Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.148
Filtrar
1.
Sci Adv ; 10(32): eadp3000, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39121224

RESUMO

Over 600 E3 ligases in humans execute ubiquitination of specific target proteins in a spatiotemporal manner to elicit desired signaling effects. Here, we developed a ubiquitin-specific proximity-based labeling method to selectively biotinylate substrates of a given ubiquitin ligase. By fusing the biotin ligase BirA and an Avi-tag variant to the candidate E3 ligase and ubiquitin, respectively, we were able to specifically enrich bona fide substrates of a ligase using a one-step streptavidin pulldown under denaturing conditions. We applied our method, which we named Ub-POD, to the really interesting new gene (RING) E3 ligase RAD18 and identified proliferating cell nuclear antigen and several other critical players in the DNA damage repair pathway. Furthermore, we successfully applied Ub-POD to the RING ubiquitin ligase tumor necrosis factor receptor-associated factor 6 and a U-box-type E3 ubiquitin ligase carboxyl terminus of Hsc70-interacting protein. We anticipate that our method could be widely adapted to all classes of ubiquitin ligases to identify substrates.


Assuntos
Ubiquitina-Proteína Ligases , Ubiquitina , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/química , Humanos , Ubiquitina/metabolismo , Especificidade por Substrato , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/química , Biotinilação , Coloração e Rotulagem/métodos , Ligação Proteica
2.
Int J Mol Sci ; 25(15)2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39125800

RESUMO

The measurement of dynamic changes in protein level and localization throughout the cell cycle is of major relevance to studies of cellular processes tightly coordinated with the cycle, such as replication, transcription, DNA repair, and checkpoint control. Currently available methods include biochemical assays of cells in bulk following synchronization, which determine protein levels with poor temporal and no spatial resolution. Taking advantage of genetic engineering and live-cell microscopy, we performed time-lapse imaging of cells expressing fluorescently tagged proteins under the control of their endogenous regulatory elements in order to follow their levels throughout the cell cycle. We effectively discern between cell cycle phases and S subphases based on fluorescence intensity and distribution of co-expressed proliferating cell nuclear antigen (PCNA)-mCherry. This allowed us to precisely determine and compare the levels and distribution of multiple replication-associated factors, including Rap1-interacting factor 1 (RIF1), minichromosome maintenance complex component 6 (MCM6), origin recognition complex subunit 1 (ORC1, and Claspin, with high spatiotemporal resolution in HeLa Kyoto cells. Combining these data with available mass spectrometry-based measurements of protein concentrations reveals the changes in the concentration of these proteins throughout the cell cycle. Our approach provides a practical basis for a detailed interrogation of protein dynamics in the context of the cell cycle.


Assuntos
Ciclo Celular , Replicação do DNA , Humanos , Células HeLa , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Imagem com Lapso de Tempo
3.
Science ; 385(6708): eadk5901, 2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39088616

RESUMO

The proliferating cell nuclear antigen (PCNA) clamp encircles DNA to hold DNA polymerases (Pols) to DNA for processivity. The Ctf18-RFC PCNA loader, a replication factor C (RFC) variant, is specific to the leading-strand Pol (Polε). We reveal here the underlying mechanism of Ctf18-RFC specificity to Polε using cryo-electron microscopy and biochemical studies. We found that both Ctf18-RFC and Polε contain specific structural features that direct PCNA loading onto DNA. Unlike other clamp loaders, Ctf18-RFC has a disordered ATPase associated with a diverse cellular activities (AAA+) motor that requires Polε to bind and stabilize it for efficient PCNA loading. In addition, Ctf18-RFC can pry prebound Polε off of DNA, then load PCNA onto DNA and transfer the PCNA-DNA back to Polε. These elements in both Ctf18-RFC and Polε provide specificity in loading PCNA onto DNA for Polε.


Assuntos
Replicação do DNA , Antígeno Nuclear de Célula em Proliferação , Proteína de Replicação C , Humanos , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/química , Microscopia Crioeletrônica , DNA/química , DNA/metabolismo , DNA Polimerase II/metabolismo , DNA Polimerase II/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas Nucleares , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/química , Ligação Proteica , Proteína de Replicação C/metabolismo , Proteína de Replicação C/química , Domínios Proteicos
4.
Proc Natl Acad Sci U S A ; 121(34): e2315759121, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39145935

RESUMO

Ubiquitination status of proliferating cell nuclear antigen (PCNA) is crucial for regulating DNA lesion bypass. After the resolution of fork stalling, PCNA is subsequently deubiquitinated, but the underlying mechanism remains undefined. We found that the N-terminal domain of ATAD5 (ATAD5-N), the largest subunit of the PCNA-unloading complex, functions as a scaffold for Ub-PCNA deubiquitination. ATAD5 recognizes DNA-loaded Ub-PCNA through distinct DNA-binding and PCNA-binding motifs. Furthermore, ATAD5 forms a heterotrimeric complex with UAF1-USP1 deubiquitinase, facilitating the deubiquitination of DNA-loaded Ub-PCNA. ATAD5 also enhances the Ub-PCNA deubiquitination by USP7 and USP11 through specific interactions. ATAD5 promotes the distinct deubiquitination process of UAF1-USP1, USP7, and USP11 for poly-Ub-PCNA. Additionally, ATAD5 mutants deficient in UAF1-binding had increased sensitivity to DNA-damaging agents. Our results ultimately reveal that ATAD5 and USPs cooperate to efficiently deubiquitinate Ub-PCNA prior to its release from the DNA in order to safely deactivate the DNA repair process.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Ligação a DNA , Antígeno Nuclear de Célula em Proliferação , Ubiquitina Tiolesterase , Peptidase 7 Específica de Ubiquitina , Ubiquitinação , ATPases Associadas a Diversas Atividades Celulares/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Humanos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/genética , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/genética , Ubiquitina/metabolismo , Dano ao DNA , Ligação Proteica , Proteases Específicas de Ubiquitina
5.
BMC Vet Res ; 20(1): 335, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068442

RESUMO

Fish gut is a versatile organ serving as the primary pathway for invasion by pathogens, particularly parasites, playing a crucial role in modulating the intestinal adaptive immune response. This study aimed to investigate the cellular-mediated reaction, mucosal acidity, and the expression of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), and CD68 in the intestines of catfish, Clarias gariepinus, naturally infected with helminths. Forty catfish were collected from the Nile River and examined for intestinal parasites. The intestinal tissues of the control and infected fish were fixed for histochemical and immunohistochemical studies. Two groups of helminths were found: cestodes Tetracampos ciliotheca and Polyonchobothrium clarias, and nematodes Paracamallanus cyathopharynx, with a prevalence rate of 63.63%, 18.0%, and 18.0%, respectively. Our results showed that the infected fish had a statistically significant rise in the activity of immune cells, including mast cells, eosinophil granular cells, and dendritic cells. This correlated with upregulation in the expressions of PCNA, VEGF, and CD68. Histochemical analyses demonstrated a marked increase in acidic mucus production, Sudan black B, and bromophenol mercury blue. This study enriches our understanding of the evolution of vertebrate immunity in combating intestinal parasitic infections and the host's adaptive responses.


Assuntos
Peixes-Gato , Doenças dos Peixes , Helmintíase Animal , Mucosa Intestinal , Animais , Peixes-Gato/parasitologia , Doenças dos Peixes/parasitologia , Doenças dos Peixes/imunologia , Mucosa Intestinal/parasitologia , Mucosa Intestinal/imunologia , Helmintíase Animal/parasitologia , Imunidade Celular , Fator A de Crescimento do Endotélio Vascular/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Enteropatias Parasitárias/veterinária , Enteropatias Parasitárias/parasitologia , Enteropatias Parasitárias/imunologia , Antígenos CD/metabolismo
6.
Braz J Med Biol Res ; 57: e13306, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38958363

RESUMO

Arbutin is utilized in traditional remedies to cure numerous syndromes because of its anti-microbial, antioxidant, and anti-inflammatory properties. This study aimed to evaluate chemopreventive effects of arbutin on azoxymethane (AOM)-induced colon aberrant crypt foci (ACF) in rats. Five groups of rats were used: normal control group (rats injected hypodermically with sterile phosphate-buffered saline once per week for two weeks) and groups 2-5, which were subcutaneously inoculated with 15 mg/kg AOM once a week for two weeks. AOM control and 5-fluorouracil (5-FU) control groups were fed 10% Tween orally daily for 8 weeks using a feeding tube. The treated groups were fed 30 and 60 mg/kg arbutin every day for 2 months. ACF from the AOM control group had aberrant nuclei in addition to multilayered cells and an absence of goblet cells. The negative control group displayed spherical cells and nuclei in basal positions. Histological examination revealed a reduced number of AFC cells from colon tissues of the 5-FU reference group. Arbutin-fed animals showed down-regulation of proliferating cell nuclear antigen (PCNA) and up-regulation of Bax protein compared to AOM control. Rats fed with arbutin displayed a significant increase of superoxide dismutase (SOD) and catalase (CAT) activities in colon tissue homogenates compared to the AOM control group. In conclusion, arbutin showed therapeutic effects against colorectal cancer, explained by its ability to significantly decrease ACF, down-regulate PCNA protein, and up-regulate Bax protein. In addition, arbutin significantly increased SOD and CAT, and decreased malondialdehyde (MDA) levels, which might be due to its anti-proliferative and antioxidant properties.


Assuntos
Focos de Criptas Aberrantes , Arbutina , Azoximetano , Antígeno Nuclear de Célula em Proliferação , Proteína X Associada a bcl-2 , Animais , Focos de Criptas Aberrantes/induzido quimicamente , Focos de Criptas Aberrantes/patologia , Focos de Criptas Aberrantes/prevenção & controle , Focos de Criptas Aberrantes/tratamento farmacológico , Antígeno Nuclear de Célula em Proliferação/metabolismo , Masculino , Arbutina/farmacologia , Ratos , Proteína X Associada a bcl-2/metabolismo , Colo/efeitos dos fármacos , Colo/patologia , Ratos Wistar , Fluoruracila , Carcinógenos
7.
Nat Commun ; 15(1): 6197, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043663

RESUMO

Replication stress compromises genomic integrity. Fork blocking lesions such as those induced by cisplatin and other chemotherapeutic agents arrest replication forks. Repriming downstream of these lesions represents an important mechanism of replication restart, however the single stranded DNA (ssDNA) gaps left behind, unless efficiently filled, can serve as entry point for nucleases. Nascent strand gaps can be repaired by BRCA-mediated homology repair. Alternatively, gaps can also be filled by translesion synthesis (TLS) polymerases. How these events are regulated is still not clear. Here, we show that PARP10, a poorly-characterized mono-ADP-ribosyltransferase, is recruited to nascent strand gaps to promote their repair. PARP10 interacts with the ubiquitin ligase RAD18 and recruits it to these structures, resulting in the ubiquitination of the replication factor PCNA. PCNA ubiquitination, in turn, recruits the TLS polymerase REV1 for gap filling. We show that PARP10 recruitment to gaps and the subsequent REV1-mediated gap filling requires both the catalytic activity of PARP10, and its ability to interact with PCNA. We moreover show that PARP10 is hyperactive in BRCA-deficient cells, and its inactivation potentiates gap accumulations and cytotoxicity in these cells. Our work uncovers PARP10 as a regulator of ssDNA gap filling, which promotes genomic stability in BRCA-deficient cells.


Assuntos
Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples , Proteínas de Ligação a DNA , Poli(ADP-Ribose) Polimerases , Antígeno Nuclear de Célula em Proliferação , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , DNA de Cadeia Simples/metabolismo , DNA de Cadeia Simples/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Dano ao DNA , Proteína BRCA2/metabolismo , Proteína BRCA2/genética , Nucleotidiltransferases/metabolismo , Nucleotidiltransferases/genética , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Linhagem Celular Tumoral , Células HEK293 , Síntese de DNA Translesão , DNA Polimerase Dirigida por DNA , Proteínas Proto-Oncogênicas
8.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(7): 757-764, 2024 Jul 15.
Artigo em Chinês | MEDLINE | ID: mdl-39014954

RESUMO

OBJECTIVES: To investigate the protective effects of 2-methoxyestradiol (2ME) against hypoxic pulmonary hypertension (HPH) in neonatal rats. METHODS: Ninety-six Wistar neonatal rats were randomly divided into a normoxia group, a hypoxia group, and a hypoxia + 2ME group, with each group further subdivided into 3-day, 7-day, 14-day, and 21-day subgroups, containing eight rats each. The hypoxia and hypoxia + 2ME groups received daily subcutaneous injections of saline and 2ME (240 µg/kg), respectively, while the normoxia group was raised in a normoxic environment with daily saline injections. Right ventricular systolic pressure (RVSP) was measured using the direct pressure method. Pulmonary vascular morphology was assessed using hematoxylin and eosin staining, with metrics including the percentage of medial thickness of small pulmonary arteries relative to the external diameter (MT%) and the cross-sectional area of the media of small pulmonary arteries relative to the total cross-sectional area (MA%). Immunohistochemistry was used to detect the expression levels of hypoxia-inducible factor-1α (HIF-1α) and proliferating cell nuclear antigen (PCNA) proteins, while real-time quantitative PCR was used to to assess HIF-1α and PCNA mRNA levels. RESULTS: Compared to the normoxia group, the hypoxia and hypoxia + 2ME groups showed increased RVSP and upregulated HIF-1α and PCNA protein and mRNA expression levels at 3, 7, 14, and 21 days after hypoxia (P<0.05). Furthermore, at 7, 14, and 21 days after hypoxia, the hypoxia group showed increased MT% and MA% (P<0.05). In comparison to the hypoxia group, the hypoxia + 2ME group exhibited reduced RVSP and downregulated HIF-1α and PCNA protein and mRNA expression levels, along with decreased MT% and MA% at 7, 14, and 21 days after hypoxia (P<0.05). CONCLUSIONS: 2ME may protect against HPH in neonatal rats by inhibiting the expression of HIF-1α and PCNA and reducing pulmonary vascular remodeling. Citation:Chinese Journal of Contemporary Pediatrics, 2024, 26(7): 757-764.


Assuntos
2-Metoxiestradiol , Animais Recém-Nascidos , Hipertensão Pulmonar , Subunidade alfa do Fator 1 Induzível por Hipóxia , Hipóxia , Antígeno Nuclear de Célula em Proliferação , Artéria Pulmonar , Ratos Wistar , Animais , 2-Metoxiestradiol/farmacologia , Ratos , Hipertensão Pulmonar/prevenção & controle , Hipertensão Pulmonar/tratamento farmacológico , Antígeno Nuclear de Célula em Proliferação/análise , Antígeno Nuclear de Célula em Proliferação/genética , Hipóxia/complicações , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Masculino , Feminino , Estradiol/farmacologia , Estradiol/análogos & derivados , RNA Mensageiro/análise
9.
J Mol Biol ; 436(16): 168695, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38969056

RESUMO

Proliferating cell nuclear antigen (PCNA), the homotrimeric eukaryotic sliding clamp protein, recruits and coordinates the activities of a multitude of proteins that function on DNA at the replication fork. Chromatin assembly factor 1 (CAF-1), one such protein, is a histone chaperone that deposits histone proteins onto DNA immediately following replication. The interaction between CAF-1 and PCNA is essential for proper nucleosome assembly at silenced genomic regions. Most proteins that bind PCNA contain a PCNA-interacting peptide (PIP) motif, a conserved motif containing only eight amino acids. Precisely how PCNA is able to discriminate between binding partners at the replication fork using only these small motifs remains unclear. Yeast CAF-1 contains a PIP motif on its largest subunit, Cac1. We solved the crystal structure of the PIP motif of CAF-1 bound to PCNA using a new strategy to produce stoichiometric quantities of one PIP motif bound to each monomer of PCNA. The PIP motif of CAF-1 binds to the hydrophobic pocket on the front face of PCNA in a similar manner to most known PIP-PCNA interactions. However, several amino acids immediately flanking either side of the PIP motif bind the IDCL or C-terminus of PCNA, as observed for only a couple other known PIP-PCNA interactions. Furthermore, mutational analysis suggests positively charged amino acids in these flanking regions are responsible for the low micromolar affinity of CAF-1 for PCNA, whereas the presence of a negative charge upstream of the PIP prevents a more robust interaction with PCNA. These results provide additional evidence that positive charges within PIP-flanking regions of PCNA-interacting proteins are crucial for specificity and affinity of their recruitment to PCNA at the replication fork.


Assuntos
Fator 1 de Modelagem da Cromatina , Modelos Moleculares , Antígeno Nuclear de Célula em Proliferação , Ligação Proteica , Saccharomyces cerevisiae , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Fator 1 de Modelagem da Cromatina/química , Fator 1 de Modelagem da Cromatina/genética , Cristalografia por Raios X , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Motivos de Aminoácidos , Sítios de Ligação , Sequência de Aminoácidos , Conformação Proteica
10.
Genes (Basel) ; 15(7)2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-39062611

RESUMO

Translesion synthesis (TLS) is a mechanism of DNA damage tolerance utilized by eukaryotic cells to replicate DNA across lesions that impede the high-fidelity replication machinery. In TLS, a series of specialized DNA polymerases are employed, which recognize specific DNA lesions, insert nucleotides across the damage, and extend the distorted primer-template. This allows cells to preserve genetic integrity at the cost of mutations. In humans, TLS enzymes include the Y-family, inserter polymerases, Polη, Polι, Polκ, Rev1, and the B-family extender polymerase Polζ, while in S. cerevisiae only Polη, Rev1, and Polζ are present. To bypass DNA lesions, TLS polymerases cooperate, assembling into a complex on the eukaryotic sliding clamp, PCNA, termed the TLS mutasome. The mutasome assembly is contingent on protein-protein interactions (PPIs) between the modular domains and subunits of TLS enzymes, and their interactions with PCNA and DNA. While the structural mechanisms of DNA lesion bypass by the TLS polymerases and PPIs of their individual modules are well understood, the mechanisms by which they cooperate in the context of TLS complexes have remained elusive. This review focuses on structural studies of TLS polymerases and describes the case of TLS holoenzyme assemblies in action emerging from recent high-resolution Cryo-EM studies.


Assuntos
Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA , Antígeno Nuclear de Célula em Proliferação , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Humanos , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Replicação do DNA/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , DNA/genética , DNA/metabolismo , Síntese de DNA Translesão
11.
Adv Pharmacol ; 100: 209-246, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39034053

RESUMO

Proliferating cell nuclear antigen (PCNA) is an essential scaffold protein in many cellular processes. It is best known for its role as a DNA sliding clamp and processivity factor during DNA replication, which has been extensively reviewed by others. However, the importance of PCNA extends beyond its DNA-associated functions in DNA replication, chromatin remodelling, DNA repair and DNA damage tolerance (DDT), as new non-canonical roles of PCNA in the cytosol have recently been identified. These include roles in the regulation of immune evasion, apoptosis, metabolism, and cellular signalling. The diverse roles of PCNA are largely mediated by its myriad protein interactions, and its centrality to cellular processes makes PCNA a valid therapeutic anticancer target. PCNA is expressed in all cells and plays an essential role in normal cellular homeostasis; therefore, the main challenge in targeting PCNA is to selectively kill cancer cells while avoiding unacceptable toxicity to healthy cells. This chapter focuses on the stress-related roles of PCNA, and how targeting these PCNA roles can be exploited in cancer therapy.


Assuntos
Neoplasias , Antígeno Nuclear de Célula em Proliferação , Humanos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Animais , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Terapia de Alvo Molecular , Dano ao DNA
12.
Zhonghua Zhong Liu Za Zhi ; 46(7): 676-685, 2024 Jul 23.
Artigo em Chinês | MEDLINE | ID: mdl-39034803

RESUMO

Objective: To explore the effect and molecular mechanism of circ_0000263 on HeLa cell activity, apoptosis, telomerase activity, and radiosensitivity. Methods: The Hela cells were divided into si-NC, si-circ, vector, circ_0000263, anti-NC, anti-miR-338-3p, miR-NC, miR-338-3p, si-circ+anti-NC, si-circ+ anti-miR-338-3p, si-circ+vector, si-circ+TERT, sh-NC, sh-circ groups. Reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) was used to detect the expressions of circ_0000263 and miR-338-3p. Cell clone formation array was used to detect cell survival; cell counting kit-8 (CCK-8) to detect cell proliferation; flow cytometry to detect apoptosis; western blot method to detect the expressions of proliferating cell nuclear antigen (PCNA), Cleaved-casp3, telomerase reverse transcriptase (TERT) proteins; double luciferase assay to detect the targeting relationships of circ_0000263 and miR-338-3p, miR-338-3p and TERT; telomere repeat amplification enzyme linked immunosorbent assay (TRAR-ELISA) to detect telomerase activity. Results: Circ_0000263 was highly expressed in Hela cells, miR-338-3p was low expressed, and TERT was highly expressed; circ_0000263 was also highly expressed in Hela cells treated with radiation (P<0.05). Knockdown of circ_0000263 inhibited the clone formation and cell proliferation ability of HeLa cells, and enhanced the radiosensitivity and apoptosis of HeLa cells. In contrast, knockdown of circ_0000263 decreased PCNA protein expression level and enhanced Cleaved-casp3 protein expression level in HeLa cells (P<0.05). The apoptosis rate in the si-circ group was (13.19±1.12)%, which was higher than (6.80±0.62)% of si-NC group (P<0.05). The apoptosis rate in the si-circ+4 Gy group was (24.82±1.57)%, which was higher than (17.00±0.96)% of si-NC+4 Gy group (P<0.05). Circ_0000263 targeted regulated miR-338-3p, and miR-338-3p targeted regulated TERT. MiR-338-3p was lowly expressed in HeLa cells, and knockdown of circ_0000263 elevated miR-338-3p expression level in HeLa cells. Circ_0000263 regulated TERT expression and inhibited telomerase activity through miR-338-3p. MiR-338-3p/TERT can restore the effect of circ_0000263 on the radiosensitivity of Hela cells. The apoptosis rate in the si-circ+anti-NC group was (27.37±0.89)%, which was higher than (18.22±1.18)% of the si-circ+anti-miR-338-3p group (P<0.05). The apoptosis rate in the si-circ+vector group was (27.55±0.48)%, which was higher than (20.10±0.68)% of si-circ+TERT group (P<0.05). After 72 hours of radiation by 4 Gy, the cell survival fraction of si-circ+anti-NC group was 0.41±0.02, which was lower than 0.66±0.03 of the si-circ+anti-miR-338-3p group (P<0.05); the cell survival fraction of si-circ+vector group was 0.42±0.05, which was lower than 0.70±0.03 of si-circ+TERT group (P<0.05). Conclusion: Inhibiting the expression of circ_0000263 supresses the proliferation of Hela cells by regulating miR-338-3p/TERT, promotes apoptosis, inhibits telomerase activity, increases the radiosensitivity of cancer cells, and provides a theoretical basis for improving the radiosensitivity of Hela cells.


Assuntos
Apoptose , Proliferação de Células , MicroRNAs , Tolerância a Radiação , Telomerase , Humanos , Células HeLa , MicroRNAs/metabolismo , MicroRNAs/genética , Telomerase/genética , Telomerase/metabolismo , Apoptose/efeitos da radiação , RNA Circular/genética , RNA Circular/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética
13.
Artigo em Chinês | MEDLINE | ID: mdl-38965852

RESUMO

Objective: To explore the effects of hinokiol on the cell cyle and apoptosis of CNE1 nasopharyngeal carcinoma cells and the relevant molecular mechanism. Methods: The CNE1 cells were cultured in vitro and incubated with different concentrations of honokiol, and the cells were divided into blank control group, 10 µmol/L, 20 µmol/L and 40 µmol/L hinokiol treatment groups, and 10 µg/ml cisplatin group. Cell viability was determined by methylthiazolyldiphenyl- tetrazolium bromide (MTT) method, the cell cycle distribution was detected by flow cytometry, mitochondrial membrane potential was detected by mitochondrial membrane potential test kit, apoptosis was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) method, and the proteins expression of proliferating cell nuclear antigen (PCNA) and G1/S specific cyclin D1 (cyclin D1) were detected by immunoblotting. RNA-Seq was conducted in the hinokiol-treated cells. The mRNA expression of yes-associated protein delta (YAP) was detected by quantitative reverse transcription polymerase chain reaction (RT-qPCR). The proteins expression of phosphor-YAP (p-YAP) and nuclear YAP were detected by immunoblotting, the nuclear distribution of YAP protein was detected by immunofluorescence in the cells with or without treated with the mammalian STE20-like kinase 1/2 (MST1/2) inhibitor (XMU-MP-1), hinokiol, and XMU-MP-1+hinokiol. Statistical analysis of the data was conducted using GraphPad Prism 8.0 software. Resluts Compared with the control group, the cell viablity of CNE1 cells, the levels of mitochondrial membrane potential, the proteins expression of PCNA and cyclin D1 in hinokiol treatment groups were markedly decreased (all P values<0.05), while the proportion of G0/G1 phase cells and the ratio of TUNEL-positive cells were significantly increased (both P values<0.05). Transcriptome analysis showed that differential genes were mainly enriched in Wnt signaling pathway, tumor necrosis factor pathway, and Hippo signaling pathway. The mRNA level of YAP and the protein expression of YAP in the nucleus were decreased and the level of p-YAP protein was increased in cells treated with hinokiol, which were significantly different from control group (all P values<0.05). Compared with the hinokiol group, XMU-MP-1+hinokiol groups showed the decrease of p-YAP protein expression (1.157±0.076 vs 0.479±0.038, t=37.120, P<0.05), the increase of YAP protein expression in the nucleus (0.143±0.012 vs 0.425±0.031, t=29.181, P<0.05), the reduced proportion of cells in G0/G1 phase [(72.494±3.309)% vs (58.747±2.865)%, t=17.265, P<0.05], and the decrease of apoptosis ratio [(53.158±3.376)% vs (29.621±2.713)%, t=28.584, P<0.05]. Conclusion: Hinokiol can arrest the cell cycle and induce the cell apoptosis of CNE1 cells via Hippo/YAP signaling pathway.


Assuntos
Apoptose , Compostos de Bifenilo , Ciclo Celular , Via de Sinalização Hippo , Lignanas , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Transdução de Sinais , Humanos , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Carcinoma Nasofaríngeo/metabolismo , Ciclo Celular/efeitos dos fármacos , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Lignanas/farmacologia , Compostos de Bifenilo/farmacologia , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Proteínas Serina-Treonina Quinases/metabolismo , Proliferação de Células/efeitos dos fármacos , Ciclina D1/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo
14.
Rev Esc Enferm USP ; 58: e20230183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38985820

RESUMO

OBJECTIVE: To observe the therapeutic effect of gentiopicroside, as the main component of Gentianaceae, on wounds in pressure injury (PI) model rats and explore its mechanism. METHOD: Male Sprague Dawley rats were randomly divided into control group, model group and gentiopicroside groups (50, 100 and 200 mg·kg-1·d-1 for 9 consecutive days). The mice's skeletal muscle fibroblast line NOR-10 cells were collected after being treated with gentiopicroside (0.2~5.0 M) and basic fibroblast growth factor receptor 1 (bFGFR1) inhibitor (5.0 M SU5402) for 7 days. RESULTS: Compared to the model group, the gentiopicroside groups showed significantly increased wound healing rates, reduced inflammatory cells in the wound tissues, and significantly increased expression levels of proliferating cell nuclear antigen (PCNA) and bFGFR1, accompanied by increased proliferation of new myofibroblasts. Gentiopicroside upregulated the mRNA expression of bFGFR1 and PCNA in NOR-10 cells in a dose-dependent manner; however, SU5402 reversed the effect of gentiopicroside. CONCLUSION: Gentiopicroside may promote myofibroblast proliferation by upregulating the expression of bFGFR1 and PCNA and ultimately accelerating the healing of PI wounds.


Assuntos
Glucosídeos Iridoides , Úlcera por Pressão , Ratos Sprague-Dawley , Regulação para Cima , Cicatrização , Animais , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/administração & dosagem , Cicatrização/efeitos dos fármacos , Masculino , Ratos , Úlcera por Pressão/tratamento farmacológico , Camundongos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antígeno Nuclear de Célula em Proliferação/metabolismo , Distribuição Aleatória , Proliferação de Células/efeitos dos fármacos
15.
Nat Commun ; 15(1): 5392, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38918391

RESUMO

DNA double-strand breaks (DSBs), such as those produced by radiation and radiomimetics, are amongst the most toxic forms of cellular damage, in part because they involve extensive oxidative modifications at the break termini. Prior to completion of DSB repair, the chemically modified termini must be removed. Various DNA processing enzymes have been implicated in the processing of these dirty ends, but molecular knowledge of this process is limited. Here, we demonstrate a role for the metallo-ß-lactamase fold 5'-3' exonuclease SNM1A in this vital process. Cells disrupted for SNM1A manifest increased sensitivity to radiation and radiomimetic agents and show defects in DSB damage repair. SNM1A is recruited and is retained at the sites of DSB damage via the concerted action of its three highly conserved PBZ, PIP box and UBZ interaction domains, which mediate interactions with poly-ADP-ribose chains, PCNA and the ubiquitinated form of PCNA, respectively. SNM1A can resect DNA containing oxidative lesions induced by radiation damage at break termini. The combined results reveal a crucial role for SNM1A to digest chemically modified DNA during the repair of DSBs and imply that the catalytic domain of SNM1A is an attractive target for potentiation of radiotherapy.


Assuntos
Quebras de DNA de Cadeia Dupla , Enzimas Reparadoras do DNA , Reparo do DNA , Exodesoxirribonucleases , Humanos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Exodesoxirribonucleases/metabolismo , Exodesoxirribonucleases/genética , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , DNA/metabolismo , DNA/genética , Ubiquitinação , Proteínas de Ciclo Celular
16.
Toxicol Appl Pharmacol ; 489: 117009, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906509

RESUMO

INTRODUCTION: Aripiprazole (ARI) is a recently developed antipsychotic medication that belongs to the second generation of antipsychotics. The literature has contradictory information regarding ARI, which has been classified as pregnant use category C by the FDA. METHODS: 125 pathogen-free fertilized eggs were incubated for 28 h and divided into five groups of 25 eggs each (including the control group), and 18 eggs with intact integrity were selected from each group. After the experimental groups were divided, ARI was administered subblastodermally with a Hamilton micro-injector at 4 different doses (1 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg). At the 48th hour of incubation, all eggs were hatched and embryos were removed from the embryonic membranes. And then morphologic (position of the neural tube (open or closed), crown-rump length, number of somites, embryological development status), histopathologic (apoptosis (caspase 3), cell proliferation (PCNA), in situ recognition of DNA breaks (tunnel)), genetic (BRE gene expression) analyzes were performed. RESULTS: According to the results of the morphological analysis, when the frequency of neural tube patency was evaluated among the experimental groups, a statistically significant difference was determined between the control group and all groups (p < 0.001). In addition, the mean crown-rump length and somite number of the embryos decreased in a dose-dependent manner compared to the control group. It was determined that mRNA levels of the BRE gene decreased in embryos exposed to ARI compared to the control group (p < 0.001). CONCLUSION: Morphologically, histopathologically, and genetically, aripiprazole exposure delayed neurogenesis and development in early chick embryos. These findings suggest its use in pregnant women may be teratogenic. We note that these results are preliminary for pregnant women, but they should be expanded and studied with additional and other samples.


Assuntos
Aripiprazol , Tubo Neural , Animais , Aripiprazol/toxicidade , Tubo Neural/efeitos dos fármacos , Embrião de Galinha , Antipsicóticos/toxicidade , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desenvolvimento Embrionário/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Antígeno Nuclear de Célula em Proliferação/metabolismo , Caspase 3/metabolismo , Caspase 3/genética
17.
Toxicol Appl Pharmacol ; 489: 117011, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38906510

RESUMO

The critical developmental stages of the embryo are strongly influenced by the dietary composition of the mother. Acrylamide is a food contaminant that can form in carbohydrate-rich foods that are heat-treated. The aim of this study was to investigate the toxicity of a relatively low dose of acrylamide on the development of the neural tube in the early stage chick embryos. Specific pathogen-free fertilized eggs (n = 100) were treated with acrylamide (0.1, 0.5, 2.5, 12.5 mg/kg) between 28-30th hours of incubation and dissected at 48th hours. In addition to morphological and histopathological examinations, proliferating cell nuclear antigen (PCNA) and caspase 3 were analyzed immunohistochemically. The brain and reproductive expression gene (BRE) was analyzed by RT-PCR. Acrylamide exposure had a negative effect on neural tube status even at a very low dose (0.1 mg/kg) (p < 0.05). Doses of 0.5 mg/kg and above caused a delay in neural tube development (p < 0.05). Crown-rump length and somite count decreased dose-dependently, while this decrease was not significant in the very low dose group (p > 0.05), which was most pronounced at doses of 2.5 and 12.5 mg/kg (p < 0.001). Acrylamide exposure dose-dependently decreased PCNA and increased caspase 3, with this change being significant at doses of 0.5 mg/kg and above (p < 0.001). BRE was downregulated at all acrylamide exposures except in the very low dose group (0.1 mg/kg). In conclusion, we find that acrylamide exposure (at 0.5 mg/kg and above) in post-gastrulation delays neural tube closure in chicken embryos by suppressing proliferation and apoptosis induction and downregulating BRE gene expression.


Assuntos
Acrilamida , Relação Dose-Resposta a Droga , Desenvolvimento Embrionário , Antígeno Nuclear de Célula em Proliferação , Animais , Embrião de Galinha , Acrilamida/toxicidade , Antígeno Nuclear de Célula em Proliferação/metabolismo , Desenvolvimento Embrionário/efeitos dos fármacos , Tubo Neural/efeitos dos fármacos , Tubo Neural/embriologia , Caspase 3/metabolismo , Caspase 3/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos
18.
Nucleic Acids Res ; 52(13): 7650-7664, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38842913

RESUMO

DNA polymerase δ (pol δ) holoenzymes, comprised of pol δ and the processivity sliding clamp, PCNA, carry out DNA synthesis during lagging strand replication, initiation of leading strand replication, and the major DNA damage repair and tolerance pathways. Pol δ holoenzymes are assembled at primer/template (P/T) junctions and initiate DNA synthesis in a stepwise process involving the major single strand DNA (ssDNA)-binding protein complex, RPA, the processivity sliding clamp loader, RFC, PCNA and pol δ. During this process, the interactions of RPA, RFC and pol δ with a P/T junction all significantly overlap. A burning issue that has yet to be resolved is how these overlapping interactions are accommodated during this process. To address this, we design and utilize novel, ensemble FRET assays that continuously monitor the interactions of RPA, RFC, PCNA and pol δ with DNA as pol δ holoenzymes are assembled and initiate DNA synthesis. Results from the present study reveal that RPA remains engaged with P/T junctions throughout this process and the RPA•DNA complexes dynamically re-organize to allow successive binding of RFC and pol δ. These results have broad implications as they highlight and distinguish the functional consequences of dynamic RPA•DNA interactions in RPA-dependent DNA metabolic processes.


Assuntos
DNA Polimerase III , Replicação do DNA , DNA , Antígeno Nuclear de Célula em Proliferação , Proteína de Replicação A , Proteína de Replicação C , Moldes Genéticos , Proteína de Replicação A/metabolismo , DNA Polimerase III/metabolismo , DNA Polimerase III/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Holoenzimas/metabolismo , DNA/metabolismo , DNA/biossíntese , Proteína de Replicação C/metabolismo , Proteína de Replicação C/genética , Primers do DNA/genética , Transferência Ressonante de Energia de Fluorescência , Humanos
19.
Anat Histol Embryol ; 53(4): e13082, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38944689

RESUMO

The spleen is the largest secondary lymphoid organ with significant roles in pathogen clearance. It is involved in several avian diseases. The cattle egret is a wild insectivorous bird of agricultural and socioeconomic importance. Data related to microstructural features of cattle egret spleen are lacking. The present study investigated the gross anatomical, histological and immunohistochemical characteristics of the cattle egret spleen. Proliferation (PCNA and PHH3), apoptosis (cleaved caspase 3, C.CASP3) and T-cell (CD3 and CD8) markers were assessed. Grossly, the spleen appeared brownish red, oval-shaped and located at the oesophago-proventricular junction. Histologically, the spleen was surrounded by a thin capsule sending a number of trabeculae which contained branches of the splenic vessels. The white pulp consisted of the periarteriolar lymphoid sheath and periellipsoidal lymphatic sheath (PELS). The red pulp was formed of sinusoids and cords. The penicillar capillaries, which represent the terminal segments of the splenic arterial tree were highly branched, wrapped by prominent ellipsoids and directly connected to the splenic sinusoids, suggesting a closed type of circulation. Immunohistochemically, proliferating cell nuclear antigen (PCNA)-expressing cells were distributed with high counts throughout the splenic parenchyma, being highest within the splenic cords and PELS. Both PHH3- and C.CASP3-expressing cells revealed a similar pattern to that of PCNA, although with fewer counts. Large numbers of T cells were observed throughout the splenic parenchyma, mainly within the cords, as revealed by CD3 and CD8 immunoreaction. The present study provides a clear insight into the precise structure of the spleen in cattle egrets and thus improves our understanding about birds' immunity.


Assuntos
Apoptose , Aves , Proliferação de Células , Antígeno Nuclear de Célula em Proliferação , Baço , Linfócitos T , Animais , Baço/citologia , Apoptose/fisiologia , Antígeno Nuclear de Célula em Proliferação/metabolismo , Aves/anatomia & histologia , Imuno-Histoquímica/veterinária , Complexo CD3/metabolismo , Biomarcadores/metabolismo , Caspase 3/metabolismo
20.
Sci Adv ; 10(23): eadn5175, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38838138

RESUMO

Inheritance of epigenetic information is critical for maintaining cell identity. The transfer of parental histone H3-H4 tetramers, the primary carrier of epigenetic modifications on histone proteins, represents a crucial yet poorly understood step in the inheritance of epigenetic information. Here, we show the lagging strand DNA polymerase, Pol δ, interacts directly with H3-H4 and that the interaction between Pol δ and the sliding clamp PCNA regulates parental histone transfer to lagging strands, most likely independent of their roles in DNA synthesis. When combined, mutations at Pol δ and Mcm2 that compromise parental histone transfer result in a greater reduction in nucleosome occupancy at nascent chromatin than mutations in either alone. Last, PCNA contributes to nucleosome positioning on nascent chromatin. On the basis of these results, we suggest that the PCNA-Pol δ complex couples lagging strand DNA synthesis to parental H3-H4 transfer, facilitating epigenetic inheritance.


Assuntos
DNA Polimerase III , Replicação do DNA , Epigênese Genética , Histonas , Antígeno Nuclear de Célula em Proliferação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , Histonas/metabolismo , DNA Polimerase III/metabolismo , DNA Polimerase III/genética , Nucleossomos/metabolismo , Nucleossomos/genética , DNA/metabolismo , Humanos , Ligação Proteica , Mutação , Cromatina/metabolismo , Cromatina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA