defects. We have also explored expression levels of red cell membrane ankyrin protein by flow cytometry in 14 HS patients with ANK1 gene defects and a significant reduction in ankyrin protein expression has been found. This report mainly illustrates the molecular and phenotypic heterogeneity of ANK1 variants causing HS in Indian patients. Ankyrin-1 mutations are a significant cause of loss of function in dominant HS in the Indian population. Comprehensive genetic and phenotypic evaluation assists in implementing the knowledge of genetic patterns and spectrum of ANK1 gene variants, providing molecular support for HS diagnosis.


Assuntos
Anquirinas , Esferocitose Hereditária , Humanos , Anquirinas/genética , Anquirinas/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Membrana/genética , Mutação , Esferocitose Hereditária/genética , Esferocitose Hereditária/diagnóstico , Esferocitose Hereditária/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA