Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.525
Filtrar
1.
Nat Commun ; 15(1): 5670, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-38971872

RESUMO

Targeted immunomodulation for reactivating innate cells, especially macrophages, holds great promise to complement current adaptive immunotherapy. Nevertheless, there is still a lack of high-performance therapeutics for blocking macrophage phagocytosis checkpoint inhibitors in solid tumors. Herein, a peptide-antibody combo-supramolecular in situ assembled CD47 and CD24 bi-target inhibitor (PAC-SABI) is described, which undergoes biomimetic surface propagation on cancer cell membranes through ligand-receptor binding and enzyme-triggered reactions. By simultaneously blocking CD47 and CD24 signaling, PAC-SABI enhances the phagocytic ability of macrophages in vitro and in vivo, promoting anti-tumor responses in breast and pancreatic cancer mouse models. Moreover, building on the foundation of PAC-SABI-induced macrophage repolarization and increased CD8+ T cell tumor infiltration, sequential anti-PD-1 therapy further suppresses 4T1 tumor progression, prolonging survival rate. The in vivo construction of PAC-SABI-based nano-architectonics provides an efficient platform for bridging innate and adaptive immunity to maximize therapeutic potency.


Assuntos
Antígeno CD24 , Antígeno CD47 , Macrófagos , Peptídeos , Fagocitose , Transdução de Sinais , Antígeno CD47/metabolismo , Antígeno CD47/imunologia , Animais , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Camundongos , Fagocitose/efeitos dos fármacos , Antígeno CD24/metabolismo , Antígeno CD24/imunologia , Feminino , Humanos , Linhagem Celular Tumoral , Peptídeos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Camundongos Endogâmicos BALB C , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Imunoterapia/métodos , Neoplasias da Mama/imunologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Anticorpos/imunologia , Anticorpos/farmacologia , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores
2.
Front Immunol ; 15: 1401528, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38881902

RESUMO

CD24 is a glycosylphosphatidylinositol-anchored protein that is expressed in a wide range of tissues and cell types. It is involved in a variety of physiological and pathological processes, including cell adhesion, migration, differentiation, and apoptosis. Additionally, CD24 has been studied extensively in the context of cancer, where it has been found to play a role in tumor growth, invasion, and metastasis. In recent years, there has been growing interest in CD24 as a potential therapeutic target for cancer treatment. This review summarizes the current knowledge of CD24, including its structure, function, and its role in cancer. Finally, we provide insights into potential clinical application of CD24 and discuss possible approaches for the development of targeted cancer therapies.


Assuntos
Antígeno CD24 , Neoplasias , Humanos , Antígeno CD24/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Animais , Terapia de Alvo Molecular
3.
J Cancer Res Clin Oncol ; 150(6): 317, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38914670

RESUMO

INTRODUCTION: CD24 is a highly glycosylated glycosylphosphatidylinositol anchored membrane protein that plays an important role in tumor progression. The aim of this study was to investigate the effect of abnormal expression of CD24 on the proliferation, migration and invasion of breast cancer (BC) cells, and the molecular mechanism of regulating CD24 expression in breast cancer. METHODOLOGY: The bioinformatics method was used to predict the expression level of CD24 in BC and its relationship with the occurrence and development of BC. IHC, RT-qPCR and WB were used to detect the expression of CD24 in BC tissues and cells. The proliferation of CD24 was evaluated by CCK-8 and colony formation assay, and the migration and invasion of CD24 were evaluated by wound healing and transwell. In addition, the effect of CD24 on the malignancy of BC in vivo was further evaluated by subcutaneous tumorigenesis assay. Molecular mechanisms were measured by luciferase reporter assays, biotin-labeled miRNA pull-down assay, RIP, and western blotting. RESULTS: The results show that CD24 is highly expressed in breast cancer tissues and cell lines, and knockdown of CD24 in vivo and in vitro can inhibit the proliferation, migration and invasion of BC cells. Mechanistically, the transcription factor ZNF460 promotes its expression by binding to the CD24 promoter, and the expression of ZNF460 is regulated by miR-125a-5p, which inhibits its expression by targeting the 3'UTR of ZNF460. In addition, LINC00525 acts as a ceRNA sponge to adsorb miR-125a-5p and regulate its expression. CONCLUSIONS: Overexpression of CD24 is involved in the development and poor prognosis of BC, which can be used as a potential target for the treatment of BC and provide a theoretical basis for the treatment of BC.


Assuntos
Neoplasias da Mama , Antígeno CD24 , Proliferação de Células , Progressão da Doença , MicroRNAs , RNA Longo não Codificante , Humanos , Antígeno CD24/genética , Antígeno CD24/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , MicroRNAs/genética , Animais , Camundongos , RNA Longo não Codificante/genética , Camundongos Nus , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Movimento Celular/genética , Camundongos Endogâmicos BALB C , Prognóstico
4.
Sci Rep ; 14(1): 14900, 2024 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-38942903

RESUMO

Eukaryotic cells can synthesize formyl-methionine (fMet)-containing proteins not only in mitochondria but also in the cytosol to some extent. Our previous study revealed substantial upregulation of N-terminal (Nt)-fMet-containing proteins in the cytosol of SW480 colorectal cancer cells. However, the functional and pathophysiological implications remain unclear. Here, we demonstrated that removal of the Nt-formyl moiety of Nt-fMet-containing proteins (via expressing Escherichia coli PDF peptide deformylase) resulted in a dramatic increase in the proliferation of SW480 colorectal cancer cells. This proliferation coincided with the acquisition of cancer stem cell features, including reduced cell size, enhanced self-renewal capacity, and elevated levels of the cancer stem cell surface marker CD24 and pluripotent transcription factor SOX2. Furthermore, deformylation of Nt-fMet-containing proteins promoted the tumorigenicity of SW480 colorectal cancer cells in an in vivo xenograft mouse model. Taken together, these findings suggest that cytosolic deformylation has a tumor-enhancing effect, highlighting its therapeutic potential for cancer treatment.


Assuntos
Amidoidrolases , Proliferação de Células , Citosol , Células-Tronco Neoplásicas , Humanos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Citosol/metabolismo , Camundongos , Linhagem Celular Tumoral , Amidoidrolases/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Antígeno CD24/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Progressão da Doença , Metionina/metabolismo , Metionina/análogos & derivados
5.
Cell Death Dis ; 15(5): 313, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702326

RESUMO

CD24 is overexpressed in various tumours and considered a regulator of cell migration, invasion, and proliferation. Recent studies have found that CD24 on ovarian cancer (OC) and triple-negative breast cancer cells interacts with the inhibitory receptor sialic-acid-binding Ig-like lectin 10 (Siglec-10) on tumour-associated macrophages (TAMs) to inhibit phagocytosis by macrophages. Because of its multiple roles in regulating the immune response and tumorigenesis, CD24 is a very promising therapeutic target. However, the regulatory mechanism of CD24 in OC remains unclear. Here, we found that the long noncoding RNA (lncRNA) IL21-AS1, which was upregulated in OC, inhibited macrophage-mediated phagocytosis and promoted OC cell proliferation and apoptosis inhibition. More importantly, after IL21-AS1 knockdown, a significant survival advantage was observed in mice engrafted with tumours. Mechanistically, we identified IL21-AS1 as a hypoxia-induced lncRNA. Moreover, IL21-AS1 increased HIF1α-induced CD24 expression under hypoxic conditions. In parallel, we found that IL21-AS1 acted as a competing endogenous RNA (ceRNA) for miR-561-5p to regulate CD24 expression. Finally, IL21-AS1 increased CD24 expression in OC and facilitated OC progression. Our findings provide a molecular basis for the regulation of CD24, thus highlighting a potential strategy for targeted treatment of OC.


Assuntos
Antígeno CD24 , Carcinogênese , Neoplasias Ovarianas , Fagocitose , RNA Longo não Codificante , Antígeno CD24/metabolismo , Antígeno CD24/genética , Feminino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Fagocitose/genética , Animais , Camundongos , Carcinogênese/genética , Carcinogênese/patologia , Linhagem Celular Tumoral , Progressão da Doença , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , MicroRNAs/genética , Camundongos Nus , Apoptose/genética , Camundongos Endogâmicos BALB C , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética
6.
Sci Rep ; 14(1): 12245, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806508

RESUMO

Following the discovery of circulating tumor cells (CTCs) in the peripheral blood of cancer patients, CTCs were initially postulated to hold promise as a valuable prognostic tool through liquid biopsy. However, a decade and a half of accumulated data have revealed significant complexities in the investigation of CTCs. A challenging aspect lies in the reduced expression or complete loss of key epithelial markers during the epithelial-mesenchymal transition (EMT). This likely hampers the identification of a pathogenetically significant subset of CTCs. Nevertheless, there is a growing body of evidence regarding the prognostic value of such molecules as CD24 expressing in the primary breast tumor. Herewith, the exact relevance of CD24 expression on CTCs remains unclear. We used two epithelial markers (EpCAM and cytokeratin 7/8) to assess the count of CTCs in 57 breast cancer patients, both with (M0mts) and without metastasis (M0) during the follow-up period, as well as in M1 breast cancer patients. However, the investigation of these epithelial markers proved ineffective in identifying cell population expressing different combinations of EpCAM and cytokeratin 7/8 with prognostic significance for breast cancer metastases. Surprisingly, we found CD24+ circulating cells (CCs) in peripheral blood of breast cancer patients which have no epithelial markers (EpCAM and cytokeratin 7/8) but was strongly associated with distant metastasis. Namely, the count of CD45-EpCAM-CK7/8-CD24+ N-cadherin-CCs was elevated in both groups of patients, those with existing metastasis and those who developed metastases during the follow-up period. Simultaneously, an elevation in these cell counts beyond the established threshold of 218.3 cells per 1 mL of blood in patients prior to any treatment predicted a 12-fold risk of metastases, along with a threefold decrease in distant metastasis-free survival over a 90-month follow-up period. The origin of CD45-EpCAM-CK7/8-CD24+ N-cadherin-CCs remains unclear. In our opinion their existence can be explained by two most probable hypotheses. These cells could exhibit a terminal EMT phenotype, or it might be immature cells originating from the bone marrow. Nonetheless, if this hypothesis holds true, it's worth noting that the mentioned CCs do not align with any of the recognized stages of monocyte or neutrophil maturation, primarily due to the presence of CD45 expression in the myeloid cells. The results suggest the presence in the peripheral blood of patients with metastasis (both during the follow-up period and prior to inclusion in the study) of a cell population with a currently unspecified origin, possibly arising from both myeloid and tumor sources, as confirmed by the presence of aneuploidy.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Antígeno CD24 , Molécula de Adesão da Célula Epitelial , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Molécula de Adesão da Célula Epitelial/metabolismo , Antígeno CD24/metabolismo , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/sangue , Neoplasias da Mama/mortalidade , Prognóstico , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Idoso , Adulto , Transição Epitelial-Mesenquimal , Queratina-7/metabolismo , Queratina-8/metabolismo
7.
Cancer Lett ; 594: 216994, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38801885

RESUMO

Increasing evidence suggests the importance of CD24 in tumor progression, but its role and mechanism in esophageal squamous cell carcinoma (ESCC) remain unclear. The present study aims to explore the potential of CD24 as a novel predictive biomarker in ESCC, as well as its mechanism and therapeutic implications in metastasis and 5-FU chemoresistance. By using tissue microarray and immunohistochemistry, we found that CD24 expression was higher in ESCC tumor tissues than paired non-tumor tissues, further indicating that CD24 was markedly associated with poor prognosis. CD24 significantly promoted metastasis and 5-FU chemoresistance in vitro and in vivo. Mechanistically, CD24 competes with GIT2 to bind to Arf6, and stabilizes Arf6-GTP to activate the subsequent ERK pathway, thus promoting cancer progression. In addition, a significant positive correlation between CD24 and p-ERK was observed in clinical ESCC tissues. In summary, this study not only reveals CD24 as a regulatory factor for Arf6 activity, but also uncovers CD24-Arf6-ERK signaling axis as a novel mechanism of ESCC progression. Our findings suggest CD24 as a promising biomarker and therapeutic target in ESCC.


Assuntos
Fator 6 de Ribosilação do ADP , Fatores de Ribosilação do ADP , Antígeno CD24 , Resistencia a Medicamentos Antineoplásicos , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Antígeno CD24/metabolismo , Carcinoma de Células Escamosas do Esôfago/patologia , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Fatores de Ribosilação do ADP/metabolismo , Fatores de Ribosilação do ADP/genética , Animais , Linhagem Celular Tumoral , Masculino , Feminino , Camundongos , Sistema de Sinalização das MAP Quinases , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Pessoa de Meia-Idade , Camundongos Nus
8.
Hepatobiliary Pancreat Dis Int ; 23(5): 472-480, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38724321

RESUMO

BACKGROUND: Regulatory B cells (Bregs) is an indispensable element in inducing immune tolerance after liver transplantation. As one of the microRNAs (miRNAs), miR-29a-3p also inhibits translation by degrading the target mRNA, and yet the relationship between Bregs and miR-29a-3p has not yet been fully explored. This study aimed to investigate the impact of miR-29a-3p on the regulation of differentiation and immunosuppressive functions of memory Bregs (mBregs) and ultimately provide potentially effective therapies in inducing immune tolerance after liver transplantation. METHODS: Flow cytometry was employed to determine the levels of Bregs in peripheral blood mononuclear cells. TaqMan low-density array miRNA assays were used to identify the expression of different miRNAs, electroporation transfection was used to induce miR-29a-3p overexpression and knockdown, and dual luciferase reporter assay was used to verify the target gene of miR-29a-3p. RESULTS: In patients experiencing acute rejection after liver transplantation, the proportions and immunosuppressive function of mBregs in the circulating blood were significantly impaired. miR-29a-3p was found to be a regulator of mBregs differentiation. Inhibition of miR-29a-3p, which targeted nuclear factor of activated T cells 5 (NFAT5), resulted in a conspicuous boost in the differentiation and immunosuppressive function of mBregs. The inhibition of miR-29a-3p in CD19+ B cells was capable of raising the expression levels of NFAT5, thereby promoting B cells to differentiate into mBregs. In addition, the observed enhancement of differentiation and immunosuppressive function of mBregs upon miR-29a-3p inhibition was abolished by the knockdown of NFAT5 in B cells. CONCLUSIONS: miR-29a-3p was found to be a crucial regulator for mBregs differentiation and immunosuppressive function. Silencing miR-29a-3p could be a potentially effective therapeutic strategy for inducing immune tolerance after liver transplantation.


Assuntos
Antígenos CD19 , Linfócitos B Reguladores , Antígeno CD24 , Diferenciação Celular , Transplante de Fígado , MicroRNAs , Humanos , MicroRNAs/metabolismo , MicroRNAs/genética , Linfócitos B Reguladores/imunologia , Linfócitos B Reguladores/metabolismo , Antígenos CD19/metabolismo , Antígenos CD19/genética , Masculino , Antígeno CD24/metabolismo , Antígeno CD24/genética , Transdução de Sinais , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/genética , Feminino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Pessoa de Meia-Idade , Tolerância Imunológica , Células Cultivadas , Adulto , Fenótipo , Memória Imunológica
9.
J Ethnopharmacol ; 331: 118261, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38685363

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Despite various treatment modalities, the progression and metastasis of breast cancer (BC) are grave concerns due to the alarming disease-free survival rate (DFS) and overall survival rate (OS) of affected patients. Over the years, many antibiotics, synthetic compounds, medicinal plant isolates and polyherbal combinations have been used as adjuvants in therapy for the management of primary and secondary tumors. Paclitaxel (PTX)-based chemotherapy for breast cancer causes multiple adverse side effects in patients. Withania somnifera (L.) Dunal (WS) and Asparagus racemosus Willd. (AR) as Ayurveda-inspired plant-based adjuvants were investigated for their anticancer effects on MDA-MB-231 and 4T1 cells in mouse model systems. AIM OF THE STUDY: This study focused on evaluating the adjuvant properties of WS and AR plant extracts with PTX and their effectiveness over PTX alone in terms of tumor inhibition. MATERIALS AND METHODS: The effects of WS and AR on DNA double-strand breaks (DSBs), senescence induction and mitochondrial functions were evaluated in BC cells in vitro. The potential for cancer stem cell (CSC) inhibition was evaluated via mammosphere formation assays and CD44/CD24 immunostaining. In vivo tumor growth studies were conducted in athymic BALB/c mice for MDA-MB-231 cells and in BALB/c mice for 4T1 cells. RESULTS: Induction of senescence was evident due to DSBs induced by the WS and AR extracts. Mammosphere formation and CD44/CD24 CSC markers were reduced after treatment with WS, AR or the combination of both in MCF-7 cells. WS or AR inhibited epithelial-to-mesenchymal transition (EMT). In vivo studies demonstrated that tumor growth inhibition was more pronounced in the treated group than in the PTX alone group and the untreated control group. CONCLUSION: Our study showed that the use of WS or AR plant hydroalcoholic extracts in combination with paclitaxel (PTX) has better effects on sensitivity and efficacy than PTX alone, as demonstrated in in vitro BC cells and mouse models with BC cell grafts. Hence, scheduling adjuvant therapy with WS or AR alone or combined with PTX can be advantageous for the management of triple-negative BC (TNBC). Further studies are warranted in human clinical conditions to ascertain the efficacy of these treatments.


Assuntos
Asparagus , Neoplasias da Mama , Camundongos Endogâmicos BALB C , Paclitaxel , Extratos Vegetais , Withania , Animais , Asparagus/química , Humanos , Withania/química , Feminino , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Linhagem Celular Tumoral , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Camundongos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Antineoplásicos Fitogênicos/isolamento & purificação , Antígeno CD24/metabolismo , Receptores de Hialuronatos/metabolismo , Adjuvantes Farmacêuticos/farmacologia , Senescência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos
10.
Inflamm Res ; 73(6): 1047-1068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622285

RESUMO

BACKGROUND: Tumor immunotherapy brings new light and vitality to breast cancer patients, but low response rate and limitations of therapeutic targets become major obstacles to its clinical application. Recent studies have shown that CD24 is involved in an important process of tumor immune regulation in breast cancer and is a promising target for immunotherapy. METHODS: In this study, singleR was used to annotate each cell subpopulation after t-distributed stochastic neighbor embedding (t-SNE) methods. Pseudo-time trace analysis and cell communication were analyzed by Monocle2 package and CellChat, respectively. A prognostic model based on CD24-related genes was constructed using several machine learning methods. Multiple quantitative immunofluorescence (MQIF) was used to evaluate the spatial relationship between CD24+PANCK+cells and exhausted CD8+T cells. RESULTS: Based on the scRNA-seq analysis, 1488 CD24-related differential genes were identified, and a risk model consisting of 15 prognostic characteristic genes was constructed by combining the bulk RNA-seq data. Patients were divided into high- and low-risk groups based on the median risk score. Immune landscape analysis showed that the low-risk group showed higher infiltration of immune-promoting cells and stronger immune reactivity. The results of cell communication demonstrated a strong interaction between CD24+epithelial cells and CD8+T cells. Subsequent MQIF demonstrated a strong interaction between CD24+PANCK+ and exhausted CD8+T cells with FOXP3+ in breast cancer. Additionally, CD24+PANCK+ and CD8+FOXP3+T cells were positively associated with lower survival rates. CONCLUSION: This study highlights the importance of CD24+breast cancer cells in clinical prognosis and immunosuppressive microenvironment, which may provide a new direction for improving patient outcomes.


Assuntos
Neoplasias da Mama , Antígeno CD24 , Microambiente Tumoral , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Antígeno CD24/genética , Antígeno CD24/imunologia , Microambiente Tumoral/imunologia , Feminino , Prognóstico , Linfócitos T CD8-Positivos/imunologia , Aprendizado de Máquina , Multiômica
11.
Cell Rep ; 43(4): 114041, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38573857

RESUMO

CD24 is frequently overexpressed in ovarian cancer and promotes immune evasion by interacting with its receptor Siglec10, present on tumor-associated macrophages, providing a "don't eat me" signal that prevents targeting and phagocytosis by macrophages. Factors promoting CD24 expression could represent novel immunotherapeutic targets for ovarian cancer. Here, using a genome-wide CRISPR knockout screen, we identify GPAA1 (glycosylphosphatidylinositol anchor attachment 1), a factor that catalyzes the attachment of a glycosylphosphatidylinositol (GPI) lipid anchor to substrate proteins, as a positive regulator of CD24 cell surface expression. Genetic ablation of GPAA1 abolishes CD24 cell surface expression, enhances macrophage-mediated phagocytosis, and inhibits ovarian tumor growth in mice. GPAA1 shares structural similarities with aminopeptidases. Consequently, we show that bestatin, a clinically advanced aminopeptidase inhibitor, binds to GPAA1 and blocks GPI attachment, resulting in reduced CD24 cell surface expression, increased macrophage-mediated phagocytosis, and suppressed growth of ovarian tumors. Our study highlights the potential of targeting GPAA1 as an immunotherapeutic approach for CD24+ ovarian cancers.


Assuntos
Aciltransferases , Antígeno CD24 , Neoplasias Ovarianas , Fagocitose , Animais , Feminino , Humanos , Camundongos , Aciltransferases/metabolismo , Amidoidrolases/metabolismo , Amidoidrolases/genética , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Glicosilfosfatidilinositóis/metabolismo , Macrófagos/metabolismo , Macrófagos/imunologia , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia
12.
J Immunother ; 47(5): 149-159, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557756

RESUMO

Antibody-drug conjugates (ADCs) combine the high specificity of antibodies with the cytotoxicity of payloads and have great potential in pan-cancer immunotherapy. However, the current payloads for clinical uses have limited the therapeutic window due to their uncontrollable off-site toxicity. There is unmet needs to develop more potent ADC payloads with better safety and efficacy profiles. Nitric oxide (NO) is a special molecule that has low toxicity itself, which can kill tumor cells effectively when highly concentrated, has broad application prospects. Previously, we prepared for the first time an antibody-nitric oxide conjugate (ANC)-HN01, which showed inhibitory activity against hepatocellular carcinoma. However, the random conjugation method made HN01 highly heterogeneous and unstable. Here, we used site-specific conjugation-based engineered cysteine sites (CL-V211C) of anti-CD24 antibody to prepare a second-generation ANC with a drug-to-antibody ratio of 2. The homogeneous ANC, HN02 was stable in human plasma, shown in vitro bystander effect to neighboring cells and antiproliferative activity to CD24-targeted tumor cells. Compared with HN01, HN02 significantly prolonged the survival of tumor-bearing mice. In summary, we developed a stable and homogeneous site-specific conjugated ANC, which showed good antitumor activity and improved safety profile both in vitro and in vivo. This study provides new insight into the development of next generation of ADC candidates.


Assuntos
Imunoconjugados , Óxido Nítrico , Ensaios Antitumorais Modelo de Xenoenxerto , Humanos , Animais , Imunoconjugados/farmacologia , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Camundongos , Óxido Nítrico/metabolismo , Linhagem Celular Tumoral , Antígeno CD24/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Antineoplásicos Imunológicos/farmacologia , Antineoplásicos Imunológicos/química , Proliferação de Células/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias/tratamento farmacológico
13.
ACS Sens ; 9(5): 2540-2549, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38635557

RESUMO

Clinical diagnosis of ovarian cancer lacks high accuracy due to the weak selection of specific biomarkers along with the circumstance biomarkers localization. Clustering analysis of proteins transported on exosomes enables a more precise screening of effective biomarkers. Herein, through bioinformatics analysis of ovarian cancer and exosome proteomes, two coexpressed proteins, EpCAM and CD24, specifically enriched, were identified, together with the development of an as-derived dual-aptamer targeted exosome-based strategy for ovarian cancer screening. In brief, a DNA ternary polymer with aptamers targeting EpCAM and CD24 was designed to present a logic gate reaction upon recognizing ovarian cancer exosomes, triggering a rolling circle amplification chemiluminescent signal. A dynamic detection range of 6 orders of magnitude was achieved by quantifying exosomes. Moreover, for clinical samples, this strategy could accurately differentiate exosomes from healthy persons, other cancer patients, and ovarian cancer patients, enabling promising in situ detection. By accurately selecting biomarkers and constructing a dual-targeted exosomal protein detection strategy, the limitation of insufficient specificity of traditional protein markers was circumvented. This work contributed to the development of exosome-based prognosis monitoring in ovarian cancer through the identification of disease-specific exosome protein markers.


Assuntos
Aptâmeros de Nucleotídeos , Exossomos , Neoplasias Ovarianas , Neoplasias Ovarianas/diagnóstico , Feminino , Humanos , Exossomos/química , Exossomos/metabolismo , Aptâmeros de Nucleotídeos/química , Biomarcadores Tumorais , Molécula de Adesão da Célula Epitelial , Antígeno CD24/metabolismo , Técnicas Biossensoriais/métodos
14.
Cancer Epidemiol Biomarkers Prev ; 33(7): 933-943, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38652503

RESUMO

BACKGROUND: According to the stem cell hypothesis, breast carcinogenesis may be related to the breast stem cell pool size. However, little is known about associations of breast cancer risk factors, such as anthropometric measures, with the expression of stem cell markers in noncancerous breast tissue. METHODS: The analysis included 414 women with biopsy-confirmed benign breast disease in the Nurses' Health Study and Nurses' Health Study II. Birthweight, weight at age 18, current weight, and current height were reported via self-administered questionnaires. IHC staining of stem cell markers (CD44, CD24, and aldehyde dehydrogenase family 1 member A1) in histopathologically normal epithelial and stromal breast tissue was quantified using an automated computational image analysis system. Linear regression was used to examine the associations of early-life and adult anthropometric measures with log-transformed stem cell marker expression, adjusting for potential confounders. RESULTS: Birthweight [≥10.0 vs. <5.5 lbs: ß (95% confidence interval) = 4.29 (1.02, 7.56); P trend = 0.001 in the stroma] and adult height [≥67.0 vs. <63.0 inch: 0.86 (0.14, 1.58); P trend = 0.02 in the epithelium and stroma combined] were positively associated with CD44 expression. Childhood body fatness was inversely associated (P trend = 0.03) whereas adult height was positively associated with CD24 expression in combined stroma and epithelium (P trend = 0.03). CONCLUSIONS: Our data suggest that anthropometric measures, such as birthweight, adult height, and childhood body fatness, may be associated with the stem cell expression among women with benign breast disease. IMPACT: Anthropometric measures, such as birthweight, height, and childhood body fatness, may have long-term impacts on stem cell population in the breast.


Assuntos
Família Aldeído Desidrogenase 1 , Antígeno CD24 , Receptores de Hialuronatos , Retinal Desidrogenase , Humanos , Feminino , Adulto , Antígeno CD24/metabolismo , Família Aldeído Desidrogenase 1/metabolismo , Receptores de Hialuronatos/metabolismo , Retinal Desidrogenase/metabolismo , Pessoa de Meia-Idade , Biópsia , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Mama/patologia , Antropometria/métodos , Células-Tronco/metabolismo , Células-Tronco/patologia , Aldeído Desidrogenase/metabolismo
15.
Respir Res ; 25(1): 151, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561798

RESUMO

INTRODUCTION: EXO-CD24 are exosomes genetically manipulated to over-express Cluster of Differentiation (CD) 24. It consists of two breakthrough technologies: CD24, the drug, as a novel immunomodulator that is smarter than steroids without any side effects, and exosomes as the ideal natural drug carrier. METHODS: A randomized, single blind, dose-finding phase IIb trial in hospitalized patients with mild to moderate Coronavirus disease 2019 (COVID-19) related Acute Respiratory Distress Syndrome (ARDS) was carried out in two medical centers in Athens. Patients received either 109 or 1010 exosome particles of EXO-CD24, daily, for five consecutive days and monitored for 28 days. Efficacy was assessed at day 7 among 91 patients who underwent randomization. The outcome was also compared in a post-hoc analysis with an income control group (n = 202) that fit the inclusion and exclusion criteria. RESULTS: The mean age was 49.4 (± 13.2) years and 74.4% were male. By day 7, 83.7% showed improved respiratory signs and 64% had better oxygen saturation (SpO2) (p < 0.05). There were significant reductions in all inflammatory markers, most notably in C-reactive protein (CRP), lactate dehydrogenase (LDH), ferritin, fibrinogen and an array of cytokines. Conversely, levels of the anti-inflammatory cytokine Interleukin-10 (IL-10) were increased (p < 0.05). Of all the documented adverse events, none were considered treatment related. No drug-drug interactions were noted. Two patients succumbed to COVID-19. Post-hoc analysis revealed that EXO-CD24 patients exhibited greater improvements in clinical and laboratory outcomes compared to an observational income control group. CONCLUSIONS: EXO-CD24 presents a promising therapeutic approach for hyper-inflammatory state and in particular ARDS. Its unique combination of exosomes, as a drug carrier, and CD24, as an immunomodulator, coupled with inhalation administration, warrants further investigation in a larger, international, randomized, quadri-blind trial against a placebo.


Assuntos
COVID-19 , Exossomos , Síndrome do Desconforto Respiratório , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , SARS-CoV-2 , Método Simples-Cego , Fatores Imunológicos , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/genética , Portadores de Fármacos , Resultado do Tratamento , Antígeno CD24
16.
Cancer Sci ; 115(7): 2461-2472, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38655663

RESUMO

L-type amino acid transporter 1 (LAT1) is specifically expressed in many malignancies, contributes to the transport of essential amino acids, such as leucine, and regulates the mammalian target of rapamycin (mTOR) signaling pathway. We investigated the expression profile and functional role of LAT1 in prostate cancer using JPH203, a specific inhibitor of LAT1. LAT1 was highly expressed in castration-resistant prostate cancer (CRPC) cells, including C4-2 and PC-3 cells, but its expression level was low in castration-sensitive LNCaP cells. JPH203 significantly inhibited [14C] leucine uptake in CRPC cells but had no effect in LNCaP cells. JPH203 inhibited the proliferation, migration, and invasion of CRPC cells but not of LNCaP cells. In C4-2 cells, Cluster of differentiation (CD) 24 was identified by RNA sequencing as a novel downstream target of JPH203. CD24 was downregulated in a JPH203 concentration-dependent manner and suppressed activation of the Wnt/ß-catenin signaling pathway. Furthermore, an in vivo study showed that JPH203 inhibited the proliferation of C4-2 cells in a castration environment. The results of this study indicate that JPH203 may exert its antitumor effect in CRPC cells via mTOR and CD24.


Assuntos
Antígeno CD24 , Movimento Celular , Proliferação de Células , Transportador 1 de Aminoácidos Neutros Grandes , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Linhagem Celular Tumoral , Animais , Proliferação de Células/efeitos dos fármacos , Antígeno CD24/metabolismo , Camundongos , Movimento Celular/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Benzoxazóis/farmacologia , Leucina/farmacologia , Leucina/análogos & derivados , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Tirosina/análogos & derivados
18.
Front Immunol ; 15: 1367959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487533

RESUMO

CD24 is a protein found on the surface of cells that plays a crucial role in the proliferation, invasion, and spread of cancer cells. It adheres to cell membranes through glycosylphosphatidylinositol (GPI) and is associated with the prognosis and survival rate of cancer patients. CD24 interacts with the inhibitory receptor Siglec-10 that is present on immune cells like natural killer cells and macrophages, leading to the inhibition of natural killer cell cytotoxicity and macrophage-mediated phagocytosis. This interaction helps tumor cells escape immune detection and attack. Although the use of CD24 as a immune checkpoint receptor target for cancer immunotherapy is still in its early stages, clinical trials have shown promising results. Monoclonal antibodies targeting CD24 have been found to be well-tolerated and safe. Other preclinical studies are exploring the use of chimeric antigen receptor (CAR) T cells, antibody-drug conjugates, and gene therapy to target CD24 and enhance the immune response against tumors. In summary, this review focuses on the role of CD24 in the immune system and provides evidence for CD24 as a promising immune checkpoint for cancer immunotherapy.


Assuntos
Antígeno CD24 , Neoplasias , Humanos , Antígeno CD24/genética , Neoplasias/patologia , Imunoterapia/métodos , Células Matadoras Naturais , Macrófagos/metabolismo
19.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38462024

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent type of liver cancer, and CD24 gene is reportedly involved in HCC progression. However, the precise regulatory mechanisms of CD24 in HCC remain unclear. In this study, we established a primary HCC mouse model and observed that CD24, induced by inactivation of the Hippo pathway, was highly expressed in HCC. Using a systematic molecular and genomic approach, we identified the Hippo-YAP1-SOX4 pathway as the mechanism through which YAP1 induces CD24 upregulation in HCC cells. CD24 knockdown significantly attenuated YAP1 activation-induced HCC. These findings shed light on the link between CD24 and HCC progression, particularly in the Hippo-inactivated subclass of HCC. Therefore, CD24 may serve as a potential target for specific treatment of this HCC subclass.


Assuntos
Antígeno CD24 , Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Camundongos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Via de Sinalização Hippo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Regulação para Cima , Antígeno CD24/metabolismo
20.
Cell Signal ; 118: 111120, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38417636

RESUMO

Vestigial-like family member 1 (VGLL1) is one of the X-linked genes whose expression is elevated in basal-like breast cancer (BLBC) because of X-chromosome isodisomy. As an approach towards understanding its function, we performed correlation study using transcript data of breast cancer patients from cBioPortal for Cancer Genomics. Our analysis identified EGFR as the most correlated transcript with VGLL1. We demonstrate that VGLL1 promotes EGFR expression and increases the frequency of breast tumor initiating cells (CD44high/+CD24low/-). These findings are crucial because an elevated EGFR expression and high frequency of CD44high/+CD24low/- cells are defining features of BLBC, and we provide a new mechanistic insight into how their expressions are controlled. Importantly, VGLL1 regulation of EGFR and CD44high/+CD24low/- population is mediated by the hippo-transducer TAZ which exerts its oncogenic roles by binding and activating TEAD transcription factors. A crucial finding is that TEAD-binding domain of TAZ is dispensable for its regulation of EGFR and CD44high/+CD24low/- cells. Instead, VGLL1 stabilization of cytoplasmic TAZ is essential for these functions. Also, we show that VGLL1/TAZ restricts the surface expression of CD24 which contributes to the increased number of CD44high/+CD24low/- cells. In addition, we observed that VGLL1 represses AXL expression and suppresses claudin-low phenotype, and that is caused by the VGLL1 mediated nuclear expulsion of TAZ. Therefore, EGFR and AXL seem to represent two different breast tumor subtypes, and their differential expressions is controlled by VGLL1.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/patologia , Antígeno CD24/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA